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Abstract: Decision support systems with machine learning can help organizations improve operations
and lower costs with more precision and efficiency. This work presents a review of state-of-the-art
machine learning algorithms for binary classification and makes a comparison of the related metrics
between them with their application to a public diabetes and human resource datasets. The two
mainly used categories that allow the learning process without requiring explicit programming are
supervised and unsupervised learning. For that, we use Scikit-learn, the free software machine
learning library for Python language. The best-performing algorithm was Random Forest for su-
pervised learning, while in unsupervised clustering techniques, Balanced Iterative Reducing and
Clustering Using Hierarchies and Spectral Clustering algorithms presented the best results. The
experimental evaluation shows that the application of unsupervised clustering algorithms does not
translate into better results than with supervised algorithms. However, the application of unsuper-
vised clustering algorithms, as the preprocessing of the supervised techniques, can translate into a
boost of performance.

Keywords: machine learning; decision support systems; big data; clustering; healthcare; human
resources; preprocessing

1. Introduction

Decision support systems (DSSs) are well-established types of information systems
with the primary purpose of improving decision making based on data and analysis. They
analyze massive amounts of data through the comprehensive compilation of information to
solve problems and support decision making. With this information, the system produces
reports that may project revenue, sales, or manage inventory. These systems are very
important for many different industries, from healthcare to agriculture. A medical clinician
using a computerized decision support system which combines the clinician inputs and
previous electronic health records can assist in diagnosing and prescribing the patient.

Healthcare is one of the fastest growing sectors and is currently in the middle of a
global overhaul and transformation. Global healthcare costs, currently estimated between
USD 6 trillion and USD 7 trillion, are projected to reach more than USD 12 trillion in 2024 [1].
Regarding this rapid growth in costs, measures need to be taken in order to ensure that
healthcare costs do not further spin out of control. Machine learning has been identified
as having major technological applications in the healthcare realm, where it will probably
never completely replace physicians but will certainly transform the healthcare sector,
benefiting both patients and providers.

Machine learning is a subfield of artificial intelligence that gives computers the ability
to learn. It focuses on the use of data and algorithms to imitate the way in which humans
learn [2]. The process of learning starts with data observation with examples, direct
experience or instruction, so it can look for patterns in the provided data to support
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decisions in the future. The goal is to allow computers to learn automatically without
human intervention and automatically adjust actions accordingly [3].

Machine learning algorithms are often categorized as either supervised and unsu-
pervised. Supervised machine learning algorithms learn from labeled examples so new
data can be predicted. The learning algorithm compares the output with the correct result,
finding errors in order to modify the model accordingly. Unsupervised machine learning
algorithms are characterized as systems that do not know the right output but explore the
data and draw inferences from datasets to describe hidden structures from unlabeled data.

Clustering is considered to be the most important technique of unsupervised learn-
ing [4]. The definition of a cluster might be seen as a collection of data objects which
are similar to one another within the same group and are different from the objects in
other clusters. Clustering can work as a standalone tool to derive insights about the data
distribution or as a preprocessing step in other algorithms.

Most works in the industry apply supervised machine learning techniques as they are
more prone to using such techniques and can be clearly compared with unsupervised learn-
ing whilst supervised learning provides more relevant results; hence, artificial applications
in the industry most often use supervised learning [5].

A recent study [6] showed that the most frequently used algorithms for prediction
were Support Vector Machine followed by Naïve Bayes. However, the Random Forest
algorithm presented superior accuracy. All of them are supervised machine learning
techniques [6]. Another study [7], for cancer diagnosis, used supervised machine learning
techniques, where the Support Vector Machine achieved maximum accuracy. Another
study [8] on postpartum depression used six supervised machine learning algorithms,
namely Logistic Regression, Support Vector Machine, Decision Tree, Naïve Bayes, Extreme
Gradient Boosting (XGBoost) and Random Forest. As a result, the Support Vector Machine
model was the best-performing model.

In this paper, we applied several machine learning techniques, both supervised and
unsupervised, namely Logistic Regression, Support Vector Machine, Decision Tree, K-
Nearest Neighbors (KNN), Naïve Bayes and Random Forest as supervised techniques and
K-Means, Spectral Clustering, Mean Shift, Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) and Balanced Iterative Reducing and Clustering Using Hierarchies
(BIRCH) as unsupervised clustering techniques to a diabetes and human resource datasets.
We also applied unsupervised clustering algorithms such as K-Means and BIRCH for
preprocessing supervised techniques, namely Logistic Regression, Decision Tree and Naïve
Bayes. For the implementation of these algorithms, we used the Scikit-learn library, the free
software machine learning library for the Python programming language.

Our results showed the best performance for supervised techniques against unsuper-
vised techniques. The best-performing algorithms were Random Forest, as the supervised
technique, and BIRCH and Spectral Clustering, as the unsupervised techniques. The use of
clustering unsupervised techniques, such as K-Means and BIRCH, for the preprocessing of
supervised techniques, namely Logistic Regression, Decision Tree and Naïve Bayes, may
result in a boost of performance.

The main contributions of this paper are the following:

1. A succinct survey of supervised and unsupervised clustering machine learning techniques;
2. The presentation of the best-performing supervised and unsupervised clustering

machine learning techniques applied to healthcare and human resource datasets for
binary classification;

3. The application of unsupervised clustering algorithms for preprocessing the super-
vised techniques.

The rest of this paper is organized as follows. Section 2 describes the related work on
supervised and preprocessing clustering techniques and Section 3 surveys the machine
learning algorithms and techniques used in the experiments. Section 4 presents the method-
ology, detailing the characteristics of the datasets and the evaluation metrics that were
used for the performance assessment. Section 5 presents the experimental evaluation and
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Section 6 discusses the main findings. Finally, Section 7 presents the main conclusions and
future work.

2. Related Work

This section is divided into two parts. The first part presents related research papers
on decision support systems (DSSs) using supervised techniques. The second part presents
related research papers using preprocessing clustering techniques.

2.1. Supervised Techniques

Regarding DSSs using supervised techniques, in [9], the authors presented a work that
showed a compilation of machine learning algorithms used in the healthcare sector and
their accuracy for different diseases. The contribution of these authors is that for a specific
disease, there was a study conducted in the available literature that took the best algorithms
with the top performance, and a survey which was made to allow saving research time
while gathering all this information in one single paper. The best-performing algorithms
for different datasets varied from Logistic Regression, Decision Tree, Support Vector Ma-
chine, Random Forest, Naïve Bayes, Artificial Neural Network and K-Nearest Neighbor.
Nevertheless, the work compares supervised algorithms but for different datasets which
may impact the conclusions, because the best algorithm may depend on the characteristics
of the dataset, the size and its features, among other particularities.

