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Abstract: Graph algorithms that test adjacencies are usually implemented with an adjacency-matrix
representation because the adjacency test takes constant time with adjacency matrices, but it takes
linear time in the degree of the vertices with adjacency lists. In this article, we review the adjacency-
map representation, which supports adjacency tests in constant expected time, and we show that
graph algorithms run faster with adjacency maps than with adjacency lists by a small constant factor
if they do not test adjacencies and by one or two orders of magnitude if they perform adjacency tests.
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1. Introduction

Adjacency lists have been the preferred graph representation for over five decades now
because a large number of graph algorithms can be implemented to run in linear time in
the number of vertices and edges in the graph using an adjacency-list representation, while
no graph algorithm can be implemented to run in linear time using an adjacency-matrix
representation. The only exception to the latter is the sparse representation of static directed
graphs of [1], which uses (allocated, but uninitialized) quadratic space in the number of
vertices in the graph and allows for implementing graph algorithms that test edge existence,
such as finding a universal sink (a vertex of in-degree equal to the number of vertices minus
one and out-degree zero) in a directed graph ([2] [Ex. 22.1-6]), to run in linear time in the
number of vertices and edges in the graph.

Graph algorithms can be described using a small collection of abstract operations on
graphs, which can be implemented using appropriate data structures such as adjacency
matrices, adjacency lists, and adjacency maps. For example, the representation of graphs in
the LEDA library of efficient data structures and algorithms [3] supports about 120 abstract
operations, and the representation of graphs in the BGL library of graph algorithms [4]
supports about 50 abstract operations.

A smaller collection of 32 abstract operations is described in [5], which allows for
describing most graph algorithms. Actually, the following collection of only 11 abstract
operations suffices for describing most of the fundamental graph algorithms, where lists of
vertices and edges are arranged in the order fixed by the representation of the graph. Much
of the following is adapted from ([5] [Section 1.3]).

e G.vertices() gives a list of the vertices of graph G.

e G.edges() gives a list of the edges of graph G.

*  G.incoming(v) gives a list of the edges of graph G coming into vertex v.

e G.outgoing(v) gives a list of the edges of graph G going out of vertex v.

*  Gudjacent(v, w) is true if there is an edge in graph G going out of vertex v and coming
into vertex w, and false otherwise.

e G.source(e) gives the source vertex of edge e in graph G.

e G.target(e) gives the target vertex of edge e in graph G.

e G.new_vertex() inserts a new vertex in graph G.
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*  G.new_edge(v, w) inserts a new edge in graph G going out of vertex v and coming into
vertex w.

e G.del_vertex(v) deletes vertex v from graph G, together with all those edges going out
of or coming into vertex v.

e G.del_edge(e) deletes edge e from graph G.

These abstract operations apply to both undirected and directed graphs. An undirected
graph is the particular case of a directed graph in which for every edge (v, w) of the graph,
the reversed edge (w,v) also belongs to the graph. For example, a simple traversal of
an undirected graph G, in which vertices and edges are visited in the order fixed by the
representation of the graph, can be described using these abstract operations as shown in
Algorithm 1.

Algorithm 1 Simple traversal of an undirected graph G.

for all v € G.vertices() do
for all e € G.outgoing(v) do
w = G.target(e)

Essentially, the adjacency list representation of a graph is an array of lists, one for
each vertex in the graph, where the list corresponding to a given vertex contains the target
vertices of the edges coming out of the given vertex. However, this is often extended by
making edges explicit, as follows:

Definition 1. Let G = (V,E) be a graph with n vertices and m edges. The adjacency list
representation of G consists of a list of n elements (the vertices of the graph), a list of m elements
(the edges of the graph), and two lists of n lists of a total of m elements (the edges of the graph). The
incoming list corresponding to vertex v contains all edges (u,v) € E coming into vertex v, for all
vertices v € V. The outgoing list corresponding to vertex v contains all edges (v, w) € E going out
of vertex v, for all vertices v € V. The source vertex v and the target vertex w are associated with
each edge (v, w) € E.

