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Abstract: With the application of deep convolutional neural networks, the performance of computer
vision tasks has been improved to a new level. The construction of a deeper and more complex net-
work allows the face recognition algorithm to obtain a higher accuracy, However, the disadvantages
of large computation and storage costs of neural networks limit the further popularization of the
algorithm. To solve this problem, we have studied the unified and efficient neural network face
recognition algorithm under the condition of a single camera; we propose that the complete face
recognition process consists of four tasks: face detection, in vivo detection, keypoint detection, and
face verification; combining the key algorithms of these four tasks, we propose a unified network
model based on a deep separable convolutional structure—UFaceNet. The model uses multisource
data to carry out multitask joint training and uses the keypoint detection results to aid the learning
of other tasks. It further introduces the attention mechanism through feature level clipping and
alignment to ensure the accuracy of the model, using the shared convolutional layer network among
tasks to reduce model calculations amount and realize network acceleration. The learning goal
of multi-tasking implicitly increases the amount of training data and different data distribution,
making it easier to learn the characteristics with generalization. The experimental results show that
the UFaceNet model is better than other models in terms of calculation amount and number of
parameters with higher efficiency, and some potential areas to be used.

Keywords: face recognition; UFaceNet; multi-task; CNN

1. Introduction

Face recognition is a kind of biometric identification technology based on the facial
features of people. A series of technologies relate to face recognition by using cameras to
collect images or video streams containing faces, and automatically detect and track faces
in the images. Face verification is a subfield of face recognition, which refers to several
images containing faces to judge whether these faces belong to the same identity. The
method is to extract facial features from the target image to be verified, and then traverse
the database of the known identity of facial features.

Due to the popularity of camera technology and the upsurge of machine learning, the
basic research of face recognition has been relatively mature. According to a 2020 study
by MarketsandMarkets, the global biometric systems market is expected to be worth USD
36.6 billion by 2021, and grow to USD 68.6 billion by 2025, with a CAGR of 13.4% during
the forecast period (2021–2025).

The application of neural networks improves the performance of face recognition
to a new level. The development trend is to build a deeper and more complex network
to achieve higher accuracy, but the storage space and speed causes difficulties when at-
tempting to meet the requirements of universal application. Face recognition includes
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multiple subtasks, which is often inefficient when the neural network-based face recogni-
tion algorithm is run locally on common devices. There are disadvantages such as high
delay and poor user experience, and to date no good solution has been found. To solve
this problem, we researched the unified and efficient neural network algorithm for face
recognition under the condition of a single camera, and propose a fast and efficient unified
network: UFaceNet.

The paper [1] points out that there is a certain quantifiable correlation between com-
puter vision tasks, and that the reasonable use of the relationship between individual tasks
can improve the performance of said tasks. There are many starting points for introducing
multitasking in the network. From a biological point of view, multitasking is similar to the
simulation of human learning processes; humans use the knowledge of related tasks to
learn new tasks. From an educational point of view, learning a simple task can help people
master more complex tasks faster. As for the neural network model, multi-task learning
avoids bias to meet the requirement of its hypotheses which provide sparse solutions, and
can learn from the solutions that can explain more tasks at the same time. The model has
better generalization [2].

UFaceNet uses Deep Detectable Convolutional Network as its model infrastructure
to jointly learn, using this unified network, four subtasks: face detection, body detection,
keypoint detection, and face verification. We hope to reduce the network time complexity
while learning more advanced features with more generalizability. By sharing the shallow
network between simple tasks and the deep network between complex tasks, the charac-
teristics between tasks can be shared to reduce the amount of computing required by the
network, and the model can be accelerated. At the same time, the attention mechanism is
used to cut the feature level by using the basic face keypoints output in the network, so that
the advanced tasks in the network (such as the accurate face keypoint detection and face
verification) can focus on a specific space, making the model more robust and accurate.

Our main contributions are as follows:
(1) We proposed a unified model network integrating face recognition related subtasks

(UFaceNet), which can effectively use multi-task information for supervised learning of
the network and improve the network generalization ability.

(2) We have made use of the association between multiple subtasks in face recognition,
designed inter-task dependencies to ensure network accuracy, used task fusion to improve
network efficiency, and realized the acceleration of unified network learning and reasoning
by sharing shallow convolution features among tasks.

(3) We have designed and completed the common training process of the multisource
multitask dataset with the unified model for the case where there is no single dataset
covering all face recognition-related subtask tags.