The work in [6] presents a study that provides a wide overview of the relative per-
formance of different variants of supervised machine learning algorithms for disease
prediction. The authors remarked that the information of the relative performance can
be used to aid researchers in the selection of an appropriate supervised machine learning
algorithm for their studies. It was found that the Support Vector Machine algorithm is the
most frequently applied, followed by Naïve Bayes. However, the Random Forest algorithm
showed a superior accuracy followed by the Support Vector Machine. The research study,
in addition to comparing different supervised machine learning models, does not consider
variants from each algorithm, and only a comparison between the different algorithms is
made but it does not consider the hyperparameters or their tuning, which obviously has an
impact on the performance results.

In [7], the authors studied three supervised machine learning techniques for cancer
diagnosis using the descriptions from breast masses. The work explored the use of av-
eraging and voting ensembles to improve predictive performance. The study aimed to
demonstrate that the principals can be readily applied to other complex tasks including
natural language processing and image recognition. Maximum accuracy and the area under
the curve (AUC) were achieved using the Support Vector Machine algorithm, wherein the
prediction performance increased marginally when the algorithms were arranged into a
voting ensemble. The authors used a dataset which has a low number of instances and
features which show a lack of sparsity and high dimensionality, which are computationally
less demanding, but in another way, could lead to overfitting and do not generalize to other
test instances.

The work in [10] presents a case study related to mechanical ventilation, a life-saving
intervention which, when improperly delivered, can affect and injure the patient. The
decision support system presented promises to reduce risks by performing the per-breath
classification of five of the most widely used ventilation modes in the United States of
America using the high-performance supervised machine learning model Random Forest,
while having to restrict the size of the training set and maintain model generalization.
The authors used almost the same size training and test datasets, which normally is not
recommended for creating a machine learning model. Additionally, as the ventilation
modes are so heterogeneous and can be difficult to identify, the dataset classification used
for training was captured by two clinicians by mere visualization, which can be erroneous
in its labeling. To conclude, the gathering of data was also confined to a single academic



Algorithms 2022, 15, 130 4 of 24

medical center and single ventilator type, which can be a limitation for a robust and reliable
machine learning model.

In [11], the authors presented a case study of people experiencing low back pain
evolving into a chronic condition, unless the patient receives the right interventions at the
right moment. The research was initiated with the design of the decision support system
using supervised machine learning with three classification models: Decision Tree, Random
Forest and Boosted Tree. This study showed promising results with the Boosted Tree model
and Decision Tree but must still be improved with the new collection of cases, classified
as self-care cases. One limitation of this study was that the cases in the training dataset
were fictitious cases on lower back pain collected during a vignette study with primary
healthcare professionals which can impact the performance of the model. Additionally, we
considered that the test dataset was excessively small, with only 38 real-life cases.

The work in [12] presented a case study for the diagnosis of periodontal disease,
which is a common infectious disease in humans that may cause cardiovascular disease
and complications of coronary heart disease. With the high prevalence of periodontal
disease, the prevention, identification and early treatment of periodontal disease have
become extremely important. This study, using the records of 300 patients, was performed
using the Support Vector Machine supervised algorithm and based on different kernel
functions using the cross-validation method, showing that the radial kernel function has the
best performance. Other similar studies regarding the same disease were conducted. For
example, one study of 150 periodontal patients showed that the Support Vector Machine
and Decision Tree have higher accuracy, while the Artificial Neural Network presented
the worst results. Another study of 30 patients described the use of the Artificial Neural
Network with a top precision rating. One constraint of this study was that a limited dataset
size was used, where more accurate results can be obtained if more data can be used.

In [13], the authors presented a case study of coronavirus disease 2019 (COVID-19),
the acute respiratory disease that has been classified as a pandemic by the World Health
Organization. It is crucial to identify the key factors for mortality prediction to optimize the
patient treatment strategy. The dataset, after preprocessing, consisted of 1766 datapoints
corresponding to 370 patients suspected of having COVID-19 from a Hospital in Wuhan.
The study proposed supervised machine learning methods, namely Neural Networks,
Logistic Regression, XGBoost, Random Forest, Support Vector Machine and Decision Tree,
based on blood tests to predict COVID-19, using a strong combination of five features.
The results showed that for feature importance and classification, XGBoost and Neural
Network, respectively, demonstrated the top performances. Other machine learning models
involving trees and regression algorithms performed the next best performance results.

The work in [14] presented a study to support clinicians and researchers in machine
learning approaches in the field of infection management. Supervised machine learning
techniques were used, including Logistic Regression in 18 studies, followed by Random
Forest, Support Vector Machine and Artificial Neural Networks in 18, 12 and 7 studies,
respectively. The best-performing techniques were Long Short-Term Memory Networks,
Artificial Neural Network, Logistic Regression, Support Vector Machine, Regression Tree
and Stochastic Gradient Boosting. Some limitations of this study included the fact that
the comparability of the different approaches per research area was limited and should be
interpreted with great caution. There is large heterogeneity between the identified studies,
namely in terms of predicted outcomes, the features used and the study size. Knowing that
the operations of cleaning and transforming, normally represents the majority percentage
of the entire work of applying a machine learning model to data, in 39% of the previous
carried studies there was no mention to this kind of operations.

In [8], the authors presented a study of postpartum depression, which is a depressive
episode that begins within one year from childbirth, interfering with the mother’s emotional
well-being but also associated with infant morbidity and poorer cognitive and behavioral
skills in children later in life. Electronic health records were obtained from two Hospitals
between 2015–2017 with 9980 episodes of pregnancy identified. Six supervised machine
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learning algorithms were used, including Logistic Regression, Support Vector Machine,
Decision Tree, Naïve Bayes, XGBoost and Random Forest. The Support Vector Machine
model was the best-performing model. Nevertheless, the use of multiple features from
the dataset can lead to a complex system wherein the most correlated features should be
chosen among the total set. Additionally, the method used for oversampling to handle an
imbalanced dataset may contribute to overfitting and impacting the model performance.