The adjacency list representation of a directed graph is illustrated in Figure 1. The
small collection of 11 abstract operations can be implemented using the adjacency list
representation to take O(1) time, with the exception of G.adjacent(v, w), which takes
O(min(outdeg(v),indeg(w))) time, and G.del_node(v), which takes O(deg(v)) time,
as follows:

e G.vertices() and G.edges() are respectively the list of vertices and the list of edges of
graph G.

e G.incoming(v) and G.outgoing(v) are respectively the list of edges coming into vertex
v and the list of edges going out of vertex v.

*  G.djacent(v, w) is implemented by scanning the list of edges going out of vertex v, or
the list of edges coming into vertex w.

e G.source(e) and G.target(e) are respectively the source and the target vertex associated
with edge e.

e G.new_vertex() is implemented by appending a new vertex v to the list of vertices of
graph G, and returning vertex v.

*  G.new_edge(v, w) is implemented by appending a new edge e to the list of edges of
graph G, setting to v the source vertex associated with edge e, setting to w the target
vertex associated with edge e, appending e to the list of edges going out of vertex v
and to the list of edges coming into vertex w, and returning edge e.

e G.del_vertex(v) is implemented by performing G.del_edge(e) for each edge e in the list
of edges coming into vertex v and for each edge ¢ in the list of edges going out of
vertex v, and then deleting vertex v from the list of vertices of graph G.
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e G.del_edge(e) is implemented by deleting edge e from the list of edges of graph G,
from the list of edges coming into vertex G.target(e), and from the list of edges going
out of vertex G.source(e).
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Figure 1. Adjacency list (top left) and adjacency map (bottom) representation of a directed graph
(top right). Source and target vertices of each edge not shown.

The adjacency list representation of a graph G = (V, E) with n vertices and m edges
takes O(n 4 m) space, and it allows for implementing graph algorithms such as depth-first
search, biconnectivity, acyclicity, planarity testing, topological sorting, and many others to
take O(n + m) time [6,7].

In the adjacency list representation of a graph, edges can also be made explicit by
replacing the lists of incoming and outgoing edges with dictionaries of source vertices to
incoming edges and target vertices to outgoing edges. This allows for a more efficient
adjacency test, although adding a logarithmic factor to the cost to all of the operations
(when dictionaries are implemented using balanced trees) or turning the worst-case cost for
all of the operations into expected cost (when dictionaries are implemented using hashing).

Such a representation was advocated in [5,8], and adopted as the default graph
representation in the NetworkX package for network analysis in Python [9]. Essentially,
the adjacency map representation of a graph consists of a dictionary D of vertices to a pair
of dictionaries of vertices to edges: a first dictionary I of source vertices to incoming edges,
and a second dictionary O of target vertices to outgoing edges.

Definition 2. Let G = (V,E) be a graph with n vertices and m edges. The adjacency map
representation of G consists of a dictionary of n elements (the vertices of the graph) to a pair of
dictionaries of m elements (the source and target vertices for the edges of the graph, respectively).
The incoming dictionary corresponding to vertex v contains the mappings (u, (u,v)) for all edges
(u,v) € E coming into vertex v, for all vertices v € V. The outgoing dictionary corresponding to
vertex v contains the mappings (v, (v, w)) for all edges (v, w) € E going out of vertex v, for all
verticesv € V.

The adjacency map representation of a directed graph is also illustrated in Figure 1.
The small collection of 11 abstract operations can also be implemented using the adjacency
map representation to take O(1) expected time, with the exception of G.del_vertex(v), which
takes O(deg(v)) expected time, as follows:

e G.vertices() are the keys in dictionary D.
e G.edges() are the values D[v].O[w] for all keys v in dictionary D and for all keys w in
dictionary D[v].O.
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e G.incoming(v) are the values D[v].I[u] for all keys u in dictionary D[v].I.

