
algorithms

Article

A New Constructive Heuristic Driven by Machine Learning for
the Traveling Salesman Problem

Umberto Junior Mele 1 , Luca Maria Gambardella 1 and Roberto Montemanni 2,*

����������
�������

Citation: Mele, U.J.; Gambardella,

L.M.; Montemanni, R. A New

Constructive Heuristic Driven by ML

for the TSP. Algorithms 2021, 14, 267.

https://doi.org/10.3390/a14090267

Academic Editors: Frank Werner and

Johan Markdahl

Received: 17 August 2021

Accepted: 9 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dalle Molle Institute for Artificial Intelligence (IDSIA), USI-SUPSI, 6962 Lugano, Switzerland;
umberto.junior.mele@usi.ch (U.J.M.); luca.gambardella@usi.ch (L.M.G.)

2 Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia,
42122 Reggio Emilia, Italy

* Correspondence: roberto.montemanni@unimore.it

Abstract: Recent systems applying Machine Learning (ML) to solve the Traveling Salesman Problem
(TSP) exhibit issues when they try to scale up to real case scenarios with several hundred vertices.
The use of Candidate Lists (CLs) has been brought up to cope with the issues. A CL is defined as a
subset of all the edges linked to a given vertex such that it contains mainly edges that are believed
to be found in the optimal tour. The initialization procedure that identifies a CL for each vertex
in the TSP aids the solver by restricting the search space during solution creation. It results in a
reduction of the computational burden as well, which is highly recommended when solving large
TSPs. So far, ML was engaged to create CLs and values on the elements of these CLs by expressing
ML preferences at solution insertion. Although promising, these systems do not restrict what the
ML learns and does to create solutions, bringing with them some generalization issues. Therefore,
motivated by exploratory and statistical studies of the CL behavior in multiple TSP solutions, in this
work, we rethink the usage of ML by purposely employing this system just on a task that avoids
well-known ML weaknesses, such as training in presence of frequent outliers and the detection of
under-represented events. The task is to confirm inclusion in a solution just for edges that are most
likely optimal. The CLs of the edge considered for inclusion are employed as an input of the neural
network, and the ML is in charge of distinguishing when such edge is in the optimal solution from
when it is not. The proposed approach enables a reasonable generalization and unveils an efficient
balance between ML and optimization techniques. Our ML-Constructive heuristic is trained on small
instances. Then, it is able to produce solutions—without losing quality—for large problems as well.
We compare our method against classic constructive heuristics, showing that the new approach
performs well for TSPLIB instances up to 1748 cities. Although ML-Constructive exhibits an expensive
constant computation time due to training, we proved that the computational complexity in the
worst-case scenario—for the solution construction after training—is O(n2 log n2), n being the number
of vertices in the TSP instance.

Keywords: traveling salesman problem; machine learning; artificial intelligence; constructive heuris-
tic; hybrid heuristic; reinforcement learning; statistical analysis; complexity theory

1. Introduction

The TSP is one of the most intensively studied and relevant problems in the Com-
binatorial Optimization (CO) field [1]. Its simple definition—despite the membership to
the NP-complete class—and its huge impact on real applications [2] make it an appealing
problem to many researchers. As evidence of this, the last seventy years have seen the
development of extensive literature, which brought valuable enhancement to the CO field.
Concepts such as the Held-Karp algorithm [3], powerful meta-heuristics such as the Ant
Colony Optimization [4], and effective implementations of local search heuristics such as
the Lin-Kernighan-Helsgaun [5] have been suggested to solve the TSP. These contributions,

Algorithms 2021, 14, 267. https://doi.org/10.3390/a14090267 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8464-1889
https://orcid.org/0000-0002-0229-0465
https://doi.org/10.3390/a14090267
https://doi.org/10.3390/a14090267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14090267
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14090267?type=check_update&version=2

Algorithms 2021, 14, 267 2 of 25

along with others, have supported the development of various applied research domains
such as logistics [6], genetics [7], telecommunications [8] and neuroscience [9].

In particular, during the last five years, an increasing number of ML-driven heuristics
have appeared to make their contribution to the field [10,11]. The surge of interest was
probably moved by the rich literature, and by the interesting opportunities provided by
CO applications. Among the many works recently proposed it is worth mentioning those
that have introduced empowering concepts such as the opportunity to leverage knowledge
from past solutions [12,13], the ability to imitate computationally expensive operations [14],
and the faculty of devising innovative strategies via reinforcement learning paradigms [15].

In light of the new features being brought by ML approaches, we wish to couple these
ML qualities with well-known heuristic concepts, aiming to introduce a new kind of hybrid
algorithm. The scope is to engineer an efficient interlocking between ML and optimization
algorithms, which seeks robust enhancements with respect to classic approaches. Many
attempts have been proposed so far, but none of them until now has succeeded in preserving
the improvements while scaling up to larger problems. A promising idea to contrast the
scaling up issue is to use CLs [16]. A CL identifies a subset of edges that are considered
promising for the solution. Using CLs can help the solver to restrict the solution searching
space since most of the edges are marked as unpromising and will not be considered in the
optimization. Moreover, the employment of CL allows for a divide et conquer abstraction,
which favors generalization. It can be argued that the generalization issue which emerged in
the previous ML-driven approaches is caused mostly by the lack of a proper consideration
of the ML weaknesses and limitations [17,18]. In fact, ML is known for having troubles with
imbalanced datasets, outliers and extrapolation tasks. Such cases could lead to significant
obstacles in achieving good performances with most ML systems. The aforementioned
statistical studies were very useful to achieve fundamental insights which allowed our
ML-Constructive to bypass these weaknesses. More details on these typical ML weaknesses,
with our proposed solutions, will be provided in Section 2.2.

Our main contribution is the introduction of the first ML-driven heuristic that actively
uses ML to construct partial TSP solutions without losing quality when scaling. The ML-
Constructive heuristic is composed of two phases. The first phase uses ML to identify edges
that are very likely to be optimal, the second completes the solution by a classic heuristic.
The resulting overall heuristic shows good performance when tested on representative
instances selected from the TSPLIB library [19]. The instances considered present up to
1748 vertices, and surprisingly ML-Constructive exhibits slightly better solutions on larger
instances rather than on smaller ones, as shown in the experiments. Despite the fact that
good results are shown in terms of quality, our heuristic presents an unappealing large
constant computation time for training in the current state of the implementation. However,
we prove that for the creation of a solution a number of operations bounded by O(n2 log n2)
is required after training (which is executed only once). ML-Constructive learns exclusively
using local information, and it employs a simple ResNet architecture [20] to recognize
some patterns from the CLs through images. The use of images, even if not optimal in
terms of computation, allowed us to plainly see the input of the network and to get a better
understanding of the internal processes in the network. We have finally introduced a novel
loss function to help the network to understand how to make a substantial contribution
when building tours.

The TSP is formally stated in Section 1.1, and a literature review is presented in Section 1.2.
The concept of constructive heuristic is described in detail in Section 2.1 while statistical
and exploratory studies on the CLs are spotlighted in Section 2.2. The general idea of
the new method is discussed in Section 2.3, the ML-Constructive heuristic is explained in
Section 2.4 and the ML model with the training procedure is discussed in Section 2.5. To
conclude, experiments are presented in Section 3, and conclusions are stated in Section 4.

Algorithms 2021, 14, 267 3 of 25

1.1. The Traveling Salesman Problem

Given a complete graph G(V, E) with n vertices belonging to the set V = {0, . . . , n− 1},
and edges eij ∈ E for each vertex i, j ∈ V with i 6= j, let cij be the cost for the directed edge
eij starting from vertex i and reaching vertex j. The objective of the Traveling Salesman
Problem is to find the shortest possible route that visits each vertex in V exactly once and
creates a loop returning to the starting vertex [1].

The [21] formulation of the TSP is an integer linear program describing the require-
ments that must be met to find an optimal solution to the problem. The variable xij defines
if the optimal route found picks the edge that goes from vertex i to vertex j with xij = 1, if
the route does not pick such edge then xij = 0. A solution is defined as a matrix X with
entries xij and dimension n× n. The objective function is to minimize the route cost, as
shown in Equation (1).

min
n−1

∑
i=0

n−1

∑
j=0,j 6=i

cij xij (1)

n−1

∑
i=0,i 6=j

xij = 1, j = 0, . . . , n− 1 (2)

n−1

∑
j=0,j 6=i

xij = 1, i = 0, . . . , n− 1 (3)

∑
i∈Q

∑
j∈Q,j 6=i

xij ≤ |Q| − 1, ∀Q ⊂ {0, . . . , n− 1}, n > |Q| ≥ 2 (4)

xij ∈ {0, 1}, i, j = 0, . . . , n− 1, i 6= j (5)

There are the following constraints: each vertex is arrived at from exactly one other
vertex (Equation (2)), each vertex is a departure to exactly one other vertex (Equation (3))
and no inner-loop between vertices for any proper subset Q is created (Equation (4)). The
constraints in Equation (4) prevent that the solution X is the union of smaller tours. To
conclude, each edge xij in solution must be not fractional (Equation (5)). We point out that
the graphs used in this work are symmetric and placed in a two-dimension space.

A CL with cardinality k for vertex i is defined as the set of edges eij, with j ∈ CL[i],
such that the vertices j are the closest k vertices to vertex i. Note that for each vertex there
is a CL, and for each CL there are at most two optimal edges.

1.2. Literature Review

The first constructive heuristic documented for the TSP is the Nearest Neighbor (NN),
which is a greedy strategy that repeats the rule “take the closest vertex from the set of unvisited
vertices”. This procedure is very simple, but it is not very efficient. While the NN is choosing
the best vertex to join the solution, the Multi-Fragment (MF) [22,23] and the Clarke-Wright
(CW) [24] are alternatives to add the most promising edge in the solution. Note that the NN
grows a single fragment of the tour by adding the closest vertex to the fragment extreme
considered during the construction. On the other hand, MF and CW grow, join and give
birth to many fragments of the final tour [25]. The approaches using many fragments show
superior quality performances, and also come up with very low computational costs.

A different way of constructing TSP tours is known as insertion heuristic, such as the
Furthest-Insertion (FI) [23]. These approaches iteratively expand the tour generated by
the previous iteration. Considering that—at the mth iteration—the insertion heuristic has
created a feasible tour with m + 1 vertices (iteration one starts with two vertices) belonging
to the inserted edges subset V̂m ⊂ V. At iteration m + 1, the expansion is carried out, and
a new vertex, e.g., vertex j, is inserted into the subset V̂m+1 = V̂m ∪ {j}. To preserve the
feasibility of the expanded tour, one edge is removed from the previous tour and two edges
are added to connect the released vertices to the new vertex j. The removal is done in such
a way that the lowest cost for the new tour is achieved.