2. Related Work

Face detection works to find the position of all faces in an image. Generally, the input
is an image, and the output is the coordinates of any rectangular frames that detect the
faces. Face detection is the basis of various face image analyses, and it is also the first step
in the overall face verification algorithm. The main difficulties in face detection include:
the diversity of facial gestures and angles, the influence of illumination intensity and angle,
the possibility of partial occlusion of the face, the proximity of the face position affects the
size of the face, and the face may appear in various positions of the image. At present,
face detection algorithms can be divided into three categories: VJ framework-based, DPM
model-based, and convolutional neural network-based.

In [3], the VJ framework was proposed by Viola and Jones in 2001. They used the
integral graph to quickly calculate the Haar features of an image. The Haar features can
reflect the contrast between parts of an image. The algorithm uses AdaBoost as a classifier
and adopts a cascading structure, which greatly improves the detection efficiency. Under
the hardware conditions at that time, the processing speed can reach 15 fps. However,
the VJ framework also has some shortcomings. Haar features are too simple and have
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insufficient stability. Moreover, the use of decision trees as weak classifiers can easily lead
to overfitting. It also does not work well when the face is partially obscured or has an
exaggerated expression.

In [4], Deformable Part Model (DPM) is a variable component model. At the time of
detection, the model first calculates the DPM feature map of the input image, and then
the input image is unsampled by Gaussian pyramid to obtain an image twice as large as
the original, and the DPM feature map is calculated. The model then uses the root filter
to obtain a response map for the DPM feature map. The model uses the part filter for the
feature map of the upsampled image, and then performs Gaussian pyramid downsampling
on the obtained response graph. Thus, the response maps obtained by the root filter and the
part filter have the same resolution. Finally, the response graph is weighted and averaged to
obtain the final response graph. The DPM-based method can achieve better face detection
than the VJ-based method in complex scenes such as outdoors, but the DPM model is still
hard to realize real-time detection due to the computational complexity of the model.

In [5–10], Cascade CNN is a convolutional neural network implementation of the
VJ framework. Cascade CNN uses three CNN cascading structures. Cascade CNN first
constructs a detection image pyramid, uses the primary network scan to remove most
of the windows, and then adjusts the window position and size through a correction
network, and uses the non-maximum suppression to merge the height coincidence window
as the next level network input for further detection. Cascade CNN solves the problem
of illumination and angle better than traditional methods. However, the performance of
the method is affected to some extent by the fact that the first-level network still uses the
dense sliding window. DenseBox uses a convolutional neural network to train images of
different sizes, and finally directly predicts the position and confidence information of the
face frame. DenseBox splices different convolutional layer outputs through upsampling
and linear interpolation to achieve a multiscale fusion strategy and simultaneously locate
keypoints, which improves the accuracy of detection. Faceness-Net inputs the images into
five CNN networks, each of which outputs the position information of five different parts
of the face, scores the information, and analyzes the scores of each part to obtain the face
candidate frame. Face R-CNN is based on Faster R-CNN; it adds center loss to the last two
classifications of the network to increase cohesion and adds the N largest samples of loss in
each batch as a difficult case to the next training, which improves the classification ability of
the entire network. This paper proposes an iterative algorithm for solving SDDLSp, which
is suitable for training and testing images which are polluted by a large amount of noise.
FHEDN is an end-to-end depth convolutional neural network, which uses a multiscale
hierarchical feature pyramid fused with context prior-based information to detect faces in
unconstrained scenes.

In face detection algorithms: (1) The VJ framework improves the detection perfor-
mance by cascading, but the face detection effect for complex expressions and angles is not
good. (2) The DPM model is less affected by noise, but is limited by the complex structure
of the model. This leads to large calculations and poor real-time performance. (3) Neural
network-based detection methods can obtain better facial features, but these algorithms
generally have the disadvantages of low interpretation, difficult parameter adjustment,
and long operation time.

Liveness detection refers to determining whether biological information comes from
a legitimate user of living organism when obtaining biological information. The method
of liveness detection mainly distinguishes biometrics forged by nonliving substances,
such as photographs, silica gel, and plastic, by identifying physiological information on
the organism as a feature. The paper [11] divides the liveness detection technology into
texture information analysis, motion information analysis, and living part analysis. The
performance gap of the classifier based on the nonrigid motion of the authentic image,
the noise difference, and the face background dependence are discussed. According to
the input, liveness detection can be divided into single-frame input and continuous multi-
frame input.
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The paper [12] proposes a liveness detection method that uses image distortion and
color to construct feature vectors and uses SVM to perform two classifications. This method
is not effective in the case where the forged facial image distortion is not serious. Color
Texture [13] believes that the living and nonliving are indistinguishable in RGB space, but
there are significant texture differences in other color spaces. A method for obtaining a
facial feature, by converting a facial image from RGB space to YCbCr space, and then using
the SVM classifier for two classifications, is proposed. The method is simple and efficient.
The paper [14] implements liveness detection based on Lambertian Reflection and believes
that a true facial living body and a nonliving body from a video or a photo are differently
reflected under the same lighting conditions.