*  G.outgoing(v) are the values D[v].O[w] for all keys w in dictionary D|[v].O.

e Gudjacent(v, w) is true if (w,e) € D[v].0, where e = D[v].O[w], and false otherwise.

e G.source(e) is the source vertex associated with edge e.

e G.target(e) is the target vertex associated with edge e.

e G.new_vertex() is implemented by inserting an entry in dictionary D, with the key as a
new vertex v and value a pair of empty dictionaries D[v].I and D[v].O, and returning
vertex v.

e G.new_edge(v, w) is implemented by setting to v the source vertex associated with a
new edge ¢, setting to w the target vertex associated with edge ¢, inserting an entry in
dictionary D[v].O with key w and value e, inserting an entry in dictionary D[w].] with
key v and value ¢, and returning edge e.

e G.del_vertex(v) is implemented by performing G.del_edge(e) for each entry with key u
and value e in dictionary D[v].I and for each entry with key w and value e in dictionary
D[v].0, and then deleting the entry with key v from dictionary D.

e G.del_edge(e) is implemented by deleting the entry with key w from dictionary D[v].0
and deleting the entry with key v from dictionary D[w].I, where v = G.source(e) and
w = G.target(e).

Similar to the adjacency list representation, the adjacency map representation of a
graph G = (V, E) with n vertices and m edges also takes O(n + m) space. In addition to
the low space requirement, the main advantage of the adjacency map representation is the
support of the adjacency test in O(1) expected time, when dictionaries are implemented
using hashing.

In this article, we compare the performance of three graph algorithms on a large
benchmark dataset of random directed graphs, when implemented with an adjacency-list
and an adjacency-map representation, and we show that they run faster on the average
with adjacency maps than with adjacency lists.

2. Materials and Methods
We have implemented 9 of the 11 abstract operations on graphs in Python, namely

e G.vertices()

*  G.edges()

e G.incoming(v)

e G.outgoing(v)

e G.adjacent(v, w)
e G.source(e)

e G.target(e)

e G.new_vertex()

e G.new_edge(v, w)

for both the adjacency list and the adjacency map representation, and for labeled vertices
and edges. Figure 2 shows the corresponding classes in detail.

For the benchmark dataset, we have used random directed graphs with n = 8,16, 32, 64,
128,256 verticesand m = 1, ...,n(n — 1) directed edges. These 86,856 directed graphs were
generated using the Erd6s—Rényi model, by which all (directed) graphs with n vertices
and m (directed) edges have the same probability [10,11], as implemented in the NetworkX
package for network analysis in Python [9].



Algorithms 2022, 15, 67

50f 10

class Graph:

class Vertex:

def __init__(self ,x=None):
self._Ibl = x

self._I = list()

self._ O = list()

class Edge:

def __init__(self ,v,w,x=None):
self._src = v

self . _tgt =w

self._1bl = x

def __init__(self):
self._V = list()
self ._E = list ()
def vertices(self):
return self._V

def edges(self):
return self._E

def incoming(self ,v):
return iter(v._I)

def outgoing(self ,v):
return iter(v._O)

def adjacent(self ,v,w):
if len(v. O) < len(w._I):
return w in

[e._tgt for e in v._O]
else:

return v in

[e._src for e in w._I]
def source(self ,e):
return e._src

def target(self ,e):
return e._tgt

def new_vertex(self ,x=None):
v = self.Vertex(x)

self ._V.append(v)

return v

def new_edge(self ,v,w,x=None):

e = self .Edge(v, w, x)
self . _E.append(e)
v._O.append(e)

w. _I.append(e)

return e

class Graph:

class Vertex:

def __init__(self ,x=None):
self. _1bl = x

def __hash__(self):

return hash(id(self))

class Edge:

def __init__(self ,v,w,x=None):
self._src = v

self . _tgt =w

self._1bl = x

def __hash__(self):

return hash((id(self._src),
id(self._tgt)))

def __init__(self):

self. D = dict()

def vertices(self):

return iter(self._D.keys())

def edges(self):

return iter ([self. D[v]._O[w]

for v in self. D

for w in self._D[v]._O])

def incoming(self ,v):

return iter(self._D[v]._I.values())
def outgoing(self ,v):

return iter(self._D[v]._O.values())
def adjacent(self ,v,w):

if len(self._D[v]._O)

< len(self. D[w]._I):

return w in self. D[v]._O

else:

return v in self. D[w]._I

def source(self ,e):

return e._src

def target(self ,e):

return e._tgt

def new_vertex(self ,x=None):

v = self.Vertex(x)

self. D[v] = type(’’, (), {})
self . D[v]._I = dict()

self. D[v]._ O = dict()

return v

def new_edge(self ,v,w,x=None):
e = self .Edge(v, w, x)

self. D[v]._O[w] e

self. D[w]._I[v] e
return e

Figure 2. Python implementation of the adjacency list (left) and adjacency map (right) representation

of a directed graph.

