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Abstract: Classifying facial expressions is a vital part of developing systems capable of aptly inter-
acting with users. In this field, the use of deep-learning models has become the standard. However,
the inner workings of these models are unintelligible, which is an important issue when deploying
them to high-stakes environments. Recent efforts to generate explanations for emotion classification
systems have been focused on this type of models. In this work, an alternative way of explaining
the decisions of a more conventional model based on geometric features is presented. We develop a
geometric-features-based deep neural network (DNN) and a convolutional neural network (CNN).
Ensuring a sufficient level of predictive accuracy, we analyze explainability using both objective
quantitative criteria and a user study. Results indicate that the fidelity and accuracy scores of the
explanations approximate the DNN well. From the performed user study, it becomes clear that the
explanations increase the understanding of the DNN and that they are preferred over the explanations
for the CNN, which are more commonly used. All scripts used in the study are publicly available.

Keywords: facial expression recognition; FER; DNN explainability; CNN explainability; emotion
recognition

1. Introduction

The field of affective computing is concerned with providing computers the ability to
examine and understand human affects and form their own human-like affects [1]. These
notions are essential for creating empathetic computers that can interact appropriately with
users, e.g., in situations such as (mental) health care, education, caring for the elderly, etc.
One of the key elements of affective computing is emotion recognition. Emotions can be
recognized using acoustic, visual and linguistic modalities [1]. In visual modality, emotions
are mainly recognized from faces, under Facial Expression Recognition (FER), which is
the area of focus for this research. In the context of using visual information (i.e., images
and videos), FER can be categorized into two different approaches: conventional and
deep-learning [2]. Traditionally, FER was done in three main steps: component detection,
feature extraction, and finally the emotion classification.

More recently, there has been a surge in the usage of deep-learning models for image-
and video-based tasks, including but not limited to FER. Especially the use of convolu-
tional neural networks (CNN) has increased immensely [3] and they have dramatically
outperformed conventional models [4]. When using these models, the networks can extract
features on their own and the images can thus be fed into the network directly instead of
extracting the features beforehand. That means such models are not limited to human-
extracted features.

Thanks to CNNs being so powerful, they have become the dominant approach for
state-of-the-art methods of affective computing and FER [2]. However, these models are
also extremely opaque. CNNs belong to the class of black-box models, which means they
cannot be interpreted by humans. Even if one looks at all the internal components of such
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a model, one could still not comprehend what abstractions the model has learned and why
it makes the decisions it makes. This is a problem as Artificial Intelligence (AI) models are
getting more and more involved in our daily lives. Especially in high-stakes environments
(e.g., the legal system, education, mental health care) it is important that we understand
the actual decision making mechanism, as the model’s decisions can have far-reaching
consequences [5,6]. Moreover, model transparency is an important factor for building trust
and technology adoption [7,8].

This is where the field of explainable artificial intelligence (XAI) comes into play.
The broad goal of XAI is to make models more interpretable for humans [9]. In the context
of affective computing and FER, researchers have started implementing XAI methods for
the models they use [10,11] and even challenges for explainable affective computing have
been organized [12,13].

In this study, we explore the interpretability of models based on geometric features.
Furthermore, we compare the interpretability of such a model with that of a state-of-the-art
CNN. We attempt this by constructing two models: a deep neural network (DNN) based on
geometric features extended from [14] and a CNN using transfer learning on a pre-trained
model developed in [15]. Both models are trained on images of facial expressions and
perform an emotion classification task. We generate explanations for both the DNN and
the CNN model. We evaluate the quality of the DNN explanations using several XAI
measures and compare these explanations with the explanations for the CNN. Moreover,
the explanations are assessed and compared via a user study. In short, the contributions of
this work can be summarised as follows:

1. Developing a new method of visually and textually explaining DNN predictions
based on geometric features.

2. Making a direct comparison between the interpretability of a CNN and a DNN trained
for an emotion classification task.

3. Performing a user study to evaluate and compare the quality of the explanations.

This study is organized as follows: first we discuss background and related literature
in Section 2. Next, in Section 3, we explain how the explanations and user study are
constructed. Consequently, the experiments for developing the structures for both models
and the user study are explicated in Section 4. After that we discuss the results of these
experiments in Section 5. Lastly, Section 6 concludes.

2. Background and Related Work
2.1. Background on Explainable AI

The field of explainable AI aims to make models more understandable for humans.
This is important when we let AI models make important decisions. In terms of a classic
example: we have a model in service of a bank that decides whether or not to give a person
a loan. If someone is denied the loan, naturally that person would like to know why they
did not get it and what they need to change in order for them to obtain it (counter-factual)
based on ‘right to explanation’ [16]. Additionally, we have ethical concerns: e.g., does the
model look at racial features? If the bank uses a very complex model, we cannot know this
just by looking at the model on its own. We need more explanations to gain the insights
we want.

The term that stands at the centre of XAI is interpretability.There is little consensus on
an exact definition for this. We use the same definition as [17] in terms of machine learning
systems: ‘the ability to explain or to present in understandable terms to a human’. The main
problem with complex state-of-the-art models such as CNNs is that their interpretability
level is very low. These models belong to the collection of black-box models: the internal
workings are unintelligible.

As to measurements to evaluate the quality of explanations, there are no formal
methods for this yet [9,18]. We can make a distinction between measurements that make
use of human participants and those that do not [17].
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Measures that do not depend of human evaluation can be calculated automatically.
One such property is fidelity or faithfulness: how well does the explanation approximate
the original model [19,20]? This is measured in terms of accuracy, but with respect to the
original model’s predictions instead of the ground truth. This is an important property,
since an explanation that does not approximate the model well does not tell us anything
about the original model and is actually useless.

The fidelity measure is distinct from plausibility: how convincing is the explanation
for humans [20]? These two should not be mixed up, as they represent different things
and should be calculated in different manners. Plausibility should be measured based on
human evaluation, whereas fidelity should not. Both the fidelity and plausibility measures
will used in this study.

Achieving interpretability can be done via two distinct paths: explaining an exist-
ing, black-box model (post-hoc explaining) or designing models that are inherently inter-
pretable [6,21]. In this study, we look at post-hoc explanations that are thus generated after
the models have been constructed. Note that there are people who favour designing inher-
ently interpretable models rather than post-hoc explanations, particularly in high-stakes
applications [5].