The paper [15] enhances facial micromotion by inputting continuous multi-frame
facial images, and then extracting dynamic texture features and histograms of oriented
optical flow. Santosh Tirunagari et al. [16] used the dynamic mode decomposition DMD to
obtain the subspace map of the maximum motion energy, then perform texture analysis,
and finally, input to the SVM classifier for binary classification. This method has a poor
effect on forging the video or shaking a printed image. The paper [17] introduces the
liveness detection dataset PHOTO-ATTACK, which is extended based on PRINT-ATTACK,
adding high-resolution screen images and mobile phone images. Furthermore, an optical
flow-based analysis method is proposed to distinguish the authenticity of the image, which
achieves a better performance.

These traditional methods are mainly based on feature engineering. They rely on
image quality evaluation, illumination, smoothness, and moiré, and then obtain the test
results through two classifications. In addition to traditional detection methods, some
literature has begun to apply deep learning to liveness detection in recent years but, limited
by the small number of samples, the performance struggles to exceed traditional methods.
CNN-LSTM [18] introduces deep learning to liveness detection earlier, and simulates tradi-
tional liveness detection through CNN, but the effect is not good. Yousef Atom et al. [19]
designed a depth framework to replace the two-category problem with a targeted feature
monitoring problem. Song Xiao et al. [20] used VGG16 as the basic network to directly add
liveness detection to the face detection network. The detected bounding box includes three
categories of confidence: background, living face, and nonliving face.

Liveness detection can be divided into traditional methods based on image quality,
texture information, and deep learning-based methods. The former is not effective in
some special cases, while the latter is limited by the small number of data samples, which
makes the network training difficult to fit, and the performance struggles to surpass the
traditional method.

Facial point detection refers to the image of a given face, finding the position and
contour information of the key areas of the face. Facial point detection is roughly divided
into three types: model-based, ASM and AAM methods; cascading shape regression; and
deep learning-based methods.

Active Shape Model (ASM) [21] first aligns the training images so that the images are
rotated, scaled, and translated as close as possible to a selected reference image, and local
features are constructed for each keypoint. When searching for shapes, ASM first calculates
the position of the eye, aligns the faces with a simple scale and rotation change, and then
searches for the vicinity of the aligned points to match the local keypoint, obtains the
preliminary shape, and then corrects it using the average face model. Active Appearance
Models (AAM) [22] make improvements to ASM, which not only uses shape constraints
but also adds texture features throughout the face area. Such linear models struggle to
obtain better results under occlusion, special expressions, poses, and illumination changes,
and their methods of searching for keypoints to exhaustive iterations similarly limit the
computational efficiency of the method.

Cascaded waveform regression (CPR) [23] specifies the initial prediction values and
gradually refines them through a series of linear models. Each regression relies on the
output of the previous regression to perform simple image operations. The entire system
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can automatically learn from the training samples. This algorithm is similar to random
forest regression. It is a clear and simple regression algorithm. It can train a good model
with a small amount of training data, but the model only detects three keypoints of the face.
Dong Chen et al. [24] inherited the idea of CPR using simple features and cascading tree
structure to complete the classification and regression. It can do face detection and facial
point detection at the same time. The calculation speed is fast, and the memory is small,
but the model parameters are too numerous, and difficult to adjust. Local Binary Feature
(LBF) [25] is a tree-based method that learns the local binary features of each keypoint and
then uses linear regression to detect keypoints by combining the features. The algorithm
can be divided into three processes: feature extraction, LBF coding, and acquisition of
shape increments. The model is fast and accurate, but the model only detects five keypoints
on the face. Ensemble of Regression Tress (EERT) [26] uses the GBDT algorithm to build a
cascaded residual tree, and then gradually returns to the key point in the iteration. The
model occupies less memory, and the calculation is fast, but the model is larger.