Algorithms 2021, 14, 267 4 of 25

In case the insertion policy is Furthest, the new inserting vertex is always the farthest
from all the vertices belonging to the current tour. Once the last iteration is reached, a
complete feasible tour passing through each vertex in V has been constructed. For further
details about the computational complexity and the functioning of these broadly used
constructives (MF, CW and FI) we suggest chapter six of Gerhard Reinelt’s book [26].

Initially, the exploration in the literature produced to introduce ML concepts was
about a setup similar to the NN. Systems such as pointer networks [27] or graph-based
transformers [12,13,28] were engaged to select the next vertex in the NN iteration. These
architectures were engaged to predict values for each valid departure edge of the extreme
considered on the single fragment approach. Then, the best choice (next vertex) according
to these values was added to the fragment. These systems were applying stochastic
sampling as well, so they could produce thousands of solutions in parallel using GPU
processing. Unfortunately, these ML approaches failed to scale, since all vertices were given
as input to the networks, and TSP instances with different dimensions exhibit inconsistent
intrinsic features.

To attempt to overcome the generalization problem, several works proposed systems
arguably claimed to be able to generalize [16,29,30]. Results however showed that the
proposed structure2vec [29] and Graph Pointer Network [30] keep their performances close
to the FI [23] up to 250 vertices instances, then they lose their ability to generalize. The
model called Att-GCN [16] is used to pre-process the TSP by initializing CLs. Even if
solutions are promising in this case, the ML was not actively used to construct TSP tours.
Furthermore, no comparisons with other CL constructors as: POPMUSIC [31], Delunay
Triangolarization [32], minimum spanning 1-tree [1] and a recent CL constructor driven by
ML [33] were provided in the paper.

The use of Reinforcement Learning (RL) to tackle TSP was proposed as well [34]. The
ability to learn heuristics without the use of optimal solutions is very appealing. These
architectures were trained just via the supervision of the objective function shown in
Equation (1). Several RL algorithms were applied so far to solve TSP (and CO problems
in general [35]). The actor-critic algorithm was employed in [36]. Later, ref. [13] used the
actor-critic paradigm with an additional reward defined by the easy to compute minimum
spanning tree cost (resembling a TSP solution, see [37]). Moreover, the Q-learning frame-
work was used by [29], the Monte Carlo Tree Search was employed by [16] and Hierarchical
RL applied in [30]. It is worth mentioning that [38] explicitly advised rethinking about the
generalization issues to solve TSP employing ML, suggesting that a more hybrid approach
was necessary. In Miki [39,40] was proposed for the first time the use of image processing
techniques to solve the TSP. The choice—even if not obvious in terms of efficiency—has the
advantage to get a better understanding of internal network processes.

2. Materials and Methods

For the sake of clarity, materials and methods employed in this work have been
divided into subsections. In Section 2.1, constructive heuristics, based on fragments growth,
are reviewed with some examples. The statistical study and the main intuitions behind
our heuristic are presented in Section 2.2. The general idea of the ML-Constructive heuristic
is described in Section 2.3, the overall algorithm with its complexity is demonstrated in
Section 2.4. The ML system, the image creation process and the training procedure are
explained in detail in Section 2.5.

2.1. Constructive Heuristics

Constructive heuristics are employed to create TSP solutions from scratch, when just
the initial formulation described in Section 1.1 is available. They exploit intrinsic features
during the solution creation, generally provide quick solutions with modest quality, and
exhibit low polynomial computational complexity [1,24,41].

Algorithms 2021, 14, 267 5 of 25

Figure 1. (A) Single fragment constructor that operates similarly to NN. (B) Constructor that growths
multiple fragments similarly to MF and CW.

In this paper, we further develop constructive heuristics. Particularly, those that take
their decisions on edges are addressed. These approaches grow many fragments of the tour,
in opposition to NN that grows just a single fragment (Figure 1). Since at each addition
the procedure must avoid inner-loops and no vertex can be connected with more than two
other vertices, they take an extra effort concerning the NN to preserve the TSP constraint.
However, the computational time needed to construct a tour remains limited [26].

As introduced by [42,43], two main choices are required to design an original construc-
tive heuristic driven by edge choices: the order for the examination of the edges, and the
constraints that ensure a correct addition. Note that to construct an optimal TSP solution
the examination order of the edges must be optimal as well (there are more optimal orders).
So, theoretically, the objective of an efficient constructive is to examine the edges in the best
possible order.

The examination order is arranged according to the relevance that each edge of the
instance exhibits. The relevance of an edge is related to the probability that we expect that
such an edge is in the optimal solution. The higher is the relevance the earlier that edge
should be examined. Different strategies are possible to measure the edges’ relevance, the
most famous ones are the MF and the CW policies. The MF relevance is expressed by the
cost values, the smaller is the cost, the higher is the probability of being added. Instead, the
CW relevance depends on the saving value, which was designed on purpose to rethink the
examination order. Saving is the gain obtained when rather than passing through a hub
node h, the salesman uses the straight connection between vertex i and vertex j. Note that
the hub vertex is chosen to exhibit the shortest Total Distance (TD) from the other vertices.
Equation (6) describes the formulas used to find the hub, while Equation (7) shows the
function employed to compute the saving values.

h = arg min
i∈V

TD[i], TD[i] =
n−1

∑
j=0

cij, ∀i ∈ V (6)

sij = cih + chj − cij, ∀i, j ∈ V, with i 6= j (7)

The second important choice is to define simple constraints that ensure correct ad-
ditions. The edge’s addition checker is the algorithm the allows to add feasible edges at
each iteration. For both approaches (MF and CW), it is checked that the examined edge
does not exhibit extremes vertices with already two connections (Equations (2) and (3)),

Algorithms 2021, 14, 267 6 of 25

and that does not create inner-loops (Equation (4)) with the current partial solution. Tracker
is called the subroutine that checks if the examined edge can create an inner-loop, and it
uses a quadratic number of operations for the worst-case scenario in our implementation
(Appendix A). Note that there exist more efficient data structures and algorithms for the
tracker subroutine that even runs in O(n log n) [43].

2.2. Statistical Study

As mentioned earlier, the generalization issues of ML approaches are likely caused by
a poor consideration of well-known deep learning weaknesses [17,18,38]. It is known that
dealing with imbalanced datasets, outliers and extrapolation tasks can critically affect the
overall performances of an ML system. So one of the main reasons for using ML for TSP is
to reduce the number of wrong forecasts during the construction of the solution.

An outlier arises when a data point differs significantly from other observations, out-
liers can cause problems during back-propagation [44] and in their pattern recognition [45].
Finally, with extrapolation it is mean the phenomenon that occurs when a learned system is
required to operate beyond the space of known training examples, since it wants to extend
the intrinsic features of the problem to similar but different tasks [46].

To overcome the aforementioned problems, we suggest supporting the ML with an
optimization heuristic. We instruct the model to act as a decision-taker, and we engineer
to place it in a context that allows it to act confidently. We emphasize the significance of
designing a good heuristic that avoids gross errors, e.g., by omitting imbalanced class
skews and outlier points. Choosing wisely a context for the ML that does not change too
frequently during the algorithm iterations, can help it to deal with extrapolation tasks
as well.

We addressed the challenge by introducing two operational components: the use of a
subroutine and the employment of ML as a decision-taker for the solution construction.
The subroutine consists of the detection of optimal edges from the elements of a CL. As
stated in Section 1.1, CL identifies the most promising edges to be part of the optimal
solution. For instance, [47] proved that just around 30 · n of the edges need to be taken into
account by an optimal solver for large instances with more than a thousand points. The
use of CL with ML was firstly suggested by [16]; but, as mentioned, they employed ML to
initialize CL rather than constructing tours.

To understand the decision-taker task, an exploratory study was carried out to check
the distribution of the optimal edges within the CLs. It was observed that after sorting the
edges in the CL from the shortest to the longest, the occurring of an optimal edge was not
uniform concerning the positions in the sorted CL, but followed a logarithmic distribution,
as shown in Figure 2. Such a pattern unfortunately revealed a severe class distribution
skew for some positions. In fact, some positions displayed the presence of optimal edges
much more frequently than other positions.

Figure 2 also shows the rate of optimal edges found for each position. Note that
an optimal edge occurrence arises when the optimal tour passes through the edge in
the position taken into consideration by the CL. This study emphasizes the relevance of
detecting when the CL’s shortest edge is optimal since about 88.6% for the evaluation
data-set and 86.7% for the test data-set of the times these edges belong to the optimal tour.
However, it reveals as well that detecting with ML when the shortest edge is not optimal is
a hard task due to the over-represented situation.

Algorithms 2021, 14, 267 7 of 25

Figure 2. Empirical Probability Density Function (PDF) showing the optimal edge behavior in
relation to the position in the CL. Over each bar is shown the rate of optimal edge occurrence for
each considered position. (A) Evaluation data-set. (B) TSPLIB data-set.

Instead, considering the second shortest edge, a balanced scenario is observed. About
half of the occurrences are positive and the other half is negative for both data sets. On
the other hand, the rapid growth of under-represented positions can be observed from
the third position onwards. Note that up to the fifth position the under-representation is
not too severe, and imbalanced learning techniques could make their contribution to infer
some useful patterns [48]. From the sixth on instead, the optimal occurrences are too rare
to be able to recognize any useful pattern, even if these positions could be interpreted as
very useful ones in terms of construction. Considering the rate of optimal edges shown in
Figure 2, the sum of optimal occurrences for the first five positions in the CL represents
about 95% of the total optimal edges available. Therefore, the selection of such a subset of
edges is promising in regards to ML pattern recognition, in such a way as to avoid all the
under-represented scenarios.

The empirical probability density functions (PDF) shown in Figure 2 were computed
using 1000 uniform random euclidean TSP instances—sampled in the unit side square with
a total number of vertices varying uniformly between 500 and 1000—for the evaluation
data-set and a representative selection of TSPLIB instances as test data-set. The latter
data-set was select in such a way that all the instances available in the TSPLIB library with a
total number of vertices varying between 100 and 2000 were included. Furthermore, these
instances were required to be stacked in a two-dimensional space as well. The optimal
solutions were computed with the Concorde solver [49] for both cases.