Furthermore, there is a distinction between model-specific and model-agnostic expla-
nation methods [18]. Model-specific explanations are those that only work for a specific
type of model, e.g., only for CNNs, whereas model-agnostic methods work for any type of
model. The latter approach treats the model essentially as a black-box and does need to
look at any of the internal workings.

The last distinction is between local and global explanations [18]. Global explanations
attempt to explain the whole model, whereas local explanations explain a subset of the data
or even a single data point. Multiple local explanations can also be used to approximate
a global explanation. In this study we solely make use of local explanations on single
data instances. Next, we discuss the two methods that are used as a basis to generate
explanations in this study.

2.1.1. SHAP

SHAP (SHapley Additive exPlanation) [22] is a widely used method for generating
explanations. Its main goal is to calculate the contribution of each feature to the predic-
tion, thus explaining what features are the most important for a prediction. This is done
using Shapley values, which have their foundation in game theory [23]. In short, impor-
tance of a feature fi is calculated using a weighted average of the difference in prediction
f (S ∪ fi)− f (S), where S is a subset of the original feature set and the values of the com-
plement set are assumed missing. SHAP also comes with some desirable properties: local
accuracy (fidelity), missingness, and consistency [22].

We chose to use the SHAP method–more specifically the model-agnostic version
of SHAP: KernelSHAP–over e.g., LIME (Locally Interpretable Model-Agnostic Explana-
tions) [24], since the KernelSHAP implementation extends the heuristically driven LIME,
but with the desirable properties of SHAP included. KernelSHAP is a model-agnostic,
post-hoc method for generating explanations. It can thus work on any pre-made model.

SHAP can also be used for explaining CNNs, where the input does not consist of
distinct features, but an image. In that case, SHAP groups pixels together as so-called
‘super-pixels’ and calculates the values with these super-pixels as features. However,
this approach is computationally much more expensive than gradient based methods,
e.g., Grad-CAM, which is described below.

2.1.2. Grad-CAM

Another prevalent method for explaining CNNs is Grad-CAM (Gradient-weighted
Class Activation Maps) [25]. It is a method to visualize class activation maps of the
CNN. With that, one can see where the model is ‘looking’. Grad-CAM works on the last
convolutional layer of the model and uses the gradients that go into that layer (dependent
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on the target concept one wants to show an explanation for). Based on this, a heatmap is
generated, which can be superimposed on the original image, thus showing what parts of
the image activated the network and what the model based its decision on. Grad-CAM is a
model-specific, post-hoc method. It is specifically made for explaining CNNs.

2.2. XAI in Affective Computing and FER

Like in other AI research areas, there has been an increase in research into explain-
ing models in affective computing and FER as well. This research has been focused
on CNNs for the most part, as this is the type of model that is the most prevalent in
contemporary research.

In [10], Weitz et al. explained a CNN model that distinguishes pain from other
emotions, such as happiness or disgust. For this, they used the XAI method Layer-wise
Relevance Propagation (LRP) [26]. They found that while this gives some insights into the
model’s decisions, it is not distinctive enough.

A challenge on explainability in computer vision was proposed in 2017 by Es-
calante et al. [12]. The main target of this challenge was to make an explainable model
that examines videos of job candidates and gives a first impression in terms of the big five
personality traits. An example submission is [27], where class activations and action units
are used for explaining the predictions of their CNN model.

Both [28,29] use Shapley values to explain their models on sentiment analysis, al-
though this analysis is in a different context than FER. Prajod et al. used LRP saliency maps
to investigate whether a network has learned concepts (in this case action units), especially
in the case where a network originally trained for emotion recognition is used as a base for
transfer-learning a model to recognize pain [30].

Gund and Bharadwaj et al. propose a technique for extracting influential landmarks
in [11]. They do this in the context of moving faces and use a CNN for the emotion
classification. Then, class activation maps are used to find influential regions and from
these, landmarks are extracted that are based on action units.

3. Proposed Method

We construct two different types of black-box models: a DNN and a CNN. Both models
work on the same dataset and perform a facial expression classification task. The models
are first optimized for this particular task and then we generate explanations detailing why
the model made certain decisions. Finally, we evaluate these explanations by calculating
the fidelity (in case of the DNN), comparing them and performing a user study. The two
complete pipelines can be seen in Figure 1.

Figure 1. The two constructed pipelines. The top pipeline illustrates the process of the geometric
features-based DNN and the bottom one illustrates the CNN process. The example image used in the
pipeline is AF01AFS from the KDEF dataset.
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3.1. Geometric Features-Based DNN Modeling
3.1.1. Geometric Feature Extraction

The feature set used for the DNN is based on the geometric features from a previous
study on an emotion classification task [14]. In the original study, Kaya et al. aligned
and extracted landmarks from the images using Xiong and De la Torre’s Supervised
Descend Method [31]. Through this approach 49 fitted landmarks are obtained. From these
landmarks, geometric features can be calculated. Geometric features quantify the geometric
configurations that are constructed from elements such as points (as in this case), lines, etc.
and can represent e.g., distances, areas, angles.

Originally, there were 23 hand-crafted geometric features. We extended this set to
include the slope of the left and right eyebrow. Some features were originally averaged
over the left and right parts of the face, which was reversed. The averaged features are less
expressive and separate features for both parts of the face are more useful when explaining
the model’s decisions particularly on posed faces. Eventually, we ended up with a set of
40 features. For further details of the geometric features see Appendix C.

3.1.2. SHAP-Based Explanation Generation

After the DNN has been constructed and trained on the data, we can generate ex-
planations for its decisions. We do so using SHAP. For each image, the SHAP value of
each feature is calculated. Next, we take the n features with the highest absolute value,
i.e., the most important features. Each of those geometric features corresponds to several
landmarks the feature was originally calculated from and with those, the geometric features
can be plotted on the face. Since we have different types of geometric features, we end up
with features that are displayed as a line, an angle, an ellipse, or aspect ratio. See Figure 2
for examples on how geometric features of different types are visualized. The features are
coloured according to their SHAP value from yellow to red, with the more red the colour,
the more important the feature was for the model’s decision.