Sun et al. [27] first applied CNN to facial point detection and proposed a cascaded
CNN network DCNN (Deep Convolutional Network). This method belongs to the cascade
regression method. It detects five facial keypoints by designing a three-layer convolutional
neural network. It focuses on the depth of the first-level network. It believes that the deeper
network structure can better extract the global features and improve the problem of local
optimality caused by the initial inaccuracy, but the network does not detect well when
the face is occluded. Erjin Zhou et al. [28] made improvements on DCNN, proposing a
four-level cascade network from coarse to fine facial point detection. It uses the image of the
face area predicted by CNN as the input of the network, which improves the positioning
accuracy of the latter stages. Similar to DCNN, this method also has the problem of complex
network structure. Kaipeng Zhang et al. [29] proposed the MTCNN (Multi-task Cascaded
Convolutional Network), which can perform face detection and facial point detection
simultaneously, making full use of the potential links between the two tasks. MTCNN
has a certain improvement in speed and accuracy, but the network structure is complex
and only detects five keypoints on the face. DAN, Deep Alignment Network [30], is also a
method based on cascaded neural networks. It introduces a keypoint heat map, and each
level of the network uses the entire image as input. Model positioning is accurate, but the
calculation speed still needs to be improved.

The main three algorithms of facial point detection are: (1) Model-based ASM and
AAM models are simple, the architecture is clear and easy to understand and apply, but its
exhaustive iterative search limits the performance of the method. (2) The calculation speed
based on the cascading shape regression model is fast, but such models have problems
that the parameters are difficult to adjust. (3) The method based on deep learning has a
strong feature extraction ability of the convolutional neural network, and the detection is
more accurate, but the network is more complicated, and the cascade structure limits the
performance of the model.

The purpose of face recognition is to extract feature information from the face image
and identify the identity based on the feature. The general face recognition process is
divided into two steps. The first step is facial feature extraction and feature selection, and
the second step is object classification.

Popular traditional recognition algorithms include principal component analysis
using feature faces, linear discriminant analysis, the Fisherface algorithm, the hidden
Markov model, etc. The method of identifying feature faces is developed by Sirovich
and Kirby and used by Matthew Turk and Alex Pentland for face classification [31]. The
method takes the pixel points of the image as the original dimension unit and attempts to
transform to another target space through one transformation, in which each face can be
best distinguished. However, the performance of this method will decrease when the face
is occluded. At the same time, the image analysis speed still needs to be optimized. The
paper [32] first applies the hidden Markov model to the face recognition algorithm. The
method trains the HMM on the spatial sequence of multiple sample images and obtains the
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two-dimensional hidden Markov model based on the top-down and left-to-right structural
features of the face according to the natural characteristics that the facial features are
fixed. The algorithm of the Cove model uses DCT as the observation vector to obtain a
good recognition effect, but its disadvantage is that the structure is complicated and the
calculation amount is large.

In the past decade, Convolutional Neural Network (CNN) [33] has become one of
the most popular techniques for solving computer vision problems. Many visual tasks,
such as image classification, object detection, and face recognition, benefit from CNN’s
powerful learning and discriminative characterization. The CNN-based face recognition
method usually regards CNN as a powerful feature extractor. DeepFace [34] uses CNN
as a feature extractor for the face to train on 4 million facial images, and obtains 67 base
points to transform the triangulated face into a 3D model to depth information, and then
turns the face back. Finally, it uses the 4096-dimensional feature vector output to find the
classification result. It achieves an accuracy of 97.35% on the LFW dataset. DeepID [35]
uses CNN as a feature extractor to learn a 160-dimensional feature vector and finally uses
various classifiers to obtain classification results. The main task of the DeepId network is to
learn features, and its classification error rate is high. The input to FaceNet [36] is a triple
image with two identical identity images and one different identity. The network directly
learns the separability between features: the feature distance between different identities
should be as large as possible and the feature distance between the same identities should
be as small as possible. FaceNet does not consider the face alignment problem. It only relies
on a large amount of training data and a special objective function to obtain an accuracy
of 99.63% on the LFW. Xiang Wu et al. [37] proposed a Max-Feature-Map operation and
used an MFM-based CNN model to learn facial information. MFM is an extension of the
largest pooling. It suppresses the features with lower activation values by maximizing
the characteristics of the same site on the adjacent two feature maps, and can effectively
distinguish the noise data to make the model more robust. However, the samples used in
the model training process are all aligned with facial patterns.

It can be seen that the traditional algorithms in face verification have a simple structure,
but the ability to deal with occlusion and illumination changes is not good; the methods
based on deep learning obtain good accuracy, but there is a widespread problem of a large
amount of network computation.