The work in [15] presented a study of the early prediction of asthma exacerbations,
which is the most common and costly chronic disease in United States. For the detection of
this disease, a prediction model was built using the Bayesian Classifier, Adaptative Bayesian
Network and Support Vector Machine supervised algorithms. The dataset consisted of
7001 records collected using a previously prescribed remote management from home
method, wherein patients used a laptop computer at home to fill in their asthma diary on a
daily basis. It was found that the dataset distribution is highly skewed, where the problem
was addressed by rearranging the dataset for three experiments: the first one with all the
data used for training and testing; the second one with stratified samples for both training
and testing; and the last one with a stratified sample for training all the remaining data
for testing. Then, the three predictive models were used, wherein predictive models were
trained on stratified samples, which yielded better results. Nevertheless, this study has
some limitations, namely the relatively small data sample, containing limited numbers of
cases of asthma exacerbations.

2.2. Preprocessing Clustering Techniques

Regarding research papers using preprocessing clustering techniques, the authors
in [16] proposed an evaluation method while using unsupervised clustering algorithms by
measuring the usefulness of the task under consideration. For that, they used two example
scenarios, among which one included the use of clustering as an automated pre-processing
step in a whole data-processing chain. The purpose of this was to improve the overall
performance of the system, which can be quantified by some problem-dependent score.
The clustering algorithm was just one more “parameter” that has to be tuned and this
tuning can be achieved in the same way as for all other parameters. What matters is not
the evaluation of the quality of the clustering and which meaningful groups it discovers,
but the usefulness of the clustering for achieving the final goal.

The work in [17] presented a study using stochastic gradient Markov Chain Monte
Carlo (SG-MCMC) and proposed a subsampling strategy to reduce the variance of apply-
ing naïve subsampling. For that, the authors partitioned the dataset with the K-Means
Clustering algorithm in a preprocessing step and used fixed clustering throughout the
entire MCMC simulation. In particular, the clustering procedure was performed on the
data samples only once before simulation, and during the sampling procedure, it was easier
to compute the new gradient estimator without having extra overhead.

In [18], the authors presented a study of an unsupervised clustering approach to
resolve the frequent data imbalance problem in supervised learning problems in functional
genomics. The study proposed preprocessing majority instances by partitioning them into
clusters using class purity maximization clustering, which greatly reduced the ambiguity
between minority instances and the instances in each cluster. For a moderately or highly
imbalanced ratio and low in-class complexity, this technique has a better prediction accuracy
than the under sampling method. For an extremely unbalanced ratio, this technique
demonstrates an almost perfect recall that reduces the amount of imbalance with significant
improvements over previous predictors.

The work in [19] presents a study on hydrological models wherein the dynamic char-
acteristics, such as seasonal dynamics, are revealed to be a model structural deficiency. The
authors proposed a clustering preprocessing framework for the calibration of hydrological
models to simulate seasonal dynamic behaviors. Two clustering operations were performed
based on the preprocessed climatic index and land-surface index systems. The obtained
results show that the performance of the model with a clustering preprocessing framework
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in the middle and low-flow conditions is significantly improved without reducing the
simulation accuracy for high flows.

From previous research papers, the application of the clustering preprocessing tech-
nique is used for subsampling, data imbalance, or model calibration. The specific appli-
cation to supervised algorithms is still uncommon to the best of our knowledge. This
work intends to highlight the importance of these unsupervised techniques. Mainly, the
use of clustering for preprocessing supervised algorithms may translate into a boost in
their performance.

3. Machine Learning Algorithms and Techniques

In this section, we survey the algorithms and techniques used for the diabetes and
human resource datasets. A brief conceptual explanation of both supervised and clustering
unsupervised techniques is presented.

3.1. Logistic Regression

Logistic Regression is a supervised algorithm that is often used for predictive analytics
and modeling to understand the relationship between a dependent variable and one or
more independent variables, wherein probabilities are estimated using a logistic regression
equation [20]. The dependent variable is finite or categorical, whereas for binary regression,
we have A or B options, and for multinomial regression, we have a range of finite options,
for example A, B, C or D. Examples that use this technique can be found in [8,9,13,14].

3.2. Support Vector Machine

Support Vector Machine is a supervised algorithm whose the purpose is to find a
hyperplane in an N-dimensional space with N as the number of features which distinctly
classifies the data points [21]. There are many possible hyperplanes that can separate the
two classes of data points, however, we want to maximize the distance between the data
points of the classes while having a plane that has a maximum margin. With this, future
data points can be classified with more confidence. Among related works, [6–9,13–15] are
examples that use this technique.

3.3. Decision Tree

Decision Tree is a supervised algorithm to categorize or make predictions on how a
previous set of questions were answered [22]. As the name says, it resembles a tree wherein
the base of the tree is the root node, from which we obtain a series of decision nodes that
depict the decisions to be made. From the decision nodes representing the question or
split point, we have leaf nodes which represent the consequences of those decisions or the
answers. Examples that use this technique can be found in [8,9,11–13].

3.4. Naïve Bayes

Naïve Bayes is a supervised algorithm based on the Bayes theorem as in Equation (1),
where we can find the probability of A happening, given that B has occurred [23].

Precision =
P(B|A)P(A)

P(B)
(1)

The assumption made is that the predictors or features are independent, meaning that
the presence of one particular feature does not affect the other. Even if there is dependency,
all these features still independently contribute to the probability; hence, it is called naïve.
Among related works, [6,8,9] are examples that use this technique.

3.5. Random Forest

Random Forest is a supervised algorithm which combines the output of multiple
decision trees to reach a single result [24]. It generates a random subset of features, which
ensures low correlation among decision trees. This is a key difference between decision
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trees and random forest. While decision trees consider all possible features splits, random
forest only select a subset of those features. Examples that use this technique can be found
in [6,8–11,13,14].

3.6. K-Nearest Neighbors (KNN)

KNN is a supervised algorithm which estimates the likelihood that a data point will
become a member of one group or another based on what group the data points nearest
to it belong to [25]. It is called a lazy learning algorithm because it does not perform any
training when we supply the training data, but simply stores them during the training time
and no calculations are made. KNN tries to determine what group a data point belongs
to by looking at the data points around it. In related work, [9] is an example that uses
this technique.

The algorithm performs a voting mechanism to determine the class of an unseen
observation where the class with the majority vote will become the class of the data point.
If the value of K is equal to one, then it will use only the nearest neighbor to determine the
class, and if the value of K is equal to ten, it will use the ten nearest neighbors.