Figure 2. Examples of how geometric features are displayed based on the landmarks they originate
from. From left to right, top to bottom, the geometric features displayed are: lower eye outer angles
(L), eye aspect ratio (R), bottom lip curvature, outer mid eyebrow slope (L), eye—inner eyebrow
distance (L), mouth opening/mouth width.

Accompanying these visualizations, we generate textual explanations. In these texts,
we mention what the model’s prediction for the image is and whether that is correct. If the
prediction is incorrect, the true label is given. Furthermore, we list the names of the features
that are plotted on the face in order of their importance. The sum of the SHAP values of
the displayed features is calculated as a percentage of the sum of the SHAP values of all
features and reported in the textual explanation.
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We evaluate this method quantitatively by calculating both its fidelity and explanation
accuracy. The fidelity is calculated by constructing new data points where only the top n
features keep their original values and all other features are set to the training set average
value for that feature (note that in case of feature value standardization, this value can be
zero; note also that this is the way model-agnostic SHAP handles the missing attributes).
We then let the model predict the class for this newly created data point and compare this
to the model’s prediction of the original data point. The percentage of predictions that stay
the same as the original prediction is the fidelity score.

The explanation accuracy score is calculated in a similar fashion, only now the new
predictions are not evaluated against the model’s original prediction, but against the
ground truth. Note that this is a distinct measure from the model’s accuracy, which is
simply the percentage of correctly classified examples. To avoid confusion, the accuracy
measure for explanations shall be called the “explanation accuracy” from this point onward.
Furthermore, we calculate the relative cumulative SHAP weight for the top n features by
dividing the sum of the SHAP values of those features by the sum of all features’ SHAP
values. A plot of the aforementioned measures helps the analysis of fidelity convergence.

3.2. End-to-End CNN Modeling

For the CNN, we make use of a pre-trained model, since the used dataset is rather
small and CNNs are very prone to overfitting. The model we use as a base was originally
created by Dresvyanskiy et al. in [15]. They took a CNN model that was pre-trained on the
VGGFace2 dataset [32]–which is mainly used for face recognition–and then further fine-
tuned it on the Aff-Wild dataset [33]. Their model uses the same discrete seven emotions as
we do, so no further alterations to the model’s architecture were needed. We then fine-tune
their model on the KDEF dataset. Thereafter, we generate explanations to gain insights into
the model’s decision making using Grad-CAM (implemented by [34]) and SHAP.

3.3. User Survey

In order to evaluate the plausibility of both models’ explanations, we perform a user
study where participants answer questions on their understanding of and trust in the
models. The user study consists of two main parts: evaluating the geometric features-based
explanations and comparing the explanations for the DNN and the CNN. All questions
on the explanations are posed in the form of statements together with a Likert item [35]
from one to five (i.e., strongly disagree, disagree, neither agree nor disagree, agree, strongly
agree). The questions can be found in Section 4.4.2. The introductory texts and consent
form can be found in Appendix B.

In the first part, the participants will first see five example images from the test set
with the original image and the probability distribution. The amount of examples where
the model made a wrong prediction is chosen in accordance with the final model test set
accuracy score. After examining these images, they answer ten questions regarding their
understanding of and trust in the model.

After answering these questions, a new batch of five example images is shown. This
time the participants see five different images from the test set, but with the visual expla-
nation images (i.e., the most important geometric features plotted on the face) and the
accompanying textual explanation. Afterwards, they answer the same ten questions as
with the previous batch.

For the second part, the participants are shown seven example images (one for each
class) where the explanations for the DNN and the CNN predictions on the same image are
shown side-by-side. Also shown are the probability distributions for each model prediction.
Thereafter, the participants answer ten questions where they compare both models and
their respective explanations.
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4. Experimental Setting
4.1. Dataset

The dataset used for all models is the Karolinska Directed Emotional Faces (KDEF)
dataset [36]. It consists of 4900 images of human faces displaying seven different emo-
tional expressions. The expressions consist of the six basic emotions–anger, disgust, fear,
happiness, sadness, surprise–as defined by Ekman [37], extended with neutral.

In total, there were 70 participants (35 male, 35 female) who were each photographed
twice for each of the expressions from five different angles (full left profile, half left profile,
straight, half right profile, full right profile). Participants’ faces were centered on a grid
such that their eyes and mouths are positioned in fixed coordinates.

We omitted all pictures with the full left profile and full right profile orientation, since
those poses are much more difficult to classify and the goal of this research is not to develop
the most all-round facial emotion classifier. Ultimately, we ended up with 1509 training set
images (subject IDs 12–29), 504 validation set images (IDs 30–35) and 923 test set images
(IDs 01–11). This split is used for all models. The class distribution was balanced.

4.2. DNN-Based System Development

For the DNN, we use the 40 geometric features extracted from the images as input.
The features are standardized (z-normalized) using mean and standard deviation statistics
estimated from the training set.

We construct a feed-forward neural network with the last layer being a dense layer
with seven neurons using softmax activation. Between hidden layers, ReLU (Rectified
Linear Unit) activation is used to obtain non-linearity. During training, we used the Adam
optimizer [38].

4.2.1. Hyperparameter Tuning

The optimal architecture of the network we construct is found by means of hyperpa-
rameter tuning using the Keras Tuner [39] with the included Hyperband algorithm [40],
which is shown to be more efficient than Random Search [41] and the commonly used
Grid Search that is known to suffer from the curse of dimensionality. Each architecture is
evaluated on the validation set accuracy, where accuracy is defined as the percentage of
correctly classified data points.

On top of the standard Hyperband algorithm, we add an early stopping callback with
patience 1 to the search, which in this case means a configuration will stop training once
the validation set loss does not decrease for 1 epoch, the configuration will not be further
trained. This is to increase efficiency and decrease overfitting. The following configurations
for hyperparameters were tested:

• Number of hidden layers: 1–4.
• Number of neurons per layer: 32–512, in steps of 32.
• l2 regularization [42]: {0.1, 0.001, 0.0001}.
• Dropout [43] after each hidden layer: 0–0.9, in steps of 0.1.
• Learning rate: {0.1, 0.01, 0.001, 0.0001}.

The optimal hyperparameter settings for the final DNN models can be found in
Appendix A.