3. Methods

A complete face recognition algorithm includes several related subtasks: face detection,
liveness detection, facial point detection, and face verification. The design of the network
structure, corresponding to each subtask and ensuring the accuracy of the algorithm,
is the basis for building a unified multi-tasking network. We hope to use the intertask
dependencies to achieve feature level-based clipping and alignment to increase model
focus. At the same time, by sharing the shallow network, the amount of calculation
required to complete all tasks is reduced, and the shared parameters reduce the model
space. The multitask-based model structure enables the network-learning features to have
better generalization capabilities and enhance the robustness of the model.

The network structure of UFaceNet is shown in Figure 1: Input the original image into
the network, into the full connection layer network in Part 1© and output the coordinates
of five keypoints of the face in the image. Five keypoint coordinates are used for the shear
feature mapping and the final output of the convolutional layer Conv_net_1 is the feature
of the candidate region of the face, which is the input of the complete connection layer
network in Part 2©. The final output is whether the candidate regions contain faces. If the
detection result is no face, the task is terminated; Continuing the living body detection task,
the network clipped the output feature map of the second layer of the convolutional layer
in Conv_net_1. The specific step is to divide an area closer to the surface according to the
coordinates of the five keypoints. In this area, the rectangular area is randomly designated
to cut the feature map to obtain the texture features of the corresponding facial skin area.
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In vivo detection results were obtained through the full connection layer network in Part
3©; when it was confirmed that the image contains the facial region and belongs to the

legitimate living object, the original feature map F output by the convolutional layer in
Conv_net_1 is cut out after the local facial features are cut, and then four feature maps,
O1~O4, are stitched and input into the convolutional network at Conv_net_2 stage. The
feature map output by the convolutional layer in Conv_net_2 stage includes five parts:
F’ and O1’~O4’. Here, O1’~O4’ are input into the corresponding fully connected layer in
Part 5©, and the final output is the position of each keypoint corresponding to the edges
of each five senses, a total of 41 keypoints. According to the positions of the 41 keypoints,
face clipping is performed on the feature map F’ and rotated to face level according to
the positions of both eyes to provide the feature aligned facial feature map AF. Finally,
the feature map AF is input to the convolutional layer in the Conv_net_3 stage, and the
final face verification task was achieved through the fully connected network in Part 77. In
the test, the output of the second-lowest layer of the full connection layer will be used; a
one-dimensional vector with a length of 256 is used as the input image to finally extract
the expression of advanced facial features. By calculating and comparing the similarity
between facial features, identity verification can be realized.
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3.1. Face Detection Based on Basic Facial Points

Considering the user scene of UFaceNet-face recognition, the user does not have a
far distance from the imaging device, and the face area will occupy most of the image.
Therefore, UFaceNet directly performs basic facial point detection on the entire picture
to obtain a candidate face area, and then determines whether it is a face in the candidate
area. The basic facial points are shown in Figure 2. It reduces the increase in structure
and calculation caused by face detection, making the overall network more concise and
focused. Combined with the final face recognition target, the model simplifies the facial
point detection task in the algorithm. When there are multiple faces in the picture, the
main user should be close to the center of the picture, so the model only performs facial
point detection and subsequent detection, face verification, etc. on the face closest to the
center of the picture. The objective functions for basic facial detection and face detection
are as follows:

Basic_Loss = α
1
N ∑N

i=0 ∑5
l=0

√
(xil − Xil)

2 + (yil −Yil)
2 (1)

Face_Detect_Loss = γ
1
N ∑N

i=0

√
(ci − Ci)

2 (2)

where N is the number of samples of a batch in training, (xil , yil) is the predicted coordinates
of the basic facial point l of the sample i, (Xil , Yil) is the true coordinates of the basic facial
point l of the sample i, α is the weight of Bacic_Loss, and γ is the weight of Face_Detect_Loss.
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3.2. Accurate Facial Point Detection

UFaceNet uses basic facial points to find accurate facial points. A total of 41 accurate
facial points are shown in Figure 3. UFaceNet uses the ROI align [38] method to perform
local area clipping on the feature map output by Conv_net_1. As shown in Figure 4, the
clipping is based on five basic points, and the model selects the rectangular area around
the eyes, the tip of the nose, and the mouth. The corresponding receptive field of the
clipping local feature map contains the target area information that the model hopes to
obtain. Additionally, the scope is more precise. Therefore, the corresponding network of the
accurate facial point detection task pays more attention to a specific area and improves the
accuracy of detection. The objective function of accurate facial point detection is as follows:

Accuarte_Loss = β
1
N ∑N

i ∑41
l

√
(mil −Mil)

2 + (nil − Nil)
2 (3)

where N is the number of samples of a batch in training, (mil , nil) is the predicted coordi-
nates of the facial point l of the sample i, (Mil , Nil) is the true coordinates of the facial point
l of the sample i, and β is the weight of Accurate_Loss.
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3.3. Liveness Detection

Data play an important role in liveness detection. However, most of the existing
liveness detection datasets were collected about 4 to 8 years ago. The resolution and image
quality of current devices and devices used in previous data is very different. This will
result in the model being less able to distinguish between existing fraudulent means. At
the same time, the number of samples, the number of people, and the age group of the
existing datasets are relatively limited. Detailed dataset information is shown in Table 1.
These problems limit the performance of deep learning, and it is difficult to exceed the
traditional methods in the case of too few samples based on deep learning.