After that the most promising edges were selected, a relevant choice to be made in
our heuristic is the examination order of these edges. As mentioned, edges selected in
earlier stages of the construction exhibit higher probabilities to be accepted regarding the
later ones. To explore the effectiveness of different strategies, we tested the behavior of
classic constructive solvers such as MF, FI and CW (Figure 3). Using the representative
TSPLIB instances [19], these solvers were investigated on some classic metrics such as the
TPR, the FPR, the accuracy and the precision. Considering each constructive solver as a
predictor, each position in the CL as a sample point, and the optimal edge positions as
the actual targets to be predicted. For each CL, there are two position targets and two
positions predicted.

Algorithms 2021, 14, 267 8 of 25

Figure 3. TPR (A) and FPR (B) comparison for MF, FI and CW heuristics. The first five positions in
the CL are considered separately, while all the others are shown in the >5 bars.

A true-positive occurs when the predicted edge is also optimal, a false-positive instead
occurs if the predicted edge is not optimal. Note that avoiding false-positive cases is crucial
since they block other optimal edges in the process. To take care also of this aspect, the
precision of the predicting heuristic was considered in Table 1 as well. Let Dp be the dataset
of all the edges available in the p positions for each CL. If the predictor truly finds an
optimal edge in the observation i, the variable TPi will be equal to one, otherwise, it is zero.
Similarly, it is for the false-positive FPi variable. Note that a positive (Pi) or negative (Ni)
observation occur when the observation is optimal or not, respectively,and the frequency of
these events varies according to the p position. Hence, studying the predictor performances
by position is important since each position has different importance during the solution
construction and for the optimal frequency.

TPR =
∑i∈Dp TPi

∑i∈Dp Pi
, FPR =

∑i∈Dp FPi

∑i∈Dp Ni
(8)

Table 1. TPR, FPR, accuracy and precision comparison across several positions and methods.

Position Method TPR FPR Accuracy Precision

1
MF 92.57% 61.65% 85.20% 90.52%
FI 77.39% 46.26% 74.18% 91.41%

CW 82.79% 46.56% 78.80% 91.88%

2
MF 83.21% 29.57% 78.19% 81.30%
FI 66.00% 26.20% 69.06% 79.56%

CW 72.29% 27.01% 72.57% 80.53%

3
MF 52.41% 9.23% 81.59% 64.15%
FI 44.80% 15.99% 74.62% 46.87%

CW 55.03% 15.04% 77.79% 53.54%

4
MF 38.47% 4.79% 88.15% 53.28%
FI 38.96% 11.09% 82.70% 33.30%

CW 45.99% 10.40% 84.18% 38.59%

5
MF 27.12% 2.27% 93.75% 41.65%
FI 30.59% 7.88% 88.65% 18.82%

CW 36.20% 5.75% 90.98% 27.35%

>5
MF 22.72% 0.01% 99.98% 13.94%
FI 27.55% 0.03% 99.97% 9.60%

CW 29.01% 0.02% 99.98% 14.71%

Algorithms 2021, 14, 267 9 of 25

To get a better look at the results shown in Figure 3, Table 1 emphasizes the values
obtained during the experiment. MF exhibits a higher TPR for shorter edges as expected,
while CW performs better with longer edges. However, less obvious is MF’s higher FPR in
the first position. The latter fact brings attention to the importance of decreasing the FPR
for the most frequent position. Note that the CW’s precision is higher concerning the other
ones for the first position, which can be read as the main reason why CW comes up with
better TSP solutions than MF. So, one of the main reasons for using ML for TSP is to reduce
the FPR during the construction of the solution.

2.3. The General Idea

In light of the statistical study presented in Section 2.2, we propose a constructive
heuristic called ML-Constructive. The heuristic follows the edge addition process (see MF
and CW in Section 2.1) extended by an auxiliary operation that asks the ML to agree for any
attaching edge during a first phase. The goal is to avoid as much as possible adding bad
edges in the solution while allowing the addition of promising edges which are considered
auspicious by the ML model. We emphasize that our focus is not on the development of
highly efficient ML architectures, but rather on the successful interaction between ML and
optimization techniques. Therefore, the ML is conceived to act as a decision-taker and the
optimization heuristics as the texture of the solution building story. The result is a new
hybrid constructive heuristic that succeeds in scaling up to big problems while keeping the
improvements achieved thanks to ML.

As aforementioned, the ML is exploited just in situations where the data do not
suggest underrepresented cases, and since about 95% of the optimal edges are connections
with one of the closest five vertices of a CL, only such subset of edges is initially considered
to test the ML performances. Recall that it is a common practice to avoid employing ML in
the prediction of rare events. Instead, it is commonly suggested to apply ML preferably
in cases where a certain level of pattern recognition can be confidently detected. For this
reason, our solution is designed to construct TSP tours in two phases. The first employs
ML to construct partial solutions (Figure 4). While the second uses the CW heuristic to
connect the remaining free vertices and complete the TSP tour.

Figure 4. First phase partial solution constructed with the ML predictions. Vertices in light blue are
free for the second phase of ML-Constructive. The instance is the KroA100 from the TSPLIB collection.

Initially, during the first phase, considered most likely edges to be found in the optimal
tour are collected in the list of promising edges LP. To appropriately choose these edges,
several experiments were carried out and results are shown in Table 2. The strategy used
to build the promising list was to include the edges of the first m vertices of each CL,
considering the m value ranging from 1 to 5. The ML was in charge of predicting whether
the edges under consideration in LP were in the optimal solution or not. Experiments were

Algorithms 2021, 14, 267 10 of 25

handled adopting the same ResNet [20] architecture and procedure explained in Section 2.5,
but the ML was trained on different data to be consistent with the m tested value.

Table 2. Comparison on TPR, FPR and their difference for several choices of the LP list.

Closest m TPR FPR TPR-FPR

1 100.00% 100.00% 0.00%
2 53.91% 13.70% 40.21%
3 30.97% 1.64% 29.33%
4 31.00% 1.50% 29.50%
5 30.66% 1.30% 29.36%

Several classic metrics were compared for the different m: the True Positive Rate (TPR),
the False Positive Rate (FPR), and their difference [50]. Please note that ML objectives are
to keep the FPR small, meanwhile to obtain good results in terms of TPR. Keeping a small
FPR ensures that during the second phase the ML-Constructive has an higher probability in
detecting good edges, meanwhile with a high TPR the search space for the second phase is
hopefully reduced (Appendix B).

In terms of TPR, it seems to be the best choice to include just the shortest edge in
LP (m = 1), but by checking the FPR in Table 2 it becomes obvious that the ML has
learned to predict almost always an agreement for m = 1. Therefore, such a behavior is
undesirable and it leads to a high FPR, and hence to worse solutions during the second
phase. However, if the difference between TPR and FPR is taken into account, the best
arrangement is when the first two shortest edges are put into the list (m = 2). Although
other arrangements might show to be effective as well, the selection through positions in
the CLs and the selection of the first two shortest edges in each CL are proven to be efficient
by the results. Recall that too many edges in LP can be confusing since outliers and classes
with severe distribution skew can appear. For example, detecting optimal edges from the
fourth position onwards is very difficult since they are very under-represented (Figure 2),
and the creation of images connecting edges that are in the fourth position in their CL is
very uncommon—causing outliers in the third channel (Section 2.5).

After engineering the promising list structure, LP is sorted according to a heuristic
that seeks to anticipate the processing of good edges. It is crucial to find an effective
sorting heuristic for the promising list since the order of it affects the learning process
and the ML-Constructive algorithm as well. An edge belonging to the optimal tour and
being straightforwardly detected by the ML model is regarded as good. Therefore, for
simplicity, in this work, the list is sorted by edge’s position in the CL and cost length,
but other approaches could be propitious, perhaps using ML. Note that, as repeatedly
mentioned, the earlier examination of the most promising edges increases the probability
to find good tours employing the multiple fragment paradigm (Appendix B).

At this point, the edges belonging to the sorted promising list are drawn in images and
fed to the ML one at a time. If the represented edge meets the TSP constraints considering
the partial solution found at the current iteration, the ML system will be challenged to detect
if the edge is in the optimal solution. If the ML agrees with a given level of confidence, the
heuristic will add the edge to the solution. Assuming that some CLs information provides
enough details to detect common patterns from previous solutions, the images represent
just a small subset of vertices given by the CLs of each edge extremes of the edge that
is processed. The partial solution visible in such local context and available up to the
insertions made by moving through the promising list is represented as well.

Once all the edges of the promising list have been processed, the second phase of
the algorithm will complete the tour. Initially, it detects the remaining free vertices to
connect (Figure 4), then it connects such vertices employing the CW. Note that CW usually
captures the optimal long edges better than MF, as emphasized in Figure 3 and Table 1.
Therefore CW represents a promising candidate solver to connect the remaining free
fragment extremes of the partial solution into the final tour. However, other arrangements

Algorithms 2021, 14, 267 11 of 25

employing local searches or meta-heuristics may be considered promising as well even if
more time-consuming [51].

2.4. The ML-Constructive Algorithm

The ML-Constructive starts as a modified version of MF, then concludes the tour
exploiting the CW heuristic. The ML model behaves consequently as a glue since it is
crucial to determine the partial solution available at the switch between solvers.

The list of promising edges LP and the confidence level of the ML decision-taker are
critical specifications to set in the heuristic before than it runs. The reasons behind our
promising list building choices were widely discussed in Section 2.3. While the confidence
level is used to handle the exploitation vs exploration trade-off. It consists of a simple
threshold applied to the predictions made by the ML system. If the predicted probability
that validates the insertion is greater than such threshold, then the insertion is applied. The
value of 0.99 has been verified to provide good results on tested instances. Since, lower
values increase the occurrence of false-positive cases, thus leading to the inclusion of edges
that are not optimal. On the other hand, higher values of it decrease the occurrence of
true-positive cases, hence increasing the challenge of the second phase.

The overall pseudo-code for the heuristic is shown in Algorithm 1. Firstly, the CLs
for each vertex in the instance are computed (line 2). We noticed that considering just the
closest thirty vertices for each CL was a good option. As mentioned, just the first two
connections are considered in LP, while the other vertices are used to create the local context
in the image. The CL construction takes a linear number of operations for each vertex, and
the overall time complexity for constructing it is O(n2). Since finding the nearest vertex of
a given vertex it takes linear time, the search for the second nearest takes the same time
(after removing the previous from the neighborhood). So on until the thirtieth nearest
vertex is found. As only the first thirty edges are searched, the operation can be completed
in linear time. Then, promising edges are inserted in LP (line 3), then repeating edges are
deleted to avoid unnecessary operations (line 4). The list is sorted according to the position
in the CL and the cost values (line 5). All the edges that are the first nearest will be found
first and sorted according to cij, then the second nearest and so on. Since only the first two
edges for each CL can be in the list, the sorting task is completed in O(n log n). Several
orders for LP were preliminary tested—e.g., employing descending cost values or even
savings to sort the edges in LP—but experiments suggested that sorting the list according
to ascending cost values is the best arrangement.