4.2.2. Splitting on Pose

We explored whether it would be worthwhile to split the data on pose and train a
model per subset, i.e., a separate dataset and model for half left, frontal, and half right.
To this end, we trained four different models: one for each pose and one for the complete
dataset. All the models’ hyperparameters were optimized separately.

We then compared the validation set accuracy of the model trained on the complete
dataset with the concatenated accuracy of the three other models. Concatenated accuracy
is calculated by counting the number of correct predictions across all three models on their
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respective validation datasets and dividing this amount by the total number of instances in
the complete validation dataset.

In order for the development of a complete pipeline using such a split on pose,
one would also have to develop a pose classifier to automatically determine an image’s
face orientation.

4.2.3. Feature Selection

The complete geometric feature set consists of 40 features, but this set could contain
redundant features. The goal of feature selection (FS) is to obtain a compact subset of
features that describes the dataset, eliminating irrelevant or noisy features [44]. Redundant
features are those that provide no extra information to the model (i.e. the feature is not
needed for correct classification of the data points), but such features can cause noise and
can thus introduce bias into the model. This affects how well the model generalizes and
hence the performance on unseen data. On top of that, the smaller a feature set, the more
efficient the computation time will be.

In order to eliminate redundant features from the complete feature set, we used
several feature selection algorithms to select a feature subset, trained and tuned mod-
els with that subset and compared validation set accuracy with the no-feature selection
performance baseline.

The first technique we tested is forward sequential feature selection (FSFS), imple-
mented in Scikit-learn [45]. This is a wrapper method, which means it uses the model as a
black box predictor and evaluates the performance on a certain feature subset. FSFS starts
with an empty set of features and at each iteration it adds the feature that yields the highest
performance gain. This continues until the specified amount of features is reached.

Furthermore, we tested recursive feature elimination (RFE), proposed by Guyon et al. [44],
also implemented in Scikit-learn. RFE is an iterative process consisting of three steps: train
a model, compute the ranking of the features and finally eliminate the feature with the
lowest ranking. This process continues until the set of features is reduced to a certain
amount. In our case, we used a logistic regression model to estimate the feature ranking,
since that can be taken directly from the model’s coefficients.

Another technique we tried was picking the n features with the highest global SHAP
value (i.e., the most important features over the entire dataset) as the feature subset. For this,
we first calculate the SHAP score for each feature by summing the absolute SHAP score
for each feature for each data point across all seven classes. Then we rank the features
according to this total score and take the top n features.

The final technique consisted of hand-picking feature subsets based on domain knowl-
edge. One can argue that features belonging to the left side of the face are more important to
the half left model than for the half right model, and vice versa. Therefore, we constructed
two feature subsets. Both contained the features that do not correspond to a particular side
of the face (e.g., mouth width) and all features that correspond to either the left or the right
side of the face. This last method is only tested on the half left model and the half right
model, as the frontal model does not necessarily benefit from excluding features belonging
to a particular side.

For each feature selection method, we test subsets with 5 to 35 features in steps of 5.
Ultimately, for each model we pick the feature subset that yields the highest validation
set accuracy.

4.3. CNN-Based System Development
4.3.1. Preprocessing

In the study where the base-model was developed, the original images were detected
and aligned using RetinaFace [46]. In order to give the model the most similar images as it
was trained on as possible, we use the same alignment method for the KDEF dataset, using
the implementation in [47]. Note that this is a different alignment method than used for the
geometric features-based DNN. For the DNN, we needed not only a method that aligns
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the images, but also one that extracts the landmarks from the images in order to calculate
the geometric features, whereas this is not needed for the CNN. On top of face extraction,
the resulting images are also resized to 224 by 224 pixels.

For the CNN, we do not split the dataset on pose, as this would decrease the dataset
size even further, which would make the model more prone to overfitting.

4.3.2. Fine-Tuning

For the fine-tuning, we do not change anything about the original architecture of
the model, as that model works with the same classes as we do. We do add a data
augmentation layer to artificially increase the dataset size in order to reduce overfitting.
The data augmentation consists of randomly rotating, shearing, zooming and horizontally
flipping the images. We also added l2 regularization [42] to the layers.

We freeze the n bottom layers of the model and train only the unfrozen top layers.
Again, we add an early stopping callback with various patience values. As learning
rate/optimizer, we test both Adam and Stochastic Gradient Descent (SGD) with an expo-
nential decay learning schedule.

4.4. User Survey Construction
4.4.1. Environment

All participants answered the questions independently on a computer. The user
study was made using Google Forms. Before answering any questions, participants were
informed of the nature of the study, what their task consisted of and what their answers
could be used for. They had to give their consent to their answers being used in a research
study before they could carry on answering questions. The complete questionnaire can be
found at https://github.com/kayatb/GeomExp (accessed on 1 October 2022).

The group of participants consisted of 12 people. Every participant completed high
school or a form of higher education. Most participants rated their level of knowledge on
AI as neutral or better (on a scale of 1–5).

4.4.2. Questions

With the help of the user study, we want to quantify several qualities of the geometric
features-based explanations. On top of that, we want to compare those explanations with
the ones for the CNN on a human-level. All questions are answered via a Likert item from
1 (Strongly Disagree) to 5 (Strongly Agree).

In [8], Hoffman et al. propose several checklists to evaluate the goodness, satisfaction
and trust of explanations generated for AI systems. Goodness refers to how good an
explanation is, determined by factors such as clarity and precision. Satisfaction is defined
as: “the degree to which users feel that they understand the AI system or process being
explained to them" [8]. Several of their proposed questions are used in the first set of
questions for the user study.