Table 1. Descriptions of liveness detection datasets.

Dataset Time Number of
People Age Image

MSU MFSD 2014 55 20–60 -
MSU USSAD - 1000 - 9000

NUAA 2010 15 20–30 12,614
CASIA FASD 2012 50 20–35 -

IDIAP:THE Replay-Attack Database 2012 50 20–40 1300
IDIAP:3DMAD - 17 - 76,500

IDIAP:Multispectral-Spoof Database - 21 - 200
IDIAP:Replay-Mobile - 40 - 1190

We have created a liveness detection dataset, the HWLD dataset that is more in line
with deep network learning. First, the HWLD dataset uses all portrait images (unaligned)
in the CelebA dataset as positive samples, including about 10,000 different identities, for
a total of 202,599 images. These positive sample pictures are then made into video clips
of approximately 10 hours (5 frames per second). We played videos on different devices,
recorded them on the screen with other devices, and finally sourced the negative samples
in HWLD by cutting frames of the recorded videos. In this way, a liveness detection dataset
consisting of about 400,000 images and 10,000 different identities is obtained. Negative
sample images are shown in Figure 5.
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The model imposes special restrictions on the image during training to improve
accuracy. The network uses basic facial points to obtain a face area as a candidate area.
This part of the candidate area contrasts the range of candidate areas in face detection
to be more closely attached to the face, eliminating background interference outside the
face as much as possible, and letting the network focus on learning facial texture features.
Then, a rectangular frame is randomly obtained in the candidate region as an input feature
map of the fully connected layer; that is, a random skin region in the face, as shown in
Figure 6. This allows the model to focus more on texture features. When using the model
for prediction, we randomly take multiple skin regions on the face and finally, use the
voting mechanism to see the final classification results. The objective of liveness detection
is as follows:

Spoo f _Detection_Loss = µ
1
N ∑N

i Di ln(So f tmax(di)) (4)

where N is the number of samples of a batch in training, di is the confidence of sample
i predicted by the model, Di is the real label of the sample i, and µ is the weight of
Spoof_Detection_Loss.
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3.4. Face Verification

Face verification is based on the given two facial images, to determine whether the
image belongs to the same person, which is the last task in UFaceNet. First, the output
image of the converting layer is rotated. The rotation angle is calculated from the angle
between the outer corners of the eye and the horizontal edge of the image in the key
points. Then, a cut is made according to the center of the eyes and the center of the mouth.
The clipping width is 1.66 times the distance between the eyes, and the cutting length is
twice the eye-to-mouth spacing. Finally, as the size of the feature maps cropped by each
sample is inconsistent, the model will implement the resize of the feature map by the ROI
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align method. This results in a feature map of the key areas of the face that are spatially
aligned. The process is shown in Figure 7. The model uses the central loss function and
the cross-entropy loss function as the loss function for this part of the network. Their
definitions are as follows:

Cross_Entropy_Loss = ϕ
1
N ∑N

i Fi ln(So f tmax( fi)) (5)

Center_Loss = ω
1
N ∑N

i || f vi − ci||22 (6)

where N is the number of samples of a batch in training, fi is the predicted probability
vector of sample i, Fi is the true label of sample i, f vi is the predicted facial feature vector, ci
is the mean of the corresponding category of sample i, ϕ is the weight of Cross_Entropy_Loss,
and ω is the weight of Center_Loss.
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In the process of face verification, the model will discard the last layer of the fully
connected layer for a specific dataset, and use the penultimate layer to obtain a one-
dimensional feature vector fv of length 256 as the feature vector of the face image. We
calculate the cosine similarity between f v1 and f v2 corresponding to the two images
to determine whether it is the same identity. The formula for calculating the cosine
similarity is:

cos_similarity =
∑256

i=1 f v1i f v2i√
∑256

i=1 f v2
1i

√
∑256

i=1 f v2
2i

(7)

When the similarity cos_similarity is greater than the threshold, the two images are con-
sidered to belong to the same identity. The threshold is calculated from the validation set.