The first phase of ML-Constructive takes part. An empty solution X = 0̄ is initialized
(line 6), and following the order in LP a variable l is updated with the edge considered
for the addition (line 7). At first, l is checked to ensure that the edge complies the TSP
constraints (Equations (2)–(4)). Then the ML decision-taker is queried to confirm the
addition of the edge l. If the predicted probability is higher than the confidence level, the
edge is added to the partial solution (lines 11 and 14). To evaluate the number of operations
that this phase consumes, we must split the task according to the various sub-routines
which are acted at each new addition in the solution. The “if” statements (lines 9, 13, 23
and 26) check that the constraints (2) and (3) are complied.

They verify that both extremes of the attaching edge l exhibit at most one connection
in the current solution. The operation is computed with the help of hash maps, and it takes
constant time for each considered edge l. The tracker verification (lines 10 and 24) ensures
that l will not create an inner-loop (Equation (4)). This sub-routine is applied only after it is
checked that both extremes of l have exactly one connection, each in the current partial
solution. It takes overall O(n2) operations up to the final tour (proof in Appendix A).

Once all the constraints of the TSP have been met, the edge l is processed by the ML
decision-taker (lines 11 and 14). Even if time-consuming, such sub-routine is completed in
constant time for each l. Initially, the image depicting the l edge and its local information is
created, then it is given as input to the neural network. To create the image, the vertices
of the CLs and the existing connections in the current partial solution must be retrieved.

Algorithms 2021, 14, 267 12 of 25

Hash maps are used for both tasks, and since the image can include up to sixty vertices,
this operation takes a constant amount of time for each l edge in LP. The size of the neural
network does not vary with the number of vertices in the problem as well but remains
constant for each edge in LP.

To complete the tour, the second phase starts by identifying the hub vertex (line 15).
It considers all the vertices in the problem (free and not), following the rule explained in
Equation (6). Free vertices are selected from the partial solution, and edges connecting such
vertices are inserted in the difficult edges list LD (line 16). The saving for each edge in LD is
computed (line 17), and the list is sorted according to these values (line 18) in O(n2 log n2).
At this point (lines 20 to 27), the solution is completed employing the classical multiple
fragment steps, which are known to be O(n2) [41].

Therefore, the complexity of the worst-case scenario for the ML-Constructive is:

O(n + n log n + n2 + n2 log n2) = O(n2 log n2) (9)

Note that to complete the tour we proposed the use of CW, but rather hybrid ap-
proaches that also use some sort of exhaustive search could be very promising as well,
although more time-consuming.

Algorithm 1 ML-Constructive.

Require: TSP graph G(V, E)
Ensure: a feasible tour X

1: procedure ML-CONSTRUCTIVE(G(V, E))
2: create CL for each vertex
3: insert the shortest two vertices for each CL into LP
4: remove from LP all duplicate edges in their higher positions
5: sort LP according to the position in the CL and the ascending costs ci,j
6: X = 0̄
7: for l in LP do
8: select the extreme vertices i, j of l
9: if vertex i and vertex j have exactly one connection each in X then:

10: if l do not creates a inner-loop then:
11: if the ML agrees the addition of l then: xi,j = 1

12: else
13: if vertex i and vertex j have less than two connections each in X then:
14: if the ML agrees the addition of l then: xi,j = 1

15: find the hub vertex h
16: select all the edges that connects free vertices and insert them into LD
17: compute the saving values with respect to h for each edge in LD
18: sort LD according to the descending savings si,j
19: t = 0
20: while the solution X is not complete do
21: l = LD[t], t = t + 1
22: select the extreme vertices i, j of l
23: if vertex i and vertex j have less than two connections each in X then:
24: if l do not creates a inner-loop then: xi,j = 1

2.5. The ML Decision-Taker

The ML decision-taker validates the insertions made by the ML-Constructive during
the first phase. Its scope is to exploit the ML pattern recognition to increase the occurrences
of finding good edges while reducing them for the bad edges.

Two data sets were specifically created to fit the ML decision-taker; the first was used
to train the ML system while the second was to evaluate and choose the best model. The
training data-set is composed of 38,400 instances uniformly sampled in the unit-sided

Algorithms 2021, 14, 267 13 of 25

square. The total number of vertices for instance n ranges uniformly from 100 to 300. On
the other hand, the evaluation data-set is composed of 1000 instances uniformly sampled
from the unit-sided square. The total number of vertices varies in this case from 500 to
1000. The data-set has been used to create the results in Table 2. The optimal solutions were
found (in both cases) using the Concorde solver [49]. The creation of the training instances
and their optimal tours took about 12 hours on a single CPU thread, while a total time of
24 CPU hours was needed for the evaluation data-set creation (since it includes instances
of greater size). Note that, in comparison with other approaches that use RL, good results
were achieved here even though we used far fewer training instances [13].

To get the ML input ready, the promising list LP was created for each instance in the
data sets. In case m = 2 (best scenario), the two shortest edges of each CL were inserted
into the list. To avoid repetitions, edges that occur several times in the list were inserted
just once at the shortest available position. For example, if edge eij is the first shortest edge
in CL[i] and the second shortest edge in CL[j], it will only occur in LP once such as the first
position for vertex i. After that all promising edges had been inserted into LP, the list was
sorted. Note that the list can contain at most m× n items in it. An image with a dimension
of 96× 96× 3 pixels was created for each edge belonging to LP. Three channels (red, green,
and blue) were set up to provide the information used to feed into the neural network. Each
channel depicts some information inside a square with sides of 96 pixels each (Figure 5). The
first channel of the image (red) shows each vertex in the local view, the second one (green)
shows the edge l considered for the insertion with its extremes and the third one (blue)
shows all the existing fragments currently in the partial solution and visible from the local
view drawn in the first channel.

Figure 5. Example of input image. The vertices in the local view are in the red channel, the l edge is
drawn in green channel, while the edges in the partial solution are in the blue channel.

As mentioned, the local view was formed by merging the vertices belonging to the
CLs of each extreme of the inserting edge. These vertices were collected and their positions
normalized to fill the image. The normalization required having the middle of the inserting
edge l such as the image center, whereas all the vertices visible in the local view were
interior to a virtual sphere inscribed into the squared image, such that the maximum
distance between the image center and the vertices in the local view was less than the
radius of such sphere. The scope of the normalization was to keep consistency among the
images created for the various instances.

The third channel was concerned with giving a temporal indication to aid the ML
system in its decision. Representing those edges that had been inserted during the previous
stages of the ML-Constructive, this information gave a helpful hint in the interpretation of
which edges the final solution needs most. Two different policies were employed in the
construction of it: the optimal policy (offline) and the ML adaptive policy (online). The
first used the optimal tour and the LP order to create this channel (just on training), while
the second one used the ML previous validations (train and test).

Algorithms 2021, 14, 267 14 of 25

Figure 6. ResNet10.

A simple ResNet [20] with 10 layers was adopted to agree on the inclusion of the
edges into the solution. The choice of the model is motivated by the easiness that image
processing ML models show on the understanding of the learning process. The architecture
is shown in Figure 6. There are four residual connections, containing two convolutional
layers each. The first layer in each residual connection is characterized by a stride equal to
two (/2). As usual for the ResNet the kernels are set to 3× 3, and the number of features
increases by multiplying by 2 at each residual connection, to balance the downscale of
the images. The output is preceded by a fully connected layer with 9 neurons (fc) and by
an average pool operation (avg pool) that shrinks the information in a single vector with
1024 features. For additional details we refer to [20]. The model is very compact, with the
scope of avoiding the computational burden and other complexities.

The output of the network is represented by two neurons. One neuron is predicting
the probability that the considered edge l is in the optimal solution, while the other is
predicting if the edge is not optimal. The sum of both probabilities is equal to one. The
choice of using two neurons as output instead of just one is due to the exploitation of the
Cross-Entropy loss function, which is recommended to train classification problems. In
fact, this loss penalizes especially those predictions that are confident and wrong. The
network will know if the inserting edge l is optimal or not during train, while the ResNet
should predict the probability that the edge is optimal during the test.

To train the network two loss functions were jointly utilized: the Cross-Entropy
loss (Equation (10)) [52] and a reinforcement loss (Equation (11)) which was developed
specifically for the task at hand. Initially, the first loss is employed alone up to convergence
(about 1000 back-prop iterations), then the second loss is also engaged in the training. At
each iteration of back-propagation the first loss updates the network firstly, then (after
1000 iterations) the second loss updates the network as well. The gradient of the second
loss function is approximated by the REINFORCE algorithm [53] with a simple moving
average with 100 periods used as a baseline.

Algorithms 2021, 14, 267 15 of 25

loss1 = − E
p(xl)

[
log qθ(xl)

]
(10)

loss2 = − E
qθ(xl)

[
T(xl)− F(xl)

]
(11)

In Equations (10) and (11), xl is the image of the inserting edge l, the function identi-
fying whether l is optimal is accounted as p, while qθ is the ResNet approximation to it.
Moreover, the T function returns one if the prediction made by qθ is true (TP or TN), and
zero otherwise. While the F function returns one if the prediction is false. Note that the
second loss exhibit an expected value with respect to qθ measure, since the third channel is
updated using the ML adaptive policy (online), while the first loss uses the optimal policy
(offline). The introduction of a second loss had the purpose of increasing the occurrences
of true-positive while decreasing the false-positive cases. Note that it employs the same
policy that will occur during the ML-Constructive test run.

3. Experiments & Results

To test the efficiency of the proposed heuristic, experiments were carried out on
54 standard instances. Such instances were taken from the TSPLIB collection [19] and their
vertex set cardinality varies from 100 to 1748 vertices. Non-euclidean instances, such as
the ones involving geographical distances (GEO) or special distance functions (ATT), were
addressed as well. We recall that the ResNet model was trained on small (100 to 300 vertices)
uniform random euclidean instances, evaluated on medium-large (500 to 1000 vertices)
uniform random euclidean instances, and tested on TSPLIB instances. We emphasize
that TSPLIB instances are generally not uniformly distributed, and, as mentioned, these
instances were selected among all available instances in such a way to have no less than
100 total vertices, no more than 2000 total vertices and with the ability to be described in a
two-dimensional space.

All the experiments were handled employing python 3.8.5 [54] for the algorithmic
component, and pytorch 1.7.1 [55] to manage the neural networks. The following hardware
was utilized:

• a single GPU NVIDIA GeForce GTX 1050 Max-Q;
• a single CPU Intel(R) Core(TM) i7-8750H @ 2.20GHz.