The System Usability Scale (SUS) [48] is a widely used tool to measure the usability
of a system. This scale can be adapted to refer to a system’s explanatory power instead
of referring to a system’s usability. As is done in [49], where Holzinger et al. propose the
System Causability Scale (SCS), which extends SUS to measure the quality of explanations
in terms of causability, we extend SUS to be used in our user study. Several questions in
the first question set are based on the SUS. Ultimately, the first question set consists of
the following:

1. The output representations help me understand how the model works. (adapted
from [8])

2. The output representations of how the model works are satisfying. (adapted from [8])
3. The output representations are sufficiently detailed. (adapted from [8])
4. The output representations let me know how confident the model is for individual

predictions.

https://github.com/kayatb/GeomExp
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5. The output representations let me know how trustworthy the model is. (adapted
from [8])

6. I found the output representations unnecessarily complex. (adapted from [48])
7. I think I would need an expert to give me additional explanations. (adapted from [48])
8. The outputs of the model are very predictable. (adapted from [8])
9. The model can perform the task better than a novice human. (adapted from [8])
10. I am confident in the model. I believe it works well. (adapted from [8])

The second set of questions is partly extended from the first set. Instead of referring
to the explainability of a single model, these questions make a comparison between two
models. Again, the questions deal with goodness, satisfaction and trust, but this time in
terms of which explanation the user finds better on several aspects. Again, we took into
account questions regarding the intelligibility, complexity, level of detail and trust in the
explanations. In these questions, there is a consistent reference to “model 1” and “model 2”.
In all cases, model 1 refers to the CNN and model 2 refers to the DNN. The second question
set consists of the following:

1. The explanations for model 1 are more understandable than those for model 2.
2. I trust model 1 more than model 2.
3. I would prefer the explanations of model 1 over those for model 2.
4. The explanations for model 1 are more detailed than those for model 2.
5. The explanations for model 1 are clearer on the model’s accuracy than those for

model 2.
6. The explanations for model 1 reflect the model’s confidence on each prediction better

than those of model 2.
7. Model 1’s explanations are more unnecessarily complex than those of model 2.
8. The explanations for model 1 were more precise than those for model 2.
9. I would follow model 1’s advice over that of model 2.
10. The outputs of model 1 were more predictable than those of model 2.

4.4.3. Hypotheses

The hypotheses for questions 1, 2, 3, 5, 6, 8, 9, and 10 from the first question set are
that the examples with explanations are evaluated with higher scores than the examples
without and thus indicate that showing the explanations increase understanding of and
trust in the model. The hypothesis for question 4 is that the score would be less for the
second batch, since the probability distributions are shown in the first batch, but not in the
second batch. This is done on purpose, so that we can check whether participants have
answered the questions in a serious manner. The hypothesis for question 7 is also that the
score after the second batch is lower than after the first, since this question is phrased in a
reverse manner from the others.

For question set 2, the hypotheses for questions 1, 2, 3, 4, 7, 8, 9, and 10 are that the
score is below the expected median score of 3, which sits right in the centre of the five-point
scale we use, indicating that explanations for model 1 (the CNN) score lower than the
explanations for model 2 (the DNN). For questions 5 and 6 we performed a two-sided
test, since we present the probability distributions for both models, which can be used for
answering these questions.

We will thus use one-sided tests everywhere, apart from questions 5 and 6 from
question set 2, since for the other questions we only want to test whether the explanations
for the DNN increase understanding and are preferred over the explanations for the CNN.

4.4.4. Statistical Tests

The questions in the user study are stated in the form of Likert items. The data
obtained from Likert items are generally seen as ordinal. This means the responses have an
order, but the distance between values is not necessarily equal. That is why some argue
that parametric tests such as t-test or ANOVA cannot be used, but rather a non-parametric
test should be used to determine the statistical significance of the results [50]. However,
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there is discussion surrounding this, see for example [51]. For the analysis of the user study
results, we have decided to use non-parametric tests.

For the first and second batch of questions (i.e., question set 1), we used the Wilcoxon
signed-rank test [52], which works on two related samples; in this case the first batch of
examples without any explanations and the second batch with the explanations given.
Both batches use the same questions, so we will perform a test of significance on each pair
of questions. The null hypothesis for such a test is that both samples are taken from the
same distribution.

The third batch of questions (i.e., question set 2) stands on its own. We have thus used
the Mann–Whitney U test [53] to test the significance. This test works on two unrelated
samples. For the second sample we use the expected outcome/median for each question: 3.
This can be compared to a one-sample t-test. The null hypothesis here is for any selected
scores s1 from sample 1 and s2 from sample 2, it holds that Pr(s1 > s2) = Pr(s2 > s1).

5. Results
5.1. Experimental Results for Geometric Features-Based DNN models
5.1.1. Comparative Results Using Pose-Based Models

In Table 1, we can see that the concatenated accuracy scores of the three models
split on pose is higher than the accuracy score of the model trained on the whole dataset.
The separate accuracy scores of the models trained on a single pose are also all higher than
the no split model on the validation set.

Table 1. Validation set accuracy comparison of the pose-based and non-pose based models. Overall
represents the accuracy score obtained from concatenating the predictions from pose-based models.

Model Accuracy

Frontal 0.780
Half Left 0.790

Half Right 0.828

Overall pose-based 0.794
No pose split 0.756

5.1.2. Feature Selection Results

From Table 2, we can see that the frontal model has the highest performance with a
subset of 30 features, decided by RFE. The half left model has three optimal feature sets
consisting of 24 or 25 features. We decided to take the feature set picked by FSFS, as the
training set accuracy was closest to the validation set accuracy for that set, indicating less
overfitting than with the other two sets. For the half right model, a subset of 30 features
picked by FSFS yields the best results.

Table 2. The highest validation set accuracy per algorithm for each pose model together with the
amount of selected features. Handpicked means manually excluding right and left orientated features,
for left and right poses, respectively. Best results per column are shown in bold.

Frontal Half Left Half Right

Algorithm # Feats. Accuracy # Feats. Accuracy # Feats. Accuracy

FSFS 25 0.7857 25 0.8070 30 0.8448
RFE 30 0.7976 25 0.8070 20 0.8276
SHAP 35 0.7857 35 0.7895 35 0.8362
Handpicked - - 24 0.8070 24 0.8017
No FS 40 0.7798 40 0.7895 40 0.8276

For the full hyperparameter configurations of the final DNN models see [54].
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5.2. Geometric Feature Explanation Results

In Figure 3, we can see that there is a steady increase in fidelity until 1.0 fidelity is
reached when using all features (as should be expected). The first amount of features where
0.8 fidelity is reached is with 9, 5, 6 features for the frontal, half left and half right model,
respectively. This amount of features yields explanation accuracy scores of 0.7013, 0.6639,
0.6943 on the test set, respectively. In all three plots, the slope decreases with increasing
number of features, showing a convergence trend. The explanation accuracy is equal to
the final accuracy score of the model on the test set when all features are used (again,
as expected).