4. Experiment
4.1. Datasets

UFaceNet is a unified multi-tasking network. As there is no unified dataset with
the tags needed in the network, multiple datasets are used in the training process and
verification and testing process of the network. The tasks and corresponding datasets are
shown in Table 2.
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Table 2. Tasks and datasets.

Task Dataset Images

CelebFaces Attributes Dataset [39–41] 202,599
WIDER Face [42] 32,203

Basic Facial Point Detection CelebFaces Attributes Dataset 202,599
300 Faces In-the-Wild Challenge [43,44] 600

LFPW 1132
HELEN 348

AFW 205
IBUG 135

Liveness Detection HWLD dataset 400,000
MS-Celeb-1M [45] 5,000,000

Labeled Faces in the Wild [46] 5000

4.2. Evaluation Criteria

We used the calculation and the number of parameters to measure the complexity
of the model. The number of parameters determines the size of the model space, and the
calculation measures the computational time of the model. We use accuracy (ACC), false
acceptance rate (FAR), false rejection rate (FRR), err_o, and err_c as evaluation criteria.
Their definitions are as follows:

ACC =
T

ALL
(8)

FAR =
NFA

NIRA
(9)

FRR =
NFR

NGRA
(10)

err_o =
1
N ∑N

i

1
L ∑L

j |pij − yij|2∣∣loij − roij
∣∣
2

(11)

err_c =
1
N ∑N

i

1
L ∑L

j |pij − yij|2∣∣lcij − rcij
∣∣
2

(12)

where T is the correct number of tests, ALL is the total number of tests, NFA is the number
of errors accepted, NIRA is the number of tests for different classes, NFR is the number of
correct rejections, NGRA is the number of tests of the same class, N is the total number of
samples tested, L is the number of points on the face, p is the coordinate of the predicted
point, y is the true coordinate of this point, lo and ro correspond to the coordinates of
the outer corners of the left and right eyes, respectively, and lc and rc correspond to the
coordinates of the center position of the left and right eyes, respectively.

4.3. Results

(1) Face Verification: We calculated the facial features on the LFW dataset and found
the similarity between the images. As shown in Figure 8, the left half of the area is the
test group of the same identity, and the right half of the area is the test group of different
identities. We compare the accuracy of the model when calculating the face center vector
with different numbers of images. As shown in Table 3, the accuracy can be 99.9% when
using three image calculation centers for verification, and the accuracy can reach 100%
when using more than four image calculation centers. We compared the accuracy of
different algorithms on the LFW dataset. The result is shown in Table 4. We compared
the calculations of different models. As shown in Table 5, UFaceNet is far superior in the
calculation to other models. It can be seen that UFaceNet guarantees the accuracy of face
verification while achieving network acceleration.
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Table 3. Comparison of the Accuracy of Different Image Numbers.

Number of Faces Accuracy

1 0.987
2 0.992
3 0.999
4 1
5 1

Table 4. Comparison of Face Verification Accuracy Between Different Models with LFW.

Mode Dimension Accuracy FAR = 0

DeepFace [34] 4096 0.973 0.463
DeepID [35] 160 0.99 0.693
WebFace [47] 320 0.977 -
FaceNet [36] 512 0.996 -

VGG 4096 0.97 0.61
LightCNN-4 [37] 256 0.979 0.79
LightCNN-9 [37] 256 0.988 0.95
LightCNN-29 [37] 256 0.993 0.975

UFaceNet 256 0.986 0.965

Table 5. Comparison of Calculation and Parameters of Different Models.

Model Calculation Parameter Number of Network
Layers

FaceNet 1600 140 11
LightCNN-29 2300 12.6 29
LightCNN-9 1900 5.5 9
LightCNN-4 1300 4.1 4

WebFace 774 5 10
UfaceNet 589 300 19

UfaceNet(face) 297 8.2 19

(2) Accurate Facial Point Detection: We compared different facial point detection
algorithms on the 300-W test data. As shown in Tables 6 and 7, common corresponds to
the test set portion of the LFPW and HELEN datasets, challenge corresponds to the IBUG
dataset, and fully corresponds to all test sets. It can be seen that the facial point detection
method of the UFaceNet model has achieved better results than other existing facial point
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detection models. We also perform facial point detection tests on the LFW dataset. The
result is shown in Figure 9.

Table 6. Comparison of err_o of Different Algorithms 500 Images Randomly Selected on 300-W
Test Data.