3.7. K-Means

K-Means is a clustering unsupervised algorithm where the purpose is to group similar
data points together and discover underlying patterns whilst looking for a fixed number
(k) of clusters in the dataset [26]. A cluster is nothing more than a collection of data points
aggregated together because of certain similarities. We started to define a target number k
which is the number of centroids. A centroid is the imaginary or real location representing
the center of the cluster, and every data point is allocated to each of the clusters by reducing
the in-cluster sum of squares. In other words, it tries to keep the centroids as small as
possible. An example from the related work that uses this technique can be found in [17].

3.8. Spectral Clustering

Spectral Clustering is a clustering unsupervised algorithm which reduces complex
multidimensional datasets into clusters of similar data in rarer dimensions [27]. It makes
no assumptions about the form of the clusters. In contrast to the K-Means technique, which
assumes that the points assigned to a cluster are spherical about the cluster center, Spectral
Clustering helps to create more accurate clusters and can correctly cluster observations that
actually belong to the same cluster. However, these are farther off than observations in
other clusters due to the dimension reduction.

3.9. Mean Shift

Mean Shift is a clustering unsupervised algorithm whose purpose is to discover blobs
in a smooth density of samples [28]. It is a centroid-based algorithm that works by updating
candidates for centroids to be the mean of the points within a given region, also called
bandwidth. These candidates are then filtered in a post-processing stage to eliminate
near-duplicates to form the final set of centroids. In contrast to K-Means, there is no need
to choose the number of clusters.

3.10. DBSCAN

DBSCAN is a clustering unsupervised algorithm that groups together data points
that are close to each other based on a distance measurement and a minimum number
of points [29]. It also marks the data points that are in low-density regions as outliers.
Basically, this requires two parameters: the first one specifies how close data points should
be to each other to be considered part of the cluster; and the second parameter is to define
the minimum number of data points to form a dense region.
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3.11. BIRCH

BIRCH is a clustering unsupervised algorithm that uses hierarchical methods to
cluster and reduce data [30]. The algorithm only needs to scan the dataset in a single pass to
perform clustering and uses a tree structure to create a cluster which is generally called the
Clustering Feature Tree. Each node of the tree is composed of several clustering features.

BIRCH is often used to complement other clustering algorithms by creating a summary
of the dataset that the other clustering algorithm can now use [31]. It can only process the
metric attributes represented in Euclidean space, i.e., no categorical attributes should be
present. Categorical refers to attributes that generally take a limited number of possible
values that do not necessarily need to be numerical but can be textual in nature.

4. Materials and Methods

This section aims to provide the methodology, specifying the characteristics of the
datasets, the applied preprocessing steps and the evaluation metrics that were used for the
performance assessment.

4.1. Dataset and Preprocessing

We describe the diabetes and human resource datasets along with the preprocessing
operations before submitting to the algorithms. Note that the unsupervised clustering
algorithms applied for preprocessing the supervised algorithms were executed after the
following preprocessing operations for the datasets.

4.1.1. Diabetes Dataset

The type II diabetes disease dataset was originally from the National Institute of
Diabetes and Digestive and Kidney Diseases, and was obtained from [32]. In particular, all
the data refer to female patients that were at least 21 years old and of Pima heritage, which
are Native Americans who traditionally lived along the Gila and Salt rivers in Arizona in
the United States of America [33].

The dataset has 768 records, each one of which are for a single person with eight
features and a target label. The first feature, pregnancies, is the number of times that the
person was pregnant. The second feature, glucose, is the plasma glucose concentration in
their blood and the main indicator of diabetes. Diabetes is characterized by the difficulty or
inability of the pancreas to produce insulin, a hormone that transforms glucose from food.
The third feature, blood pressure, measured in units of millimeters of mercury (mmHg),
is the pressure in which blood circulates within the arteries which varies throughout
the day along normal values. The fourth feature, skin thickness, measured in mm, is
primarily determined by collagen content and is increased when having diabetes. The fifth
feature, insulin, measured in µIU/mL, is a hormone responsible for lowering blood glucose
by promoting the entry of glucose into cells. The sixth feature, body mass index (BMI),
measured in kg/m2, is used to know whether the weight matches the person’s height,
namely if the person is underweight, normal weight or above what would be expected for
their weight. The seventh feature, diabetes pedigree function, is a function that determines
the risk of type II diabetes based on family history. A bigger function indicates a greater
risk of type II diabetes. The eighth feature, age, is the age of the person. The outcome
target label is our target or class attribute, which is one or zero depending on whether the
person has been diagnosed with type II diabetes or not, respectively. The dataset contains
268 records of persons with diabetes type II and 500 records of persons who do not, as
shown in Figure 1.
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Figure 1. Total count of the outcome values when having (one) and not having (zero) diabetes type II.

The eight features of the dataset are of numeric type, among which the BMI and
diabetes pedigree function are of float type whilst all the others are of integer type. The
dataset does not have any duplicate values or null values, but values of zero on features
such as skin thickness, blood pressure, glucose, insulin and BMI might be considered as
missing values, because that value is not reasonable or valid. Figures 2 and 3 represent
the histogram graphs for the previous features, wherein the zero value is present and
considered not valid or a missing value.
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To address the missing values problem, at least two different approaches can be used:
the deletion of the instance or the imputation of a value. As the dataset only has 768 records,
the first approach would reduce the dataset even further, which is not desirable. The second
approach seems to be the most appropriate where the mean or the median can be used.
The disadvantage of using the mean is that it is biased by the values at the far end of
distribution, whereas in this case, the use of median is preferable, because it is a better
representation of the majority of the values in the feature.

Figures 4 and 5 show the box plots for the glucose, blood pressure, skin thickness, BMI
and insulin features, where the representation of outliers is present.
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For the box plot of the glucose and skin thickness features, there is one outlier, where
zeros have been replaced with the mean value. Blood pressure does not have many outliers,
hence zeros have been replaced with the mean value. On the other hand, BMI and insulin
have a large number of outliers; therefore, zeros have been replaced with the median for
more accurate results.

Figure 6 shows the description of the dataset, where different scales, between mini-
mum and maximum values, exist for the features.
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Usually, machine learning algorithms present some performance problems when the
input numerical attributes have different scales [34]. In order to address this problem, min–
max scaling can be used to rescale values to an interval of [0, 1]. For the diabetes disease
dataset, the min–max scaling was applied to the pregnancies, glucose, blood pressure, skin
thickness, insulin, BMI, diabetes pedigree function and age features.