Figure 3. Fidelity and accuracy scores per top n SHAP features for the frontal, half left and half right
model. Also given is the proportion of the SHAP weight of the top n features with regard to the total
weight of all features. All scores are calculated on the test set.

5.3. Experimental Results for CNN models

For the CNN model, we trained the final model with the following data augmenta-
tion settings:

• Rotation range: 50
• Shear range: 0.5
• Zoom range: 0.5
• Horizontal flip

These settings give quite aggressive data augmentation, but this was necessary to
combat the tendency of the model to overfit on the relatively small dataset.

Furthermore, we used the SGD optimizer with a learning rate schedule with exponen-
tial decay with an initial value of 0.01, a decay rate of 0.9 and decay step size of 10,000 (i.e.,
the learning rate goes down after this many steps). The regularization value was set to 0.01
for each layer and the early stopping patience was 2. we only unfroze the top three layers
for fine-tuning, the rest remained as they are in the base model. These top three layers
consisted of the feed-forward classification layers.

This configuration obtained a training set accuracy of 0.9708 and a validation set
accuracy of 0.7778.

5.4. Comparing Explanations for the DNN and CNN

In Figure 4, example explanations of the CNN using Grad-CAM (second row) and
DNN (third row) can be seen. We decided to omit the explanations generated for the CNN
using SHAP. These explanations were of a lower quality than those of Grad-CAM, since
there was a lot of noise in the explanations with seemingly random pixels coloured. It
should also be noted that explanations for the CNN generated by SHAP take dramatically
longer to compute than those generated by Grad-CAM.
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Figure 4. Example explanations for the CNN using Grad-CAM (second row) and DNN (third row)
displaying all seven emotions. The images are the same and have the following codes: AF07DIHR,
AM11AFHL, AF04NES, AF03ANHR, AF01SAS, AM01HAS, BM03SUHL, respectively. The top and
bottom row give the corresponding probability distributions for the images shown.

To exemplify the textual explanation, the top left visual DNN explanation is accompa-
nied by the following text:

This person’s emotion is classified as DISGUST. This classification is CORRECT.
The following five features, listed from most important to less important, con-
tributed for 36.6% to the decision:

1. Left eye aspect ratio (ratio between eye width and eye height).
2. Angle from bottom mouth to left upper mouth.
3. Angle from left mouth corner to top of the mouth.
4. Distance between the centre of the left eye and the left inner eyebrow.
5. Left lower eye outer angle.

For the geometric features explanations, we decided to visualize five features, which
seems like the minimum given the fidelity scores of these explanations. This could easily
be extended to show more features.

5.5. User Study Results

For determining the significance of the results, we take α = 0.05 for all questions. In
Table 3, the results from the Wilcoxon signed-rank test on the question pairs from question
set 1 can be found. Scores for questions 1, 3, and 4 have a significant difference between the
first and second question batch. Question 4 was a control question and the significantly
lower scores for this question shows that participants filled in the questions seriously and
that posterior distributions provide significant information about prediction confidence.
The significantly lower scores for question 1 shows that the participants’ understanding of
the model has increased after they saw the explanations. The participants also think the
explanations are more sufficiently detailed, indicated by the significantly lower scores for
question 3.

Question 6 does not have a significantly higher score, which is a positive outcome.
This indicates the participants did not find the explanations unnecessarily more complex
than no explanation. Questions 5, 9, and 10 regard the trust in the model’s performance.
None of these questions show a significant increase in score after the participants saw
the explanations. In line with the literature [55], this shows that building trust for a
technology/model is not easy and may require longitudinal exposure to or testing of
the technology.
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Table 3. Results of the Wilcoxon signed-rank test on question pairs from question set 1. Question
numbers are the same as in Section 4.4.2. Ha refers to the alternative hypothesis: whether the answers
from the second sample would be greater than or less than those from the first sample. Reported are
the W- and p-values obtained from the tests. * indicates p ≤ α.

Question # Ha W-Value p-Value

1 greater 0.0 0.001 *
2 greater 6.5 0.100
3 greater 4.5 0.015 *
4 less 39.5 0.021 *
5 greater 16.5 0.415
6 greater 0.0 0.118
7 less 23.0 0.061
8 greater 14.5 0.198
9 greater 2.0 0.718
10 greater 9.0 0.327

The results of the Mann–Whitney U test on question set 2, where the explanations
for the CNN and those for the DNN are compared, can be found in Table 4. The scores
for questions 1, 3, 4, 7 and 8 are significantly below the median. Questions 5 and 6 do not
show a significant difference in scores in either direction, which is to be expected. After all,
the probability distributions for both models were given in all examples. Like before, these
can be used as control questions.

Table 4. Results of the Mann–Whitney U test on questions from question set 2. Question numbers are
the same as used in Section 4.4.2. Ha refers to whether the alternative hypothesis was that model 1
was evaluated as worse than model 2 (less) or a two-sided test (unequal). * indicates p ≤ α.

Question # Ha U-Value p-Value

1 less 42.0 0.031 *
2 less 66.0 0.364
3 less 42.0 0.031 *
4 less 18.0 0.0003 *
5 unequal 48.0 0.105
6 unequal 54.0 0.154
7 less 36.0 0.011 *
8 less 24.0 0.001 *
9 less 66.0 0.364
10 less 9.0 0.327

The scores for questions 1, 4 and 8 are significantly lower, which shows that par-
ticipants’ found the explanations for model 2 (the DNN with geometric features) more
understandable, detailed, and precise than those for model 1 (the CNN). Moreover, the par-
ticipants would also prefer the explanations for model 2 over those for model 1, as indicated
by the significantly lower score for question 3. There is a significantly lower score for ques-
tion 7 as well. That indicates that the participants found the explanations for model 2
to be more complex than those for model 1. Even so, it seems they would still prefer
the more complex explanations. For questions 2 and 9, we see the same pattern as in the
previous tests: the questions regarding trust in the models do not show a significantly lower
score. Also, like in the previous tests, there is no significantly lower score regarding the
predictability of the model outputs (question 8 for the first set and 10 for the second one).
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5.6. Discussion

Our main goal in this paper was to compare alternative DNN-based approaches in
terms of their predictive performance and explainability using both objective quantita-
tive measures and a user study. However, these explanations may well be presented
together, in case these two models are combined at the decision level. Since the geometric
features-based DNN and appearance-based CNN models use alternative, complementary
representations, their decision fusion is likely to improve the predictive performance [14,56].
To further improve the predictive performance using the DNN and CNN in an explainable
manner, we experimented with simple weighted fusion. Here, to fuse the posterior prob-
abilities of the two models, a fusion weight γ ∈ [0, 1] is optimized on the validation set
with steps of 0.1. We found the best validation set accuracy of 0.8392 with γ = 0.5, which
actually degenerates to unweighted score fusion. Using this setting, we reach a test set
accuracy of 0.8418, which advances the state-of-the-art on this dataset using three poses
(see Table 5).