During training, all hardware was exploited, while just the CPU was used to test.
The experiments presented in Table 3 compare ML-Constructive (ML-C) results—

achieved employing the ResNet—to other famous strategies based on fragments, such
as the MF and the CW. The first is equivalent to include all the existing edges in the list
of promising edges LP, sort the list according to the ascending cost values—without con-
sidering the CL positions—and then substituting the ML decision taker with a rule that
always inserts the considered edge. While the second strategy is equivalent to keeping
the list LP empty, this means that the first phase of ML-Constructive does not create any
fragment, while the construction is made completely in the second phase. For the sake of
completeness, the FI was tested as well and added to Table 3. Even if FI is not a growing
fragment approach, and therefore is not an alternative strategy of our ML-Constructive
heuristic, it is nevertheless a good benchmark solver to compare.

To explore, evaluate and interpret the behavior of our two-phase algorithm, other
strategies were investigated as well. The ML decision-taker can act in very different ways,
and a comparison with expert-made heuristic rules can be significant. Deterministic and
stochastic heuristic rules were created to explore the optimality gap variation. The aim was
to prove that the learned ML model would produce a higher gain for the heuristic rules,
as corroborated by Table 3. The heuristic rules were substituting the ML decision-taker
component within the ML-Constructive (lines 10 and 13 of Algorithm 1). No changes in
the selecting and sorting strategies were applied to create the lists LP and LD. The First
(F) rule decides to deterministically add the l edge if one of its extremes is the first closest

Algorithms 2021, 14, 267 16 of 25

vertices in the CL of the other extreme. The Second (S) rule is similar, but it adds l only if
one extreme is the second shortest in the CL of the other. The policy that always validates
(Y) the insertion of the edges in LP was examined as well. It represents with CW the
extreme cases where the ML decision-taker always validates or not, respectively, the edges
in LP. A stochastic strategy called empirical (E) was tested as well, which adds the edges
in LP according to the distribution seen for the evaluation data-set in Figure 2. Therefore,
it inserts the edge if one of the extremes is the first with probability 0.886 or the second
with probability 0.512. Twenty runs of the empirical strategy were made, and in (AE)
we show the average results, while in (BE) we show the best from all runs. Finally, to
check the behavior of the ML-Constructive in case the ML system validates with 100%
accuracy (the ML decision-taker is a perfect oracle), the Super Confident (ML-SC) policy
was examined. This policy always answers correctly for all the edges in the promising list
LP, and is achieved by exploiting the known optimal tours. To capture the potentiality of a
super-accurate network for the first phase, the partial solution created by the ML-SC policy
in the first phase and the solution constructed in the second phase are shown in Figure 7.
Note that some crossing edges are created in the second phase. In fact, despite the solution
created being very close to the optimal, the second phase sometimes adds bad edges to the
solution. This last artificial policy has been added to demonstrate how much leverage we
can still gain from the ML point of view.

Figure 7. (A) The partial solution available at the end of the first phase for ML-SC. In light blue the
remaining free vertices, and in dark blue the inserted edges. (B) The complete tour was found at
the end of the ML-SC run. In red the edges were added during the second phase. The considered
instance is the KroA100 from the TSPLIB collection.

The results obtained by the optimal policy (ML-SC) lead us to two interesting aspects.
The first one, as mentioned before, shows the possible leverage from the ML perspective
(first phase). While the second one gives us an idea of how much improvement is possible
from the heuristic point of view (second phase). To emphasize these aspects the ML-SC
(gap) column in Table 3 shows the difference, in terms of percentage error, between the

Algorithms 2021, 14, 267 17 of 25

ML-SC solution and the best solution found by the other heuristics (in bold). In fact, the
top nine columns were compared with each other to find the best solution, while the
tenth column (ML-SC) was later compared with all the others. The average, the standard
deviation (std), and the number of times when the heuristic is best are shown as well for
each strategy. The gap column is of interest since it reveals that occasionally the solution is
highly affected by the behavior of the second phase of the heuristic. Even if the heuristic
behaves greatly for promising edges the second phase can still ruin the solution.

Among the many policies shown in Table 3, the First (F) and the ML-based (ML-C)
policies exhibit comparable average gaps. To prove that the enhancement introduced by the
ML system is on average statistically significant, a statistical test was conducted. A T-test
on the percentage errors obtained for the 54 instances in Table 3 shows that the p-value
against the hypothesis both policies are similar in terms of the average optimal gap is equal
to 0.03. The result proves that the enhancement is relevant, and that these systems have a
promising role in improving the quality of TSP solvers.

To check the behavior of the heuristics concerning time, Table 4 shows the CPU time
for each policy and heuristic shown in Table 3. Note that for each query to the ResNet the
input procedure produces an image that increases the computational burden. Therefore,
future work could be proposed to speed the ML component, even though the computation
times remain short and acceptable for many online optimization scenarios.

Finally, to make a comparison with the metrics presented for the MF, FI, and CW
in Section 2.2, the results in Table 5 show the final tour achievements for the F, ML-C,
and ML-SC policies across the various positions in the CL. Note that although the TPR
of ML-SC is 100%, its FPR is not equal to zero since during the second phase some edges
in the first and second position can be inserted. Also note that the accuracy of ML-C is
consistently better than F, while the FPR for the first position is lower resulting in a higher
TPR for the second position.

Table 3. Percentage error comparison of various decision-takers policies for testing TSPLIB instances.

Instances MF FI CW F S Y AE BE ML-C ML-SC ML-SC (Gap)

kroA100 14.120 16.596 6.043 9.618 22.437 8.636 11.986 7.429 6.480 3.792 2.251
kroC100 12.270 4.979 11.480 8.362 27.558 5.263 13.391 6.950 10.343 4.776 0.203

rd100 16.928 11.214 8.736 11.580 24.121 11.214 14.212 8.938 8.559 6.738 1.821
eil101 27.504 12.719 5.087 8.426 22.099 18.760 14.348 8.426 4.293 0.000 4.293
lin105 16.065 9.006 8.638 7.177 37.332 21.406 12.580 7.080 8.485 10.780 -3.700
pr107 5.799 2.742 10.166 9.245 10.640 8.936 9.454 6.717 11.153 0.445 2.297
pr124 10.110 8.225 2.502 4.911 24.344 7.942 9.079 4.191 6.991 2.997 -0.495

bier127 14.186 16.151 5.659 4.753 25.162 12.370 10.091 4.571 6.604 0.000 4.571
ch130 28.462 13.912 7.480 7.414 22.733 8.003 12.305 8.429 4.975 4.206 0.769
pr136 23.160 10.089 7.186 11.709 15.693 16.046 14.878 11.701 11.151 3.713 3.473
gr137 27.234 13.502 8.243 9.742 30.207 15.548 14.170 10.124 7.329 3.188 4.141
pr144 12.483 3.965 6.444 6.628 12.016 4.161 7.625 3.796 4.474 3.962 -0.166

kroA150 20.238 15.876 8.468 10.507 26.934 14.134 12.799 9.467 6.877 1.139 5.738
pr152 15.196 7.022 9.455 7.204 17.060 6.117 8.239 5.647 6.919 3.793 1.854
u159 17.952 25.604 8.408 9.009 19.881 10.542 11.788 5.589 7.952 6.024 -0.435

rat195 13.043 15.497 5.854 7.576 13.431 13.345 10.286 5.854 7.533 0.000 5.854
d198 20.507 8.251 5.444 6.711 17.535 7.744 9.262 6.267 6.255 4.011 1.433

kroA200 17.819 12.732 8.622 11.097 25.541 11.298 13.008 10.328 6.681 2.094 4.587
gr202 15.935 10.323 5.683 7.367 19.916 7.716 9.673 6.331 4.436 1.825 2.611
ts225 12.842 24.528 6.804 9.493 6.975 14.929 11.309 8.075 6.520 11.330 -4.810

tsp225 26.237 15.644 10.438 9.790 24.165 9.609 13.906 9.169 11.292 4.403 4.766
pr226 21.052 1.788 9.948 11.918 16.784 9.031 12.347 8.778 8.599 5.370 -3.582
gr229 19.624 24.001 8.849 7.593 22.242 10.932 10.807 6.573 7.495 2.807 3.766
gil262 12.279 20.732 9.714 6.602 24.769 10.892 10.976 8.368 6.224 8.999 -2.775
pr264 14.987 13.259 8.839 4.919 16.239 9.816 10.091 6.195 6.036 3.739 1.180
a280 20.822 14.153 13.998 13.959 15.394 12.447 15.944 12.330 11.439 0.388 11.051
pr299 21.639 15.903 8.103 10.467 22.371 15.244 14.385 10.965 8.636 0.905 7.198
lin318 18.356 20.750 7.849 6.377 30.848 14.114 12.652 9.398 6.679 5.501 0.876
rd400 15.032 18.265 9.548 8.278 21.923 10.844 11.840 7.506 8.108 3.423 4.083
fl417 12.469 15.589 12.335 10.606 28.488 8.962 12.149 8.473 8.102 7.394 0.708

Algorithms 2021, 14, 267 18 of 25

Table 3. Cont.