4.1.2. Human Resource Dataset

The human resource dataset was obtained from [35] and refers to a company’s data
analytics for employee retention.

The dataset has 14,999 records, each one of which is for a single person and has nine
features and a target label. The first feature, satisfaction level, is the level of satisfaction of
an employee regarding their job. The second feature, last evaluation, is the rating between
0 and 1 received by an employee at his last evaluation. The third feature, number project,
is the number of projects that an employee is involved in. The fourth feature, average
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monthly hours, is the average number of hours in a month spent by an employee at the
office. The fifth feature, time spend company, is the number of years that an employee has
spent in the company. The sixth feature, work accident, is a binary value where zero means
that the employee had no accident during their stay and one means that the employee had
accident during their stay. The seventh feature, promotion last 5 years, is the number of
promotions during an employee’s stay. The eighth feature, department, is the department
that an employee belongs to. The ninth feature, salary, is the level of salary an employee
has, namely low, medium or high. The target label, left, is a binary value, wherein zero
indicates that the employee remains in the company and one indicates that the employee
left the company.

The dataset does not contain missing or null values but contains duplicate records.
The duplicates were eliminated, resulting in 10,000 records of employees remaining in the
company and 1991 records of employees leaving, as shown in Figure 7.
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The features satisfaction level and last evaluation of the dataset are of float continuous
numeric type. The features number project, average monthly hours and time spend
company are of integer numeric type, while the features work accident and promotion last
are of categorical numeric type and the department of the categorical type. The last feature
salary is of ordinal type.

In order to have inputs as numeric type for the algorithms, a conversion to numeric
was made for the feature department and salary. Figure 8 shows the description of the
dataset, wherein only the feature average monthly hours has a different scale from the
remaining feature, and min–max scaling was applied to this feature.
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4.2. Feature Selection

Before starting the process of feature selection, we created new features from the
available variables. The main goal was to create new features that might be more useful
to the prediction process where these new features are always created based on current
data. Less correlation with the target labels outcome and left means values near zero and
stronger correlations with values near 1 or −1.

After combining the features, we implemented feature selection to reduce the number
of input features when developing a predictive model because high dimensional data
contain features that are irrelevant or redundant for the algorithm’s performance. For
that, we used ANOVA, which is an acronym for analysis of variance and is a parametric
statistical hypothesis test for determining whether the means from two or more samples of
data come from the same distribution [36]. It can be used for feature selection when we have
numerical input data and a categorical target variable. This model does not consider which
classifier is going to be used but focuses on the relationship between features and the target,
which is the variable whose values are to be modeled and predicted by other variables.

4.2.1. Diabetes Dataset

Figure 9 shows the top ten combination of features after applying the ANOVA model
to the diabetes dataset.
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ANOVA model.

Only using the feature blood pressure would be not very useful, as blood pressure
per age would probably be more valuable for the prediction process. In Figure 9, we can
see that the raw feature blood pressure has a correlation of 0.166074 and the feature blood
pressure per age has a higher absolute correlation value of 0.225081.

All other combinations of features have less correlation with the label outcome than
the raw features, so for our machine learning algorithms, we used all the raw features and
the combination feature blood pressure per age as input variables.

4.2.2. Human Resource Dataset

In Figure 10, we can see the results of feature combination and the application of the
ANOVA model to the human resource dataset. The use of the new feature average monthly
hours per satisfaction level has more value for the prediction process than the raw feature
average monthly hours because it has a higher correlation with the label left, respectively,
0.396279 and 0.070409. The same applies to the new feature satisfaction level per time
spend company and average monthly hours per time spend company regarding the raw
feature satisfaction level and average monthly hours, respectively.
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the ANOVA model.

For our machine learning algorithms, we used the raw features time spend company,
average monthly hours, promotion last 5 years, salary, work accident and satisfaction
level, and the combination feature average monthly hours per satisfaction level, average
monthly hours per time spend company and satisfaction level per time spend company as
input variables.

4.3. Evaluation Metrics

The predictive performance of the supervised techniques was assessed by the met-
rics Accuracy in Equation (2), Precision in Equation (3), Recall in Equation (4), F1-Score in
Equation (5) and ROC-AUC-Score, where ROC stands for Receiver Characteristic Operator
and AUC for Area Under the Curve. TP, TN, FP and FN stand for true positive, true nega-
tive, false positive and false negative, respectively. A true positive is an outcome wherein
the model correctly predicts the positive class. Similarly, a true negative is an outcome
where the model correctly predicts the negative class. A false positive is an outcome where
the model incorrectly predicts the positive class. Similarly, a false negative is an outcome
wherein the model incorrectly predicts the negative class.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1−Score =
2× Recall × Precision

Recall + Precision
(5)

Regarding the ROC-AUC-Score, ROC is a probability curve and AUC represents the
degree or measure of separability. It expresses the extent to which the model is capable
of distinguishing between classes. A higher AUC is positively correlated with the better
performance of the model’s prediction of zero classes as zero and one classes as one.

For clustering unsupervised techniques, the predictive performance was assessed by
the metrics Silhouette Score, Homogeneity Score, Completeness Score, V Measure Score,
Adjusted Rand Score and Adjusted Mutual Info Score.

Silhouette Score, presented in Equation (6), is calculated using the mean intra-cluster
distance (a) and the mean nearest-cluster distance (b) for each sample. It has values between
−1 and 1, where the value 0 indicates overlapping clusters, and negative values indicate
that the instance was assigned to the wrong cluster and the best values as close as possible
to 1.

Silhouette =
(b− a)

max(a, b)
(6)

Homogeneity Score, shown in Equation (7), is useful to check whether the clustering
algorithm meets an important requirement: a cluster should only contain samples belonging
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to a single class. It has values between 0 and 1, where 1 means that there is a perfect
homogeneous classification.

Homogeneity = 1−
H
(

Ytrue

∣∣∣Ypred)

H(Ytrue)
(7)

Completeness Score, shown in Equation (8), has the purpose of checking whether all the
data points that are members of a given class are elements of the same cluster. This varies
between 0 and 1, where 1 means that all members of a class belong to the same cluster.

Completeness = 1−
H
(

Ypred

∣∣∣Ytrue)

H
(

Ypred

) (8)

V Measure Score, shown in Equation (9), is the harmonic mean between homogeneity
and completeness, varying between 0 and 1, with values of 1 meaning that there is a
perfect homogeneous and complete classification. Beta is the ratio of weight attributed to
homogeneity versus completeness.