In order to compare the performance of the adjacency-list and the adjacency-map
representation, we have chosen three graph algorithms:

A simple algorithm for constructing a graph from a list of edges, thereby testing the
performance of the abstract operations for adding new vertices and edges to a graph.
An iterative algorithm for the breadth-first traversal of a graph ([5] [Section 5.2]),
thereby testing the performance of the abstract operations for iterating over the vertices

and edges of the graph.

An algorithm for finding a universal sink of a directed graph ([2] [Ex. 22.1-6]), thereby
testing the performance of the adjacency-test abstract operation.
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The universal sink algorithm, adapted from [1], is shown in Algorithm 2. The first
loop, which breaks at the first iteration, is used to set an initial candidate for the universal
sink to the first vertex in the order fixed by the representation of the graph (actually, any
vertex of the graph would suffice). The second loop is used to discard all but one of the
vertices in the graph as candidates for universal sink. The third loop is used to check if the
remaining candidate vertex indeed has in-degree equal to the number of vertices of the
graph minus one and out-degree zero.

Algorithm 2 Finding a universal sink in a directed graph G = (V, E) with |V| > 2.

function universal_sink(G)
for all v € vertices(G) do
break
for all w € vertices(G) do
if v # w and G.adjacent(v, w) then
v=w
for all w € vertices(G) do
if G.adjacent(v, w) or (v # w and not G.adjacent(w,v)) then
return false
return true

Assuming the adjacency test takes O(1) time, the graph construction algorithm, the
breadth-first graph traversal algorithm, and the universal sink algorithm all take O(n + m)
time, on a graph with n vertices and m directed edges.

3. Results

We have implemented the simple graph construction algorithm and the universal
sink algorithm in Python, taken the Python implementation of the breadth-first graph
traversal algorithm from ([5] [Appendix A]), and run the algorithms for graph construction,
breadth-first traversal, and universal sink on the 86,856 random directed graphs in the
benchmark dataset. Table 1 shows the average running time of each of the three algorithms
with the adjacency-list and the adjacency-map representation, over n(n — 1) = 56, 240,
992, 4032, 16,256, 65,280 random directed graphs with n = 8,16, 32, 64,128,256 vertices,
respectively, on a computer with a 12-core Intel Xeon processor and 64 GB of memory.

Table 1. Number of vertices (1) for the benchmark graphs, and average running times for graph
construction (Construct), breadth-first traversal (Traversal), and universal sink (Sink) for both the
adjacency-list (List) and the adjacency-map (Map) representation. All running times are in seconds.

Construct Traversal Sink

n List Map List Map List Map

8 0.000098 0.000411 0.000049 0.000038 0.000014 0.000027
16 0.000282 0.001071 0.000114 0.000086 0.000020 0.000031
32 0.000822 0.002202 0.000321 0.000239 0.000052 0.000059
64 0.003640 0.008158 0.001079 0.000788 0.000161 0.000110
128 0.015521 0.031588 0.004194 0.003021 0.000659 0.000220
256 0.085243 0.144632 0.016632 0.012799 0.004290 0.000450

The ratio of these average running times (adjacency maps over adjacency lists) for the
three graph algorithms are plotted in Figure 3. Graph construction is about 4 times slower
with adjacency maps for graphs with at most 16 vertices, but only about 2 times slower
for graphs with at least 128 vertices. On the other hand, breadth-first graph traversal and
the universal sink algorithm run faster with adjacency maps for all graph sizes in the case
of graph traversal and for graphs with at least 64 vertices in the case of universal sink on
the average.
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Average Running Time Ratio

4.5 T T T I
Construct —e—
9 Traversal —@—
4 Sink

Map vs List

[ ]

®
[ ]

0 I I I I
8 16 32 64 128 256

Number of vertices

Figure 3. Ratio of the average running time with the adjacency-map over the adjacency-list represen-
tation, for the graph construction (violet), breadth-first traversal (green), and universal sink (cyan)
algorithms, on random directed graphs with n = 8,16, 32, 64,128,256 vertices and 1,...,n(n — 1)
directed edges.