Mode Number of Key Points Err_o

Intraface [46] 37 0.046
Face++ 3 0.075
Lambda 3 0.097

Model [28] 51 0.043
UFaceNet 41 0.033

Table 7. Comparison of error_o of Different Algorithms on 300-W Test Data.

Mode Common Challenging Full

MDM [48] - - 0.059
Kowalski et al. [49] 0.049 0.096 0.058

LBF [25] 0.072 0.176 0.093
Cgprt [50] - - 0.084
CFSS [51] 0.069 0.146 0.085

Kowalski et al. [52] 0.068 0.139 0.082
RAR [53] 0.060 0.122 0.072
DAN [30] 0.065 0.111 0.074

DAN-Menpo [30] 0.063 0.103 0.071
UFaceNet 0.051 0.107 0.062
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(3) Liveness Detection: We conducted training and testing of liveness detection on
the HWND dataset constructed in this paper. We tested the effect of different numbers of
random skin clipping regions on 3000 images on the HWLD dataset test set. As shown in
Table 8, the accuracy can be improved as the number of cropping areas increases.

Table 8. Liveness Detection Results for the Number of Different Clipping Areas.

Number FAR FRR HTER

1 3.3 6.7 5.00
3 2.8 5.4 4.10
7 1.2 5.5 3.35
15 0.9 4.6 2.75

(4) Face Detection: Intersection-over-Union (IoU) is an evaluation parameter in the
target detection, which is the overlap ratio between the predicted bounding box and the real
bounding box. When the IoU is greater than 0.5, it is considered that the target is detected.
We tested the accuracy of the algorithm for different IoUs with LFPW and WIDEF Faces.
The results are shown in Table 9. As our model learns the face closest to the center during
training, the training data entered must contain the facial points. In a real application
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scenario, if the input image does not contain a face, the model will also check out the facial
point location somewhere on the image. Therefore, the face detection task of the model
needs to classify the candidate regions after obtaining the candidate region to determine
whether it is a human face. We perform experiments on classification accuracy on the
CelebA data test set. We enter 250 original images of CelebA and cut out the background
sections as negative samples. A total of 500 test images are input into the network for facial
point detection and classification. The final detection accuracy rate was 97.8%, of which
the negative samples were all classified correctly, and 4.4% of the positive samples are
misclassified.

Table 9. Accuracy of Different IoU.

Dataset IoU Accuracy

LFPW 0.5 0.9917
LFPW 0.6 0.9629
LFPW 0.7 0.9094

WIDER Face 0.5 0.9705
WIDER Face 0.6 0.9314
WIDER Face 0.7 0.8922

4.4. Model Validation

We use different types of models to compare computing speeds between networks.
The result is shown in Figure 10. As can be seen in Figure 10, the UFaceNet model is far
superior to other models in terms of calculation amount and number of parameters. The
UFaceNet model has a detection time of 0.51 ms ± (including all tasks) per image in an
experimental environment.
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5. Conclusions

This paper is based on the problem that the face recognition neural network model
struggles to meet the requirements of mobile devices in terms of storage space and speed.
We propose a complete and feasible real-time face recognition scheme for 2D images to
promote the progress of the 2D face recognition scheme, reduce the hardware requirements
and hardware cost of equipment, and improve the popularity of the face recognition
scheme. We implicitly increase the amount of training data and the distribution of different
data through multitask learning objectives. This makes it easier for the network to learn a
generalized identification feature that is less susceptible to noise in the data and reduces
the risk of the network overfitting a single task. The network structure, based on deep wise
separable convolution and the high degree of multiplexing of features in the multi-tasking
network, avoids the repeated calculation of the same feature by different tasks, reduces the
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need for multi-tasking model calculation, reduces the overall network calculation cost, and
achieves efficient network forward- and backpropagation. The experimental results show
that the UFaceNet model is better than other models in terms of calculation amount and
number of parameters, higher efficiency, and ease to be widely used.

UFaceNet has some problems that need to be improved: In the training process, the
weight allocation of the multi-tasking loss function was set manually according to prior
knowledge. In the future, we can try to build an intelligent weight allocation algorithm to
dynamically allocate the weight according to the current multi-tasking learning situation.
The self-built database HWLD for in vivo detection tasks has improved in terms of the
number of people with different identities compared with other existing relevant databases;
due to the limited time and equipment resources, it failed to collect more abundant de-
ception scenes, so it can continue to expand and improve the data in the future. The
face verification algorithm only carries out the matching verification of user identity, so
the security aspect needs to be improved. In the follow-up work, we will try to add the
fixation tracking model, based on the original network, to prevent users from using facial
information without knowing it, to enhance the reliability and security of the network.
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