V Measure =
(1 + beta) × homogeneity × completness

beta × homogeneity × completeness
(9)

Adjusted Rand Score, shown in Equation (10), is used to determine whether two cluster
results are similar to each other. In formula (10), RI stands for the Rand index, which
calculates the similarity between two cluster results by taking all the points identified
within the same cluster. It can have values between −1 and 1, where values close to 0 mean
a random classification and values closer to 1 mean the best classification.

Adjusted Rand Score =
RI − Expected_RI

max(RI)− Expected_RI
(10)

Adjusted Mutual Info Score, shown in Equation (11), is an adjustment of the Mutual
Information (MI) score to account for chance. It accounts for the fact that MI is generally
higher for two clusterings with a larger number of clusters regardless of whether there is
actually more information shared. U denotes label true and V denotes label pred. It varies
between −1 and 1, returning 1 when two partitions are identical or perfectly classified,
while random partitions correspond to values close to 0.

Adjusted Mutual In f o Score =
MI(U, V)− E(MI(U, V))

avg(H(U), H(V))− E(MI(U, V))
(11)

4.4. Training and Testing

We tested 12 different algorithms to compare the predictive performance of various
machine learning algorithms, as described in the following subsections. From the Scikit-
learn library in Python, between supervised and unsupervised clustering techniques, along
with the application of two unsupervised clustering algorithms (K-Means and BIRCH)
for preprocessing three supervised techniques (Decision Tree, Logistic Regression and
Naïve Bayes).

For all algorithms, three groups of the dataset were defined with training and testing
percentages of 80% and 20%, 75% and 25%, and 70% and 30%, respectively.

4.4.1. Logistic Regression, Decision Tree, Naïve Bayes

We used all the default parameters values of the supervised Logistic Regression,
Decision Tree and Naïve Bayes algorithms from the Scikit-learn library.
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4.4.2. Support Vector Machine

There are two variants of the supervised Support Vector Machine algorithm, linear and
non-linear, where the difference between them is the fact that the first can easily separate
data with a linear line, and the second cannot.

For the linear variant, default values from the Scikit-learn library were used except
for parameter C, which is a regularization parameter [37]. For large values of C, the
optimization will choose a smaller-margin hyperplane to obtain all of the correctly classified
training points. Conversely, a very small value of C will cause the optimizer to look for a
larger-margin separating hyperplane, even if that hyperplane misclassifies more points. C
parameter values of 0.1, 1 and 10 were defined.

For the non-linear variant, default values were used, except for parameters C, gamma
and kernel. The gamma parameter is used for non-linear hyperplanes, where higher values
mean that the algorithm will try to exactly fit the training data [37]. The kernel parameter is
a method used to take data as input and transform into the required form of processing data.
C and gamma parameter values of 0.1, 1 and 10 were defined, and the kernel parameter
values of ‘linear’ and radial basis function (‘rbf’).

4.4.3. Random Forest

We used default values of the supervised random forest algorithm from the Scikit-
learn library, except for the n_estimators, criterion and class_weight parameters. The
N_estimators parameter is the number of trees needed in the algorithm that depends on the
number of rows in the dataset. More rows means that more trees are needed [38]. The crite-
rion parameter is a function that measures the quality of a split in a tree. The class_weight
parameter allows to specify the weights of each class in the case of an imbalanced dataset.

In the experiments, the n_estimators parameter assumes values of 10, 40, 70 and
100. The criterion parameter has the values of ‘gini’ and ‘entropy’, and the class_weight
parameter values of ‘balanced’ and ‘balanced_subsample’.

4.4.4. K-Nearest Neighbors

We used the default values of the supervised clustering KNN algorithm from the
Scikit-learn library, except for the n_neighbors parameter. The n_neighbors value indicates
the count of nearest neighbors we want to select to predict the class of a given item [39].

The n_neighbors parameter was defined with integer values from 1 to 9.

4.4.5. K-Means

We used the default values for the K-Means unsupervised clustering algorithm from
the Scikit-learn library except for the n_clusters and n_init parameters. The n_clusters
parameter is the number of clusters to form as well as the number of centroids to generate,
while the n_init parameter is the number of times that the algorithm will be run with
different centroid seeds [40].

The n_clusters parameter was defined with integer values from to 2 to 5, and the n_init
parameter was defined with integer values from 1 to 4.

4.4.6. Spectral Clustering

We used the default values of the unsupervised clustering Spectral Clustering al-
gorithm from the Scikit-learn library, except for the n_clusters, n_init, gamma and as-
sign_labels parameters. The n_clusters and n_init parameters have the same definition
as from the K-Means algorithm, while the gamma parameter is the kernel coefficient and
assign_labels is the strategy for assigning labels in the embedding space. The assign_labels
parameter can take the values of ‘kmeans’ and ‘discretize’, where the first can be sensitive
to initialization and the second is less sensitive to random initialization [41].

The n_clusters parameter was defined with values of 2 and 3, n_init parameter was
defined with values of 1 and 2, gamma parameter was defined with values of 0.01, 0.1 and
1, and assign_labels parameter was defined with values of ‘kmeans’ and ‘discretize’.
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4.4.7. Mean Shift

For the unsupervised clustering Mean Shift algorithm, we used the default values
from the Scikit-learn library, except for the bandwidth parameter which makes the Kernel
Density Estimation (KDE) differ across different sizes. A small kernel bandwidth makes
the KDE surface hold the peak for every data point, stating that each point has its cluster;
on the other hand, a large kernel bandwidth results in fewer kernels of fewer clusters [42].

The bandwidth parameter was defined with integer values from 2 to 5.

4.4.8. DBSCAN

For the unsupervised clustering DBSCAN algorithm, we used the default values
from the Scikit-learn library except for the eps and min_samples parameters. The eps
parameter is the maximum distance between two samples for one to be considered as in
the neighborhood of the other, while the min_samples parameter is the number of samples
in a neighborhood for a point to be considered as a core point [43].

The eps parameter was defined with real values from 0.5 to 4 and min_samples
parameter integer was defined with real values from 1 to 4.

4.4.9. BIRCH

For the unsupervised clustering BIRCH algorithm, we used the default values from the
Scikit-learn library, except for the threshold, branching_factor and n_clusters parameters.
For the threshold parameter, the radius of the subcluster obtained by merging a new
sample and the closest subcluster should be lesser that the threshold, otherwise, a new
subcluster is started. For the branching_factor parameter, if a new sample enters such that
the number of subclusters exceeds the branching factor, then that node is removed and two
new subclusters are added as the parents of the two split nodes. The n_clusters parameter
is the number of clusters after the final clustering step which handles the subclusters from
the leaves as new samples [44].