These running times are shown in more detail in Figure 4, where instead of average
running times, individual running times are plotted for each of the random directed graphs
in the benchmark dataset. Graph construction is almost always slower with adjacency
maps for graphs with 8, 16, or 32 vertices, but it is faster with adjacency maps for 170 of the
4032 graphs with 64 vertices, 2870 of the 16,256 graphs with 128 vertices, and 3599 of the
65,280 graphs with 256 vertices in the benchmark dataset.

Breadth-first graph traversal is almost always faster with adjacency maps: for all the
56 graphs with 8 vertices, 239 of the 240 graphs with 16 vertices, 989 of the 992 graphs
with 32 vertices, 4022 of the 4032 graphs with 64 vertices, 16,247 of the 16,256 graphs with
128 vertices, and 65,266 of the 65,280 graphs with 256 vertices in the benchmark dataset.
The universal sink algorithm is always slower with adjacency maps for graphs with 8 or
16 vertices, but it is faster with adjacency maps for 394 of the 992 graphs with 32 vertices,
2828 of the 4032 graphs with 64 vertices, 13,839 of the 16,256 graphs with 128 vertices, and
60,582 of the 65,280 of the graphs with 256 vertices in the benchmark dataset.
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Figure 4. Running time (seconds) for the graph construction (left), breadth-first traversal (center),
and universal sink (right) algorithms on the benchmark dataset, for the adjacency-list (violet)
and adjacency-map (green) representation, on random directed graphs with (top to bottom)

n = 8,16,32,64,128,256 vertices and 1, ..., n(n — 1) directed edges.
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4. Discussion

We have implemented three graph algorithms (graph construction, breadth-first graph
traversal, and universal sink) using a small collection of abstract operations, with both the
adjacency-list and the adjacency-map representation, and run them upon a benchmark
dataset of random directed graphs with n = 8,16, 32,64, 128, 256 vertices and a number
of directed edges ranging from m = 1 to the maximum possible number m = n(n — 1) of
directed edges. The abstract operations take O(1) worst-case time with the adjacency-list
representation and O(1) expected time with the adjacency-map representation, with the
only exception of the adjacency test, which takes worst-case linear time in the degree of
the vertices with the adjacency-list representation. With the adjacency-map representation,
the abstract operations used in the algorithm for graph construction require dictionary
lookup and update, and the abstract operations used in the algorithms for breadth-first
graph traversal and for finding a universal sink require dictionary lookup, iteration over
dictionary keys, and iteration over dictionary values.

The experimental results show that graph construction is slower (by a small constant
factor) with adjacency maps than with adjacency lists. This can be explained by the
O(1) amortized running time of the underlying update operations on dynamic lists and
dictionaries. Adding a new vertex to a graph involves one list-append operation with
adjacency lists, and one insertion in a dictionary and the creation of two new dictionaries
with adjacency maps, while adding a new edge to a graph involves three list-append
operations with adjacency lists and two insertions in a dictionary with adjacency maps.
Nevertheless, extending the adjacency-map representation with an operation to build a
graph from a list of edges, instead of adding vertices and edges one-by-one to an initially
empty graph, might result in a faster graph construction algorithm.

Experimental results also show that graph algorithms that do not test adjacencies
(breadth-first graph traversal) run faster (by a small constant factor) with adjacency maps
than with adjacency lists, and graph algorithms that test adjacencies (universal sink) run
much faster (by one or two orders of magnitude) with adjacency maps than with adjacency
lists. These results further reinforce the choice of the adjacency-map representation over
the adjacency-list representation in recent textbooks [5,8] and software libraries [9].

While the experimental results were obtained with a Python implementation of the
algorithms and graph data structures, adjacency maps can be easily implemented in any
modern programming language, as they only need dictionaries as the underlying data
structures. However, it is possible that the differences in running time between adjacency
lists and adjacency maps become smaller with compiled programming languages once
the overhead of compiling the source code into bytecode by the Python interpreter is
removed. The influence of the programming language in the efficiency of the adjacency-
map representation is an open line of future research.
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