Table 5. The test set accuracy scores for the final DNN models (and their concatenated score) and the
CNN. Included are three state-of-the-art scores on the KDEF dataset.

Model Test Set Accuracy

Mahmud et al. [57] (FR) 0.8602
Kandeel et al. [58] (FR) 0.8888
GEO-DNN Frontal (FR) 0.8117
GEO-DNN Half Left (HL) 0.7395
GEO-DNN Half Right (HR) 0.7913

GEO-DNN Combined (FR, HR, HL) 0.7832
CNN (FR, HR, HL) 0.7595
Fusing DNN & CNN (FR, HR, HL) 0.8418
Puthanidam and Moh [59] (FR, HR, HL) 0.8086

The final test set accuracy scores of the models and a few recent models on the KDEF
set can be seen in Table 5. The state-of-the-art models were chosen by looking at recent
research (published after 2018), where the KDEF dataset was used. It should be noted these
do not necessarily use the same train-validation-test set split as we have used in this study.

In [59], a combination of image pre-processing and different CNN models was used.
The preprocessing consisted of converting the images to greyscale, data augmentation,
cropping the images using Haar feature-based cascade classifiers [60], and downsampling
the images to reduce memory usage. The CNN that obtained the best results on the KDEF
dataset was the model fine-tuned over the model initially trained by Yu and Zhang [61].
To obtain the result as reported in Table 5, they use only the frontal and half rotated images,
as we have done.

The result in [57] was obtained by detecting the faces using the method from [60] as
well, then segmenting the image intro four parts (i.e., right eye, left eye, nose, mouth). Next,
they extracted features from those segments using Gabor filters and these features are fed
into a K-nearest neighbours model for classification. They used only the frontal oriented
images from the KDEF set.

In [58], a CNN model was trained only on the frontal images of the KDEF set. The faces
were extracted from the images using the technique from [60], like the other examples.
They trained CNN models with different architectures and used Grad-CAM and saliency
maps to compare the different models on explainability.

A simple decision fusion of our experimented models outperformed the state-of-the-art
models, even though this was not the main target of the study. The geometric features-based
DNN performs somewhat better than the CNN model (based on the combined score of the
three DNN models). This could partly be attributed to the size of the dataset. The CNN is
more likely to outperform the DNN if we had used a more substantial amount of data. A
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future work in this direction would be to use a multi-stage pretraining approach for CNN
as done in [15] and include other FER corpora for training the DNN.

For the geometric feature explanations, we achieve good results on the fidelity scores,
with only approximately 25–30% of the complete feature set necessary to give a fidelity
score of above 0.8 (i.e., 80% of the predictions stay the same when using only these feature
values). The explanations approximate the model to a high extent.

For the CNN, explanations using Grad-CAM can be generated, which are based on
the gradients inside the model when predicting an image. However, we cannot calculate
measures such as fidelity and accuracy for these explanations in a precise and straightfor-
ward manner, caused by the nature of the calculations with which these explanations are
constructed. Hereby, we do not have a direct measure to know how well the explanations
actually approximate the CNN model. Even though we generate explanations of the model
that seem to show where it looks, it is not certain if this is actually what the model bases its
decisions on.

This issue is not present in our explanations for the geometric features-based DNN.
We have calculated fidelity and accuracy scores for these explanations, which show the
explanations stay true to the model to a high degree. Thus, the explanations indeed say
something about the decision-making process of the model.

Furthermore, the explanations as generated for the DNN seem more precise than
those for the CNN. By the nature of geometric features, they are inherently interpretable.
Therefore, visualizing them and giving their names should be enough to know what the
model sees. For the CNN, this is not the case. Like in the left most example images from
Figure 4, we can see the model roughly looks at the mouth, but what about the mouth the
model sees, is still hard to grasp. With the geometric features, we can exactly pinpoint that
the model is looking at e.g., mouth width or lip curvature.

Finally, the results obtained from the user study indicate that the explanations for the
(geometric features-based) DNN increase participants’ understanding of the underlying
model. They also found those explanations better than the more frequently used heatmap
explanations for CNNs on points such as understandibility, preciseness and level of detail.
Even though the DNN explanations were found to be more complex, the participants
would still prefer those explanations. However, the trust in the models was not increased
by the DNN explanations nor was there a significant difference between the trust in the
DNN and the CNN.

6. Conclusions

In this work, we have developed an alternative way of explaining a model that classi-
fies facial expressions. In particular, this method displays the most important geometric
features (as calculated by SHAP) plotted on the original images. We developed both ge-
ometric features-based DNN models and a CNN model. On the small KDEF dataset we
used here, the DNN models outperforms the CNN model, although examples can be found
in the literature where models have been developed that outperform all of our models.

We argue that the more conventional methods for FER are better explainable than the
state-of-the-art CNNs, as can be seen in the explanations we developed and compared
with methods for visualizing the decision process for CNNs. This might not matter for
mundane tasks, but for high-stakes decision processes, it is vital that we can understand
what the model is doing. We believe it would be better to focus more on developing and
using interpretable models or models that are better to explain in critical areas than the
prevalent black-box models.

The geometric feature explanations in this study are based on a DNN, which admit-
tedly is a black-box model as well. However, the explanations we have developed here
are not limited to such a model and can be generalized to other types; the explanations
are model-agnostic given the geometric feature set. In other words, any model that can
make use of geometric features could use the explanations. An intrinsically interpretable
logistic regression model could also visualize its decisions in the same way. More recently
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developed interpretable models that can perform more on-par with deep-learning models
such as [21] can also use this technique to visualize their decisions.