The threshold parameter was defined with values of 0.1, 2 and 5, branching_factor
parameter was defined with values of 20, 40 and 60 and n_clusters parameter was defined
with values from 1 to 3.

5. Experimental Evaluation

In this section, we present the results obtained by applying the machine learning
algorithms to the two datasets, following the approach described in the previous section.
The Python source code used in the experiments is freely available at: https://github.com/
hfilipesilva/ml-algorithms (accessed on 7 April 2022).

5.1. Diabetes Dataset

Figure 11 shows the best results of supervised algorithms for Accuracy, Precision, Recall,
F1-Score and ROC-AUC-Score metrics, applied to diabetes test dataset.

The Random Forest algorithm obtained the best performance results in all metrics,
with Accuracy of 83.8%, Precision of 73.9%, Recall of 72.3%, F1-Score of 73.1% and ROC-AUC-
Score of 80.6%. On the other hand, the Decision Tree algorithm presented the worst results
for the metrics Accuracy of 73.6%, F1-Score of 59.6% and ROC-AUC-Score of 70.2%. The
Naïve Bayes algorithm presented the worst result for Precision of 57.1%, while the Logistic
Regression and KNN had the worst result for Recall with a value of 53.2%.

https://github.com/hfilipesilva/ml-algorithms
https://github.com/hfilipesilva/ml-algorithms


Algorithms 2022, 15, 130 17 of 24

Algorithms 2022, 14, x FOR PEER REVIEW 17 of 24 
 

The Python source code used in the experiments is freely available at: 
https://github.com/hfilipesilva/ml-algorithms (accessed on 7 April 2022). 

5.1. Diabetes Dataset 
Figure 11 shows the best results of supervised algorithms for Accuracy, Precision, Re-

call, F1-Score and ROC-AUC-Score metrics, applied to diabetes test dataset. 

 
Figure 11. Accuracy, Precision, Recall, F1-Score and ROC-AUC-Score for supervised algorithms on the 
diabetes test dataset. 

The Random Forest algorithm obtained the best performance results in all metrics, 
with Accuracy of 83.8%, Precision of 73.9%, Recall of 72.3%, F1-Score of 73.1% and ROC-
AUC-Score of 80.6%. On the other hand, the Decision Tree algorithm presented the worst 
results for the metrics Accuracy of 73.6%, F1-Score of 59.6% and ROC-AUC-Score of 70.2%. 
The Naïve Bayes algorithm presented the worst result for Precision of 57.1%, while the 
Logistic Regression and KNN had the worst result for Recall with a value of 53.2%. 

Figure 12 presents the results of the Silhouette Score metric for unsupervised cluster-
ing algorithms applied to the diabetes test dataset. 

 
Figure 12. Silhouette Score for unsupervised clustering algorithms of diabetes test dataset. 

Figure 11. Accuracy, Precision, Recall, F1-Score and ROC-AUC-Score for supervised algorithms on the
diabetes test dataset.

Figure 12 presents the results of the Silhouette Score metric for unsupervised clustering
algorithms applied to the diabetes test dataset.
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We can see that the Spectral Clustering algorithm obtained the best Silhouette Score
value of 84.8% while Mean Shift had the worst Silhouette Score value of 74.2%. The reason
for which Mean Shift had the worst results can be justified by the fact that manually
choosing the bandwidth can be non-trivial, and selecting a wrong value can lead to inferior
results.

Figure 13 shows the results for the metrics Homogeneity Score, Completeness Score, V
Measure Score, Adjusted Mutual Info Score and Adjusted Rand Score for the unsupervised
clustering algorithms applied to the diabetes test dataset.
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All the previous metrics had considerably low values distant from the best value of 1
and −1 for every unsupervised clustering algorithm. This means that the values close to
zero are the result of datapoints being randomly assigned in the clusters.

The best metric results of applying the two preprocessing unsupervised clustering
techniques (K-Means and BIRCH) to Logistic Regression, Decision Tree and Naïve Bayes
supervised algorithms for the diabetes test dataset are shown in Table 1.

Table 1. Logistic Regression, Decision Tree, Naïve Bayes preprocessing the diabetes test dataset.

Logistic
Regression

Preprocessing
Logistic

Regression

Decision
Tree

Preprocessing
Decision Tree Naïve Bayes Preprocessing

Naïve Bayes

Accuracy 0.786 0.766 0.740 0.724 0.747 0.481

Precision 0.694 0.657 0.557 0.592 0.571 0.368

Recall 0.532 0.489 0.723 0.468 0.681 0.865

F1-Score 0.602 0.561 0.630 0.523 0.621 0.516

ROC-AUC-Score 0.715 0.689 0.736 0.657 0.728 0.582

Overall, the result of applying unsupervised clustering techniques for preprocessing
supervised algorithms was not improved performance, as can be seen in the metric results.
However, for Logistic Regression, compared to Decision Tree and Naïve Bayes algorithms,
preprocessing results were closer those without any preprocessing technique. Preprocessing
Naïve Bayes had lower performance results compared to the original Naïve Bayes algorithm
except for the Recall metric where it had a good result of 86.5% and 68.1%, respectively.
Additionally, the preprocessing Decision Tree presented the best precision value of 59.2%
compared to the original Decision Tree algorithm with a value of 55.7%.

5.2. Human Resource Dataset

Figure 14 shows the best results of supervised algorithms for Accuracy, Precision, Recall,
F1-Score and ROC-AUC-Score metrics applied to the human resource test dataset.
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human resource test dataset.

The Random Forest algorithm obtained the best performance results in the metrics
with an Accuracy of 97.3%, Precision of 90.8%, F1-Score of 91.4% and ROC-AUC-Score of
95.1%. For the metric Recall, the SVM linear algorithm presented the best result of 94.7%.
On the other hand, the SVM linear algorithm presented the worst results for the metric
Accuracy of 79.7% and the metric Precision of 43.4%, while the Logistic Regression had the
worst results for the metrics Recall of 24.3%, F1-Score of 36.5% and ROC-AUC-Score of 61.3%.

Figure 15 presents the results of the Silhouette Score metric for the unsupervised
clustering algorithms applied to human resource test dataset.
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Figure 15. Silhouette Score for the unsupervised clustering algorithm of human resource test dataset.