Instances MF FI CW F S Y AE BE ML-C ML-SC ML-SC (Gap)

gr431 19.672 16.603 11.953 6.942 21.114 11.550 12.270 7.867 11.554 4.196 2.746
pr439 15.983 15.487 14.609 9.024 23.183 13.395 12.157 9.439 7.661 7.104 0.557

pcb442 21.423 17.988 9.935 12.460 16.403 13.908 13.233 11.596 10.172 2.787 7.148
d493 16.550 17.172 8.652 9.618 17.898 9.872 9.749 8.443 6.818 4.352 2.466

att532 22.223 18.256 11.013 7.596 25.022 11.150 11.629 9.455 8.441 3.590 4.006
u574 22.276 23.818 10.779 9.023 24.349 9.638 13.113 9.776 9.790 4.495 4.528

rat575 18.529 24.376 8.460 10.350 19.592 8.962 11.734 9.671 6.201 2.761 3.440
d657 13.997 19.781 7.949 7.583 23.008 8.878 12.009 10.043 7.587 3.829 3.754
gr666 13.473 19.277 13.241 9.314 24.339 12.670 13.736 11.534 9.635 6.741 2.573
u724 17.836 23.298 9.881 7.590 23.028 9.952 11.276 9.308 6.543 3.054 3.489

rat783 22.062 22.333 9.642 7.047 21.549 11.617 10.995 8.877 5.934 4.956 0.978
pr1002 18.857 24.818 10.763 9.751 20.484 13.648 13.238 11.600 8.529 5.364 3.165
u1060 17.322 23.213 10.732 9.620 21.754 10.537 13.128 11.580 8.954 6.537 2.417

vm1084 23.083 22.962 10.298 9.615 28.746 12.485 13.390 11.253 9.123 6.951 2.172
pcb1173 17.792 26.408 10.917 9.567 21.033 14.631 13.380 11.821 9.986 5.790 3.777
d1291 21.917 22.502 10.155 5.711 14.783 9.653 9.643 7.573 8.535 3.081 2.630
rl1304 12.142 28.188 10.610 7.512 25.060 11.100 11.821 9.580 9.506 5.228 2.284
rl1323 14.876 26.432 11.804 7.467 25.401 8.385 11.310 9.789 6.538 3.695 2.843

nrw1379 22.314 25.211 9.914 8.842 19.794 11.351 11.443 9.856 7.996 3.655 4.341
fl1400 20.520 13.733 11.432 10.975 27.267 13.718 14.541 9.997 11.273 8.471 1.526
u1432 23.329 21.065 10.407 12.676 14.967 14.928 14.669 12.491 8.440 5.725 2.715
fl1577 16.976 23.053 12.167 12.634 14.082 12.351 12.502 9.084 10.463 4.373 4.711
d1655 15.282 20.785 11.187 9.503 18.427 10.368 12.130 9.478 8.269 5.637 2.632

vm1748 14.134 24.335 11.912 9.992 24.520 11.868 13.757 12.225 9.302 6.094 3.208
average 17.906 17.113 9.341 8.879 21.493 11.345 12.082 8.815 8.035 4.374 2.549

std 4.659 6.652 2.368 2.077 5.493 3.142 1.789 2.155 1.875 2.473 2.715
best 0/54 3/54 6/54 10/54 0/54 0/54 0/54 11/54 24/54 50/54

Table 4. CPU time comparison related to different greedy policies for testing TSPLIB instances.

Instances MF FI CW F S Y AE BE ML-C ML-SC

kroA100 0.004 0.006 0.006 0.009 0.008 0.007 0.014 0.276 1.423 0.011
kroC100 0.004 0.006 0.006 0.011 0.010 0.008 0.015 0.309 1.706 0.010

rd100 0.004 0.006 0.008 0.011 0.010 0.008 0.016 0.323 1.608 0.011
eil101 0.006 0.006 0.007 0.012 0.011 0.011 0.019 0.371 2.178 0.013
lin105 0.005 0.006 0.007 0.013 0.012 0.011 0.017 0.335 1.445 0.012
pr107 0.005 0.007 0.009 0.013 0.011 0.011 0.015 0.302 1.298 0.012
pr124 0.005 0.009 0.009 0.017 0.017 0.016 0.020 0.395 1.565 0.015

bier127 0.010 0.009 0.012 0.100 0.097 0.047 0.055 1.106 2.554 0.059
ch130 0.011 0.009 0.011 0.017 0.016 0.015 0.024 0.473 2.507 0.019
pr136 0.009 0.020 0.011 0.015 0.014 0.014 0.022 0.438 2.308 0.017
gr137 0.006 0.011 0.012 0.023 0.021 0.020 0.027 0.547 2.557 0.024
pr144 0.006 0.012 0.015 0.023 0.022 0.018 0.024 0.487 0.640 0.021

kroA150 0.011 0.014 0.012 0.021 0.017 0.017 0.025 0.492 2.444 0.019
pr152 0.010 0.013 0.015 0.023 0.021 0.019 0.026 0.528 1.047 0.022
u159 0.007 0.014 0.015 0.026 0.025 0.024 0.029 0.580 2.926 0.026

rat195 0.009 0.021 0.024 0.027 0.027 0.026 0.038 0.765 3.553 0.025
d198 0.022 0.020 0.027 0.111 0.109 0.106 0.115 2.305 3.451 0.106

kroA200 0.011 0.021 0.028 0.036 0.032 0.024 0.044 0.879 3.975 0.027
gr202 0.024 0.022 0.028 0.137 0.136 0.129 0.143 2.866 4.018 0.125
ts225 0.012 0.027 0.036 0.043 0.044 0.034 0.044 0.884 3.955 0.036

tsp225 0.019 0.028 0.034 0.041 0.038 0.033 0.052 1.036 4.239 0.031
pr226 0.018 0.031 0.031 0.055 0.052 0.051 0.056 1.111 1.102 0.054
gr229 0.019 0.031 0.032 0.091 0.083 0.088 0.100 1.996 4.220 0.080
gil262 0.017 0.035 0.043 0.058 0.061 0.042 0.068 1.354 4.640 0.060
pr264 0.030 0.037 0.037 0.066 0.067 0.053 0.070 1.401 3.815 0.055
a280 0.032 0.043 0.044 0.524 0.502 0.473 0.503 10.064 5.368 0.471
pr299 0.037 0.050 0.062 0.073 0.060 0.059 0.088 1.770 5.429 0.064
lin318 0.026 0.057 0.069 0.091 0.084 0.079 0.099 1.977 4.871 0.090

Algorithms 2021, 14, 267 19 of 25

Table 4. Cont.

Instances MF FI CW F S Y AE BE ML-C ML-SC

rd400 0.042 0.095 0.096 0.127 0.112 0.119 0.151 3.013 7.594 0.129
fl417 0.048 0.114 0.108 0.211 0.190 0.192 0.221 4.425 7.020 0.193
gr431 0.076 0.110 0.133 0.359 0.353 0.352 0.396 7.927 8.016 0.342
pr439 0.094 0.123 0.130 0.231 0.199 0.194 0.241 4.817 7.093 0.197

pcb442 0.088 0.133 0.147 0.193 0.179 0.151 0.203 4.055 8.526 0.157
d493 0.144 0.231 0.210 0.884 0.898 0.886 0.907 18.141 10.235 0.889

att532 0.111 0.201 0.219 0.309 0.265 0.290 0.329 6.571 10.010 0.230
u574 0.154 0.219 0.218 0.297 0.272 0.281 0.339 6.789 10.652 0.291

rat575 0.105 0.233 0.225 0.236 0.223 0.186 0.282 5.647 11.079 0.204
d657 0.159 0.332 0.294 1.025 1.034 1.003 1.081 21.617 12.054 1.028
gr666 0.170 0.651 0.381 0.768 0.651 0.706 0.808 16.150 12.513 0.680
u724 0.149 0.455 0.394 0.338 0.359 0.310 0.465 9.298 12.734 0.290

rat783 0.303 0.504 0.448 0.383 0.389 0.314 0.532 10.647 14.551 0.299
pr1002 0.498 1.042 0.989 0.879 0.758 0.766 1.099 21.974 20.139 0.747
u1060 0.294 1.183 0.802 1.401 1.198 1.057 1.444 28.873 20.074 1.149

vm1084 0.412 1.504 0.887 1.061 0.867 0.712 1.152 23.045 17.057 0.722
pcb1173 0.402 1.657 0.956 1.109 1.050 0.997 1.458 29.156 22.952 0.947
d1291 0.918 2.192 1.247 4.518 4.452 4.138 4.289 85.775 20.517 3.881
rl1304 0.538 2.482 1.303 1.284 1.145 1.069 1.574 31.470 19.792 1.075
rl1323 0.696 1.856 1.332 1.739 1.655 1.268 1.861 37.213 20.215 1.324

nrw1379 0.994 1.942 1.624 1.270 1.203 1.107 1.762 35.249 29.439 1.113
fl1400 0.745 2.020 1.228 2.655 2.674 2.559 2.816 56.325 30.401 2.583
u1432 1.050 2.116 1.917 1.954 1.760 1.422 2.104 42.074 32.086 1.072
fl1577 1.044 2.733 2.117 2.650 2.616 1.840 2.713 54.267 25.673 1.438
d1655 1.551 3.229 2.689 8.131 7.945 7.751 8.623 172.450 30.257 7.624

vm1748 0.660 3.914 2.360 2.525 1.836 1.914 2.894 57.884 28.875 1.967
average 0.219 0.590 0.428 0.708 0.665 0.612 0.769 15.374 9.822 0.594

std 0.351 0.971 0.679 1.364 1.319 1.251 1.433 28.660 9.280 1.217

Table 5. TPR, FPR, accuracy and precision comparison across several positions and policies.

Position Method TPR FPR Accuracy Precision

1
F 98.07% 85.80% 86.68% 87.91%

ML-C 93.64% 53.08% 87.29% 91.82%
ML-SC 100.00% 3.41% 99.54% 99.47%

2
F 68.28% 18.12% 73.62% 85.35%

ML-C 84.74% 29.07% 79.32% 81.84%
ML-SC 100.00% 3.01% 98.82% 98.09%

3
F 44.40% 8.28% 80.39% 62.82%

ML-C 42.74% 6.02% 81.71% 69.11%
ML-SC 86.27% 0.91% 96.02% 96.74%

4
F 38.09% 5.75% 87.26% 48.47%

ML-C 33.08% 3.60% 88.52% 56.62%
ML-SC 80.27% 0.94% 96.73% 92.41%

5
F 31.18% 4.42% 91.95% 29.66%

ML-C 26.52% 1.94% 94.02% 44.92%
ML-SC 73.95% 0.88% 97.70% 83.42%

>5
F 28.94% 0.02% 99.97% 13.62%

ML-C 25.76% 0.02% 99.97% 11.83%
ML-SC 64.24% 0.01% 99.99% 48.84%

4. Discussion

A new strategy to design constructive heuristics has been presented. It gives a central
role to the integration of statistical, mathematical, and heuristic exploration. We introduced
a new way of thinking about the generalization of ML approaches for the TSP, leading
to an efficient integration between learning useful information and exploiting it through
classic approaches. The objective is to learn useful skills from experience to enhance the

Algorithms 2021, 14, 267 20 of 25

heuristic search. Our ML-Constructive is the first ML approach able to scale and show
improvements at once with respect to a classic efficient constructive heuristic. Furthermore,
the introduced approach can give good guidelines about how the ML can behave in the
event of extreme negative or positive cases. Results are very promising and suggest that
giving more emphasis on the generalization of hybrid designs pays off.

The relevance of an exploratory stage with statistical studies of the problem at hand
had been emphasized. The target of these studies is to select an effective sub-problem that
allows the avoidance of many known ML flaws.

More work needs to be done to improve the accuracy and the extrapolation of the
ML classifier. Further improvements in future work could be in the direction of reducing
the (constant) time required to prepare the input for the ML classifier, and to find the
integration to meta-heuristics approaches as well.