This study can be extended by using a more extensive dataset with less posed images
than the KDEF dataset and seeing how the geometric features perform in such an envi-
ronment. Furthermore, a dataset with more emotions than these seven could be tested.
Furthermore, the deployed CNN can benefit from a multi-stage fine tuning as in [15].

Lastly, the user study especially can be extended in quite a few ways and was limited
in this work. Further research should be put in the human evaluation of the proposed
method. In conclusion, we have explored and laid the groundwork for a different way
of explaining a system for FER. The first results regarding the quality and plausibility of
these explanations look promising. Questions on several points still exist and are open for
further examination.
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FS Feature Selection
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Grad-CAM Gradient-weighted Class Activation Mapping
HL Half Left
HR Half Right
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LIME Local Interpretable Model-Agnostic Explanations
LRP Layer-wise Relevance Propagation
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Appendix A. Final DNN Configurations

In Table A1, the final configurations of all DNN models used for the reported results
can be found.

https://www.kdef.se/
https://github.com/kayatb/GeomExp
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Table A1. Final configurations of the DNN models after splitting on pose, finding the best feature
subset using feature selection and hyperparameter tuning. HL: Half Left, HR: Half Right.

Hyperparameter Frontal HL HR

Number of hidden layers 2 1 1
Learning rate 0.001 0.001 0.001

No. neurons hidden layer 1 352 64 352
Regularisation rate hidden layer 1 0.01 0.01 0.001

Dropout hidden layer 1 0.3 0 0.6
No. neurons hidden layer 2 256 - -

Regularisation rate hidden layer 2 0.01 - -
Dropout hidden layer 2 0.8 - -

Appendix B. User Study

Appendix B.1. Research Description

This research is done in the context of my Bachelor thesis Artificial Intelligence at
Utrecht University. In this research, I want to analyze and evaluate new ways of explaining
uninterpretable machine learning models. The purpose of this survey is to quantify the
quality of automatic explanations (e.g., in terms of clarity and plausibility) generated for
two types of Deep Neural Network models trained to predict facial expressions.

Your task is to evaluate and compare different explanation methods for two machine
learning models. This will be done using closed questions. No personal data is required or
being collected. The survey takes 6-8 min to complete.

Appendix B.2. Consent Form

The participant states:

• I voluntarily agree to participate in the research project.
• I agree that I will not be paid for my participation.
• I have been informed of the nature of the research project.
• I understand that statistical data gathered from this survey can be used in a

scientific publication.
• I understand that my participation will remain anonymous.
• I agree that my data can be shared with other researchers to answer possible other

research questions.

Appendix B.3. General Questions

What is the highest degree or level of school you have completed?

• No degree
• Elementary school
• High school
• MBO
• HBO
• Bachelor’s degree
• Master’s degree
• Doctorate degree

I am very knowledgeable on the subject of Artificial Intelligence (AI).

• 1—Strongly disagree
• 2—Disagree
• 3—Neutral
• 4—Agree
• 5—Strongly agree
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Appendix C. All Geometric Features

The complete set of geometric features, which are based on the landmarks visualized
in Figure A1, as used in the DNN models is displayed in Table A2. These features were
extended from [14].

Table A2. The full geometric feature set. * indicates the feature was added here and not used in the
original paper. Distance based features are normalized by face height. Landmark numbers can also
be found in Figure A1.

Feature # Description Landmarks Feature Type

1 Eye aspect ratio (L) [19, 24] Distance
2 Eye aspect ratio (R) [25, 30] Distance
3 Mouth aspect ratio [31, 34, 37, 40] Distance
4 Upper lip angle (L) [31, 34] Angle
5 Upper lip angle (R) [34, 37] Angle
6 Nose tip—mouth corner angle (L) [16, 31] Angle
7 Nose tip—mouth corner angle (R) [16, 37] Angle
8 Lower lip angle (L) [31, 41] Angle
9 Lower lip angle (R) [37, 39] Angle
10 Eyebrow slope (L) [0, 4] Angle
11 Eyebrow slope (R) [5, 9] Angle
12 Lower eye outer angles (L) [19, 24] Angle
13 Lower eye inner angles (L) [22, 23] Angle
14 Lower eye outer angles (R) [28, 29] Angle
15 Lower eye inner angles (R) [25, 30] Angle
16 Mouthe corner—mouth bottom angle (L) [31, 40] Angle
17 Mouth corner—mouth bottom angle (R) [37, 40] Angle
18 Upper mouth angles (L) [33, 40] Angle
19 Upper mouth angles (R) [35, 40] Angle
20 Curvature of lower-outer lips (L) [31, 41, 42] Curvature
21 Curvature of lower-outer lips (R) [37, 38, 39] Curvature
22 Curvature of lower-inner lips (L) [31, 40, 41] Curvature
23 Curvature of lower-inner lips (R) [37, 39, 40] Curvature
24 Bottom lip curvature [31, 37, 40] Curvature
25 Mouth opening/mouth width [43–48] Distance
26 Mouth up/down [34, 40, 44] Distance
27 Eye—middle eyebrow distance (L) [0, 4, 19, 22] Distance
28 Eye—middle eyebrow distance (R) [5, 9, 25, 28] Distance
29 Eye—inner eyebrow distance (L) [4, 19, 22] Distance
30 Eye—inner eyebrow distance (R) [5, 25, 28] Distance
31 Inner eye—eyebrow centre (L) [2, 22] Distance
32 Inner eye—eyebrow centre (R) [7, 25] Distance
33 Inner eye—mouth top distance (L) [22, 34] Distance
34 Inner eye—mouth top distance (R) [25, 34] Distance
35 Mouth width [31, 37] Distance
36 Mouth height [34, 40] Distance
37 Upper mouth height [34, 44, 47] Distance
38 Lower mouth height [40, 44, 47] Distance
39 Outer mid eyebrow slope (L) * [0, 2] Slope
40 Outer mid eyebrow slope (R) * [7, 9] Slope
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Figure A1. All landmarks with their corresponding numbers annotated. The numbers correspond to
the numbers in Table A2. Example image is AF01AFS from the KDEF dataset.
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