We can see that the BIRCH algorithm obtained the best Silhouette Score value of 72.6%
while DBSCAN had the worst Silhouette Score value of 61.3%. The reason why DBSCAN had
inferior results can be justified by the fact that in some cases, determining an appropriate
distance of neighborhood (eps) is not easy and it requires domain knowledge. Additionally,
if clusters are very different in terms of in-cluster densities, DBSCAN is not well suited to
define clusters.
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Figure 16 shows the results for the metrics Homogeneity Score, Completeness Score, V
Measure Score, Adjusted Mutual Info Score and Adjusted Rand Score for the unsupervised
clustering algorithms applied to the human resource test dataset.
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All the previous metrics had low scores which were distant from the best value of 1
for every unsupervised clustering algorithm, among which DBSCAN presented the worst
results. As previously stated, DBSCAN can have a bad performance because it is normally
difficult to determine an appropriate distance of neighborhood (eps) and if clusters are very
different in terms of in-clusters densities.

The best metric results of applying the two preprocessing unsupervised clustering
techniques (K-Means and BIRCH) to Logistic Regression, Decision Tree and Naïve Bayes
supervised algorithms for human resource test dataset are shown in Table 2.

Table 2. Logistic Regression, Decision Tree and Naïve Bayes preprocessing the human resource
test dataset.

Logistic
Regression

Preprocessing
Logistic

Regression

Decision
Tree

Preprocessing
Decision Tree Naïve Bayes Preprocessing

Naïve Bayes

Accuracy 0.868 0.960 0.952 0.957 0.825 0.835

Precision 0.740 0.861 0.835 0.860 0.444 0.453

Recall 0.243 0.889 0.869 0.869 0.485 0.247

F1-Score 0.365 0.875 0.852 0.864 0.464 0.320

ROC-AUC-Score 0.613 0.931 0.918 0.921 0.686 0.596

The result of applying unsupervised clustering techniques as preprocessing of su-
pervised algorithms considerably improved the performance, particularly for Logistic
Regression algorithm, whereas Accuracy changed from 86.8% to 96%, Precision from 74%
to 86.1%, Recall from 36.5% to 87.5%, F1-Score from 36.5% to 87.5% and ROC-AUC-Score
from 61.3% to 93.1%. However, working with the Naïve Bayes algorithm, the metrics Recall,
F1-Score, and ROC-AUC-Score did not show significant improvements.

In general, different datasets may impact the results because the best algorithm de-
pends on the characteristics of the dataset, including its size, features as well as the different
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hyperparameters and tuning of them which obviously influence the results’ performance.
This is the justification for which we have better performance results for the human re-
source dataset than for the diabetes dataset, as the first has a considerably higher number
of instances and higher correlation feature values compared to the second.

6. Discussion of the Results

Each machine learning algorithm has its own pros and cons. For supervised techniques,
the Random Forest algorithm presented the best results for both diabetes and human
resource datasets as it uses the Ensemble Learning technique which does not require
independency between attributes, and is more resilient to outliers and less impacted by
noise [24].

On the other hand, Logistic Regression showed lower results for some metrics, justified
by the fact that no linearity exists between dependent and independent variables [20]. The
same happened for the SVM Linear algorithm where the frontier is a straight line and there
may be difficulty in separating distinct classes [21]. Naïve Bayes is also an algorithm that
does not show the best performance because it implicitly assumes that all the features are
mutually independent, which is almost impossible to happen [23].

In the diabetes dataset, we can mention that it is more important to minimize false
negatives because the condition is not detected when it is present, and the Recall metric,
which involves the false negative, would be more important than the precision metric. In
that sense, the Naïve Bayes and Random Forest algorithms presented the best Recall values.

For the human resource dataset, one can either privilege the reduction in false neg-
atives, on retaining the best talents in the company, with the risk of retaining the worst
employees, or privilege the reduction in false positives and having the worst employees
leave the company with the risk of having a good employee leaving.

The diabetes dataset had lower metric values compared to the human resource dataset,
which can be justified by the fact that we need to do more value imputations to the features,
because of the presence of invalid values. Additionally, because the diabetes dataset has
fewer instances compared to the human resource dataset and lower feature correlation
values, this results in poor performance.

Generally, unsupervised techniques showed a lower performance in comparison with
supervised techniques, because in the supervised technique, the algorithm learns from the
training dataset by iteratively making predictions on the data and adjusting the correct
answer. For unsupervised learning, in contrast, the algorithm works on their own to
discover the inherent structure of unlabeled data. This is why supervised learning tends to
be more accurate and have better performance results than unsupervised learning models.

For Naïve Bayes, the use of the preprocessing technique generally did not show
improvements for the diabetes dataset or significant enhancements for the human resource
dataset, because it is common knowledge that this algorithm is a bad estimator so the
probability outputs are not to be taken too seriously. Another limitation of Naïve Bayes
is the assumption of independent predictors. In real life, it is almost impossible that we
obtain a set of predictors which are completely independent.

The application of unsupervised clustering preprocessing techniques for the diabetes
dataset did not result in better performance, while in the human resource dataset, we can
clearly see that it had a positive impact on the performance. This fact is justified because
the human resource dataset has more instances than the diabetes dataset, and it is common
knowledge that too little training data results in poor approximation. Additionally, because
the human resource dataset has higher feature correlation values than the diabetes dataset,
it has better performance. This demonstrates that the pre-classification of the human
resource dataset made by the preprocessing unsupervised clustering techniques positively
impacts the performance results.
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7. Conclusions and Future Work

In this work, we used 12 algorithms among supervised and unsupervised clustering
techniques applied to diabetes and human resource datasets for binary classification. We
also applied the preprocessing technique to supervised algorithms, using unsupervised
clustering techniques as this topic was little explored.

The knowledge generated by this work, namely the use of preprocessing supervised
and unsupervised clustering algorithms, can contribute to the wider use and exploration
of this technique so that the performance results of the application of supervised machine
learning algorithms can be improved.

As future work, we intend to apply this technique to larger datasets to consolidate the
promising benefits of using it. Additionally, we intend to use not only clustering also other
unsupervised techniques as preprocessing to compare their impact on performance results.
Finally, we also intend to use the cross-validation technique to test the model’s ability to
predict new data that were not used in the estimation in order to flag problems such as
overfitting or selection bias and to give insight into how the model will generalize into an
independent dataset.
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