Author Contributions: Conceptualization, U.J.M., L.M.G. and R.M.; methodology, U.J.M.; software,
U.J.M.; validation, U.J.M., L.M.G. and R.M.; formal analysis, U.J.M.; investigation, U.J.M.; resources,
U.J.M.; data curation, U.J.M.; writing—original draft preparation, U.J.M.; writing—review and edit-
ing, U.J.M. and R.M.; visualization, U.J.M.; supervision, R.M.; project administration, R.M.; funding
acquisition, R.M. All authors have read and agreed to the published version of the manuscript.

Funding: Umberto Junior Mele was supported by the Swiss National Science Foundation through
grants 200020-182360: “Machine learning and sampling-based metaheuristics for stochastic vehicle
routing problems”.

Data Availability Statement: All the code for the experiments replication and for the data-sets
creation can be found in the github repository: https://github.com/UmbertoJr/ML-Constructive
(accessed on 8 September 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Complexity of the Inner-Loop Constraint Tracker

The purpose here is to compute the complexity of the inner-loop constraint tracker used
in the ML-Constructive heuristic process, as stated in Section 2.4 and in Algorithm 1. For
comprehension purposes we strict our analysis to the symmetric TSP, but similar results
can be achieved for the asymmetric case as well.

Firstly, we observe that the constraint tracker procedure is applied only to edges
that have both extremes with exactly one connection already in the partial solution, since
the tracker routine follows the constraints expressed by lines 8 and 22 in Algorithm 1.
Therefore, edges connecting vertices from internal points of the fragments are impossible to
occur at this point, as shown in Figure A1. While those creating an inner-loop and joining
two fragments are possible to occur events (Figure A2). Note that the goal of the tracker
is to detect the inner-loop connections from the other. The growing connections and new
fragment connections shown in Figure A2 are events that can be detected in constant time,
since it’s enough to check that an extreme of the inserting edge has zero connections in the
partial solution (lines 12 and 25). Also, note that these two events cannot occur as input of
the tracker procedure since they do not satisfy the constraint expressed by lines 8 and 22.

Secondly, we notice that the complexity of the worst-case scenario for the whole
procedure (from empty solution to the complete) is being computed in this Appendix.
Therefore, we are not taking into consideration just the single call of the tracker, but the
global computation during the complete tracking process. In fact, considering that the
maximum number of positive addition for a constructive heuristic that grows fragments is
equal to n (the length of the tour). Where, an addition is positive if the edge being attached
to the partial solution complies with the TSP constraints in (1b-e) and the ML decision-taker
agrees to add the considered edge in solution. We refer to the epoch between two positive
additions as t, e.g., no edge is in solution at t = 0, meanwhile exactly eight edges are in
solution at t = 8. Take into consideration that the epochs to be checked by the tracking
routine for the symmetric TSP are from t = 2 to t = n− 2.

https://github.com/UmbertoJr/ML-Constructive

Algorithms 2021, 14, 267 21 of 25

Figure A1. Events that cannot occur as an input to the tracking procedure.

Figure A2. Events that can occur and are prevented by the tracking procedure (first two), and events
that can be detected in constant time (last two).

As mentioned, the computationally expensive events that the tracker needs to check
are the “inner-loop connection” and the “joining fragments connections”. The inner-loop
connection drawn in yellow (Figure A2) occurs when the extremes of a fragment are
connected together by the attaching edge l. If we assume that at the epoch t there are at
most s ≤ t fragments, then there exist at most s attaching edges at this epoch that can
create an inner loop (Figure A3), and the sum of the operation needed to check these s
inner-loops is at most equal to t. In fact, the tracker checks by spanning completely one of
the fragments connecting to the attaching edge. Then if the other extreme of the fragment
coincides with the other extreme of the attaching edge there is an “inner loop connection”,
otherwise there is a “joining fragments connection”. Note that once an edge has been
rejected the fragment associated with it is set free for the current epoch, and the tracker
does not need to check anymore its extremes. Since we have at most t operations for epoch,
and we have at most n epochs, the global computation is O(n2).

Once the upper bound of the complexity for detecting the “inner-loop connections”
has been found, the number of operations required for the “joining fragments connections”
occurrences is still necessary to be estimated. Usually, after having encountered a “joining
fragments connection” event, the insertion of the considered edge l takes place. But since
in ML-Constructive it could happen that the ML decision-taker rejects the attaching edge
(line 10), it may happen that the tracker is called many times during the same epoch.
This could be a problem if the promising list LP was not limited at most m × n edges

Algorithms 2021, 14, 267 22 of 25

(Section 2.3). Assuming that the worst-case scenario is O(n) for each edge processed in the
first phase, we are still safe with O(n2) operations for the global tracking computation.

Figure A3. Single and double fragments possible inner-loops at the eighth epoch.

Appendix B. The Earlier Insertion of the Most Promising Edges Could Increase the
Probability of Finding the Optimal Tour

The purpose of this Appendix is to present some advantages that a procedure that
inserts promising edges into a solution first has with respect to other approaches. If the
growing fragments heuristic is considered as a stochastic process, then we could estimate
the probability that the optimal tour has of occurring following the procedure. In fact, for
each edge l considered to be included in the partial solution there are two possible events:
included or not. If the random variable El is used to refer to the event that the edge l is
included in the solution (¬ El otherwise), then we can express the probability that such
event occurs as:

P(El) = 1− P(Al)− P(Bl) and P(¬ El) = P(Al) + P(Bl) (A1)

where Al refers to the internal point connection events (Figure A1), while Bl stand for the
inner-loop connection events (Figure A2). Recall that internal point connection occurs
when the constraint which ensures that no vertex is connected to more than two other
vertices is not satisfied. While an inner-loop occurs when sub-solutions are generated,
instead of having a single global loop.

In case that a list L is used to store all the existing edges of the TSP instance that we
wish to solve, and we randomly shuffle such a list to create a random examination order.
The probabilities of the events Al and Bl will be dependent on the position p in such a list
and the number of edges already inserted in the partial solution. So, combinatorics can
help us calculate or approximate these probabilities. Recalling the epoch concept described
in Appendix A, we can state that at t = 0 such probability is one, while at t = n the
probability of El is zero:

P(El | t = 0) = 1 (A2)

P(El | t = n) = 0 (A3)

Since at t = 0 no edge has been placed in solution, no Al or Bl event can occur. While
at t = n the solution is complete. Then, we want to prove that the probability of El will
monotonically decrease as more edges are fed into the solution and as we progress through
the L list. In case this conjecture is true, we can conclude that edges inspected earlier in
the list are more likely to be included than those seen later. Emphasising the need to put
first in the L list the edges that we consider most promising to be included in the optimal
solution. As a first step, we determine the probability of occurrence of Al . To figure out

Algorithms 2021, 14, 267 23 of 25

such probability, we shall simply estimate the number of cases in which Al occurs and
divide by the total number of possible cases. These cases vary depending on the position p
in the list, the number of edges e, and the number of vertices n in the instance. Recalling
that Al occurs when in the list the edge l is preceded by at least 2 other edges that have the
same extreme with that of l. In case there are d of these overlapping edges, we have that Al
occur for d = 2 to d = n− 1:

P(Al | p) =
∑n−1

d=2 (
n−1

d)(e−n+1
p−1−d)

(e
p−1)

≈
n−1

∑
d=2

(p− 1)!
(p− 1− d)!

(A4)

which is an increasing function with respect to the position p, and converge to 1 as p goes
to e.

Meanwhile, to compute the probability of Bl , the epoch in which the event occurs
must be taken into account. Bearing in mind that as we proceed along with the p positions
in the list such epoch is ascending, since there are no operations that remove an edge from
the solution and it is possible just to add a new edge into such a partial solution.

Considering that the maximum t total number of inner-loops for a given epoch is fixed
and equal to t, we have that:

P(Bl | p, t) <
t

e− p− 1
with t ≤ n (A5)

which has an upper bound that is an increasing function with respect to the position p and
the epoch t.

To conclude, since the probabilities of Al and Bl show an increasing trend, although
not strictly due to the upper bound of Bl , we can verify that the probability of El has
a decreasing trend due to Equation (A1). Therefore, the anticipation of the insertion of
promising edges is a good strategy for the heuristic. However, such results do not prove
that for any solving algorithm, the probability P(EL| t) is a strictly decreasing function. But
it suggests that a general decreasing trend is present which should be exploited by the
ML-Constructive heuristic during the construction of the solution.

References
1. Applegate, D.L.; Bixby, R.E.; Chvátal, V.; Cook, W.J. The Traveling Salesman Problem: A Computational Study; Princeton Series in

Applied Mathematics; Princeton University Press: Princeton, NJ, USA, 2006.
2. Matai, R.; Singh, S.P.; Mittal, M.L. Traveling Salesman Problem: An Overview of Applications, Formulations, and Solution

Approaches. Available online: https://www.intechopen.com/chapters/12736 (accessed on 8 September 2021).
3. Held, M.; Karp, R.M. A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 1962, 10, 196–210.

[CrossRef]
4. Dorigo, M.; Gambardella, L.M. Ant colonies for the travelling salesman problem. Biosystems 1997, 43, 73–81. [CrossRef]
5. Helsgaun, K. An effective implementation of the Lin–Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 2000, 126, 106–130.

[CrossRef]
6. Dell’Amico, M.; Montemanni, R.; Novellani, S. Modeling the flying sidekick traveling salesman problem with multiple drones.

Networks 2021. [CrossRef]
7. Caserta, M.; Voß, S. A hybrid algorithm for the DNA sequencing problem. Discret. Appl. Math. 2014, 163, 87–99. [CrossRef]
8. Montemanni, R.; Gambardella, L.M. Minimum power symmetric connectivity problem in wireless networks: A new approach.

In Mobile and Wireless Communication Networks, Proceedings of the IFIP International Conference on Mobile and Wireless Communication
Networks, Paris, France, 25–27 October 2004; Springer: Boston, MA, USA, 2004; pp. 497–508.

9. MacGregor, J.N.; Ormerod, T. Human performance on the traveling salesman problem. Percept. Psychophys. 1996, 58, 527–539.
[CrossRef] [PubMed]

10. Mele, U.J.; Gambardella, L.M.; Montemanni, R. Machine Learning Approaches for the Traveling Salesman Problem: A Survey. In
Proceedings of the IEEE 8th International Conference on Industrial Engineering and Applications, Kyoto, Japan, 23–26 April
2021; Association for Computing Machinery: New York, NY, USA, 2021.

11. Bengio, Y.; Lodi, A.; Prouvost, A. Machine learning for combinatorial optimization: A methodological tour d’horizon. Eur. J.
Oper. Res. 2020, 290, 405–421. [CrossRef]

12. Kool, W.; Van Hoof, H.; Welling, M. Attention, learn to solve routing problems! arXiv 2018, arXiv:1803.08475.

https://www.intechopen.com/chapters/12736
http://doi.org/10.1137/0110015
http://dx.doi.org/10.1016/S0303-2647(97)01708-5
http://dx.doi.org/10.1016/S0377-2217(99)00284-2
http://dx.doi.org/10.1002/net.22022
http://dx.doi.org/10.1016/j.dam.2012.08.025
http://dx.doi.org/10.3758/BF03213088
http://www.ncbi.nlm.nih.gov/pubmed/8934685
http://dx.doi.org/10.1016/j.ejor.2020.07.063

Algorithms 2021, 14, 267 24 of 25

13. Mele, U.J.; Chou, X.; Gambardella, L.M.; Montemanni, R. Reinforcement Learning and Additional Rewards for the Traveling
Salesman Problem. In Proceedings of the IEEE 7th International Conference on Industrial Engineering and Applications, Bangkok,
Thailand, 16–18 April 2020; Association for Computing Machinery: New York, NY, USA, 2021.

14. da Costa, P.R.; Rhuggenaath, J.; Zhang, Y.; Akcay, A. Learning 2-opt Heuristics for the Traveling Salesman Problem via Deep
Reinforcement Learning. In Proceedings of the 12th Asian Conference on Machine Learning, Bangkok, Thailand, 18–20 November
2020; PMLR: New York, NY, USA, 2020; pp. 465–480.

15. Zheng, J.; He, K.; Zhou, J.; Jin, Y.; Li, C.M. Combining reinforcement learning with lin-kernighan-helsgaun algorithm for the
traveling salesman problem. arXiv 2020, arXiv:2012.04461.

16. Fu, Z.H.; Qiu, K.B.; Zha, H. Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances. arXiv 2020, arXiv:2012.10658.
17. Zohuri, B.; Moghaddam, M. Deep learning limitations and flaws. Mod. Approaches Mater. Sci. 2020, 2, 241–250.
18. Marcus, G. Deep learning: A critical appraisal. arXiv 2018, arXiv:1801.00631.
19. Reinelt, G. TSPLIB—A traveling salesman problem library. Orsa J. Comput. 1991, 3, 376–384. [CrossRef]
20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
21. Dantzig, G.; Fulkerson, R.; Johnson, S. Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 1954, 2, 393–410.

[CrossRef]
22. Steiglitz, K. Some improved algorithms for computer solution of the traveling salesman problem. In Proceedings of the 6th

Annual Allerton Conference on Communication, Control, and Computing; Department of Electrical Engineering and the Coordi-
nated Science Laboratory, University of Illinois: Champaign, IL, USA, 1968. Available online: https://www.researchgate.net/
publication/201976955_Some_Improved_Algorithms_for_Computer_Solution_of_the_Traveling_Salesman_Problem (accessed
on 8 September 2021).

23. Bentley, J.L. Experiments on traveling salesman heuristics. In Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, San Francisco, CA, USA, 22–24 January 1990; pp. 91–99.

24. Clarke, G.; Wright, J.W. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 1964, 12, 568–581.
[CrossRef]

25. Johnson, D.S.; McGeoch, L.A. Experimental Analysis of Heuristics for the STSP. In The Traveling Salesman Problem and Its Variations;
Springer: Boston, MA, USA, 2007; pp. 369–443.

26. Reinelt, G. The Traveling Salesman: Computational Solutions for TSP Applications; Springer: Berlin/Heidelberg, Germany, 2003;
Volume 840

27. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. arXiv 2015, arXiv:1506.03134.
28. Deudon, M.; Cournut, P.; Lacoste, A.; Adulyasak, Y.; Rousseau, L.M. Learning heuristics for the tsp by policy gradient.

In Integration of Constraint Programming, Artificial Intelligence, and Operations Research; Springer: Cham, Switzerland, 2018;
pp. 170–181.

29. Dai, H.; Khalil, E.B.; Zhang, Y.; Dilkina, B.; Song, L. Learning combinatorial optimization algorithms over graphs. arXiv 2017,
arXiv:1704.01665.

30. Ma, Q.; Ge, S.; He, D.; Thaker, D.; Drori, I. Combinatorial optimization by graph pointer networks and hierarchical reinforcement
learning. arXiv 2019, arXiv:1911.04936.

31. Taillard, É.D.; Helsgaun, K. POPMUSIC for the travelling salesman problem. Eur. J. Oper. Res. 2019, 272, 420–429. [CrossRef]
32. Lee, D.T.; Schachter, B.J. Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 1980, 9, 219–242.

[CrossRef]
33. Fitzpatrick, J.; Ajwani, D.; Carroll, P. Learning to Sparsify Travelling Salesman Problem Instances. arXiv 2021, arXiv:2104.09345.
34. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. arXiv 2016,

arXiv:1611.09940.
35. Mazyavkina, N.; Sviridov, S.; Ivanov, S.; Burnaev, E. Reinforcement learning for combinatorial optimization: A survey. Comput.

Oper. Res. 2021, 134, 105400. [CrossRef]
36. Konda, V.R.; Tsitsiklis, J.N. Actor-critic algorithms. In Advances in Neural Information Processing Systems; Citeseer: Princeton, NJ,

USA, 2000; pp. 1008–1014.
37. Christofides, N. Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem; Technical Report; Carnegie-Mellon Univ

Pittsburgh Pa Management Sciences Research Group: Pittsburgh, PA, USA, 1976.
38. Joshi, C.K.; Cappart, Q.; Rousseau, L.M.; Laurent, T.; Bresson, X. Learning TSP requires rethinking generalization. arXiv 2020,

arXiv:2006.07054.
39. Miki, S.; Ebara, H. Solving Traveling Salesman Problem with Image-Based Classification. In Proceedings of the IEEE 31st

International Conference on Tools with Artificial Intelligence, Portland, OR, USA, 4–9 November 2019; pp. 1118–1123.
40. Miki, S.; Yamamoto, D.; Ebara, H. Applying deep learning and reinforcement learning to traveling salesman problem. In

Proceedings of the International Conference on Computing, Electronics & Communications Engineering (iCCECE 2018), Southend,
UK, 16–17 August 2018; pp. 65–70.

41. Bentley, J.J. Fast algorithms for geometric traveling salesman problems. Orsa J. Comput. 1992, 4, 387–411. [CrossRef]
42. Wang, S.; Rao, W.; Hong, Y. A distance matrix based algorithm for solving the traveling salesman problem. Oper. Res. 2018, 20,

1–38. [CrossRef]

http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1287/opre.2.4.393
https://www.researchgate.net/publication/201976955_Some_Improved_Algorithms_for_Computer_Solution_of_the_Traveling_Salesman_Problem
https://www.researchgate.net/publication/201976955_Some_Improved_Algorithms_for_Computer_Solution_of_the_Traveling_Salesman_Problem
http://dx.doi.org/10.1287/opre.12.4.568
http://dx.doi.org/10.1016/j.ejor.2018.06.039
http://dx.doi.org/10.1007/BF00977785
http://dx.doi.org/10.1016/j.cor.2021.105400
http://dx.doi.org/10.1287/ijoc.4.4.387
http://dx.doi.org/10.1007/s12351-018-0386-1

Algorithms 2021, 14, 267 25 of 25

43. Jackovich, P.; Cox, B.; Hill, R.R. Comparing greedy constructive heuristic subtour elimination methods for the traveling salesman
problem. J. Def. Anal. Logist. 2020, 4, 167–182. [CrossRef]

44. Chuang, C.C.; Su, S.F.; Hsiao, C.C. The annealing robust backpropagation (ARBP) learning algorithm. IEEE Trans. Neural Netw.
2000, 11, 1067–1077. [CrossRef]

45. Miller, J.N. Tutorial review—Outliers in experimental data and their treatment. Analyst 1993, 118, 455–461. [CrossRef]
46. Bardach, E. The extrapolation problem: How can we learn from the experience of others? J. Policy Anal. Manag. 2004, 23, 205–220.

[CrossRef]
47. Hougardy, S.; Schroeder, R.T. Edge elimination in TSP instances. In International Workshop on Graph-Theoretic Concepts in Computer

Science; Springer: Cham, Switzerland, 2014; pp. 275–286.
48. Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine

learning. J. Mach. Learn. Res. 2017, 18, 559–563.
49. Applegate, D. Concorde—A Code for Solving Traveling Salesman Problems. Available online: http://www.math.princeton.edu/

tsp/concorde.html (accessed on 8 September 2021).
50. Colquhoun, D. The reproducibility of research and the misinterpretation of p-values. R. Soc. Open Sci. 2017, 4, 171085. [CrossRef]

[PubMed]
51. Vitali, T.; Mele, U.J.; Gambardella, L.M.; Montemanni, R. Machine Learning Constructives and Local Searches for the Travelling

Salesman Problem. arXiv 2021, arXiv:2108.00938.
52. De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the cross-entropy method. Ann. Oper. Res. 2005, 134, 19–67.

[CrossRef]
53. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992,

8, 229–256. [CrossRef]
54. Van Rossum, G.; Drake, F.L., Jr. Python Tutorial; Centrum voor Wiskunde en Informatica Amsterdam: Amsterdam,

The Netherlands, 1995; Volume 620.
55. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic

differentiation in pytorch. In Proceedings of the 31st Conference on Neural Information Processing System, Long Beach, CA,
USA, 8 December 2017.

http://dx.doi.org/10.1108/JDAL-09-2020-0018
http://dx.doi.org/10.1109/72.870040
http://dx.doi.org/10.1039/AN9931800455
http://dx.doi.org/10.1002/pam.20000
http://www. math.princeton.edu/tsp/concorde.html
http://www. math.princeton.edu/tsp/concorde.html
http://dx.doi.org/10.1098/rsos.171085
http://www.ncbi.nlm.nih.gov/pubmed/29308247
http://dx.doi.org/10.1007/s10479-005-5724-z
http://dx.doi.org/10.1007/BF00992696

	Introduction
	The Traveling Salesman Problem
	Literature Review

	Materials and Methods
	Constructive Heuristics
	Statistical Study
	The General Idea
	The ML-Constructive Algorithm
	The ML Decision-Taker

	Experiments & Results
	Discussion
	Complexity of the Inner-Loop Constraint Tracker
	The Earlier Insertion of the Most Promising Edges Could Increase the Probability of Finding the Optimal Tour
	References

