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Abstract: The finger vein recognition system uses blood vessels inside the finger of an individual
for identity verification. The public is in favor of a finger vein recognition system over conventional
passwords or ID cards as the biometric technology is harder to forge, misplace, and share. In this
study, the histogram of oriented gradients (HOG) features, which are robust against changes in
illumination and position, are extracted from the finger vein for personal recognition. To further
increase the amount of information that can be used for recognition, different instances of the finger
vein, ranging from the index, middle, and ring finger are combined to form a multi-instance finger
vein representation. This fusion approach is preferred since it can be performed without requiring
additional sensors or feature extractors. To combine different instances of finger vein effectively, score
level fusion is adopted to allow greater compatibility among the wide range of matches. Towards
this end, two methods are proposed: Bayesian optimized support vector machine (SVM) score
fusion (BSSF) and Bayesian optimized SVM based fusion (BSBF). The fusion results are incrementally
improved by optimizing the hyperparameters of the HOG feature, SVM matcher, and the weighted
sum of score level fusion using the Bayesian optimization approach. This is considered a kind of
knowledge-based approach that takes into account the previous optimization attempts or trials to
determine the next optimization trial, making it an efficient optimizer. By using stratified cross-
validation in the training process, the proposed method is able to achieve the lowest EER of 0.48%
and 0.22% for the SDUMLA-HMT dataset and UTFVP dataset, respectively.

Keywords: multi-instance finger vein biometrics; histogram of oriented gradients; score level fusion;
Bayesian hyperparameter optimization

1. Introduction

Biometrics is a system that recognizes an individual from the measurements of the
individual’s characteristics. These characteristics, also known as “biometric traits”, are
separated into physiological or behavioral characteristics. Biometrics has the properties of
better user convenience, security, and non-repudiation as the biometric traits are harder
to forge, misplace, and share. Among the various hand-based biometrics, the finger vein
is particularly secure for personal recognition purposes since the vein structure is hidden
inside the finger, making it hard to spoof and perturb.

In general, biometrics can be subdivided into unimodal or multimodal biometrics,
depending on the number of biometric traits used. Multimodal biometrics inherently
requires a way to combine or fuse the multiple biometric traits used. There are several
fusion methods involved for multimodal biometrics: decision level, score level, feature
level, and image level, with the amount of information retained increasing and the ease of
fusion decreasing in each subsequent fusion level [1]. Among the different fusion strategies,
score level fusion is commonly preferred to achieve a balance between ease of fusion
and the sufficient amount of information retained to distinguish between a genuine and
an impostor case [2].
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In this paper, we present a multimodal biometric approach that integrates finger vein
features from multiple fingers for personal recognition. Score level fusion is adopted to fuse
the finger veins feature set extracted from the histogram of oriented gradients (HOG) [3].
Specifically, HOG is first used to extract the feature from each preprocessed finger vein
instance. This is followed by two proposed optimized score level fusion methods: Bayesian
optimized support vector machine (SVM) score fusion (BSSF) and Bayesian optimized
SVM based fusion (BSBF) for multi-instance finger vein recognition. The rest of the paper
is organized into different sections as follows: Section 2 revisits scientific reviews related
to the methods of finger vein recognition and score level fusion, while Section 3 outlines
the research focus and contribution of this paper. On the other hand, Section 4 presents
proposed methods based on the Bayesian optimization approach. It is then followed
by experimental analysis to vindicate the proposed solutions in Section 5. The paper is
concluded in Section 6 to recap the research finding and possible future works.

2. Literature Review

William et al. [4] proposed the use of a histogram of sign and magnitude extracted using
binary gradient contour (BGC) for finger vein recognition. The region of interest (ROI) of the
finger was normalized, cropped, resized, and processed with adaptive histogram equalization.
BGC is then used to extract the sign and magnitude from the image. The image was divided
into a set of cells. From each cell, the histogram of sign and magnitude were found. The
histograms were then concatenated with each other to form the final feature representation.
The lowest EERs of the proposed method using the SDUMLA-HMT finger vein database for
the right index finger and left index finger was 0.353% and 0.390%, respectively.

Cui and Yang [5] proposed a score-level fusion of finger vein and fingerprint biometrics.
The orientation field of the fingerprint was first calculated. This was followed by image
enhancement, fingerprint thinning, minutiae extraction, and minutiae matching based on
ternary vector with alignment. In addition, the finger vein image was normalized in size and
grayscale, and enhanced using a ridge wave filter. Afterward, segmentation and thinning
of the finger vein were carried out. Finger vein matching was performed by using modified
Hausdorff distance (MHD). For fusion, the finger vein matching distance was normalized
using min-max normalization; while the fusion of finger vein and fingerprint score was
performed using a weighted sum. The proposed method reported a recognition rate of 98.74%
using a local database of 2880 finger veins and fingerprint images from 80 fingers.

Yang and Zhang [6] combined finger vein and fingerprint biometrics at the feature level.
The fingerprint ROI was extracted using orientation and then cropped into 168 × 168 pixels
in size. On the other hand, the finger vein ROI was extracted by using the interphalangeal
joint prior and cropped into 160 × 80 pixels. Even symmetric Gabor filter (EGF) was
applied to extract the features from the fingerprint and finger vein ROIs. The eight fil-
tered images from the 2D convolution of the ROI and eight orientations of EGF were
used to create a feature matrix. The average absolute deviation (AAD) of each 8 × 8 or
16 × 8 block were used to create the feature matrix of a filtered fingerprint or finger vein
image. The feature matrix was then rearranged by row into a one-dimensional feature
vector for each fingerprint and finger vein, respectively. It is then followed by the use of
principal component analysis (PCA) for dimension reduction. Feature level fusion was then
implemented using supervised local-preserving canonical correlation analysis (SLPCCA).
to identify non-linear relationships between two sets of feature variables while preserving
the local structure information in original data, exploiting the mutual information between
two different feature sets, and exploiting the class information of the samples. SLPCCA
generated a union vector called fingerprint-vein feature vector (FPVFV). The recognition
rate of the proposed method is 99.687% using a local database of 640 fingerprints and finger
veins from 64 individuals with 10 samples.

Yang et al. [7] proposed another feature-level fusion of finger vein and fingerprint
biometrics. The fingerprint image was first normalized, followed by Gabor filter processing,
binarization, thinning, minutiae extraction, neighborhood elimination, and ROI extraction.
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For finger vein biometrics, the vein was extracted by detecting the concavity in the grayscale
image, followed by filtering, thinning, de-burring, minutiae extraction, neighborhood
elimination, and ROI extraction. The feature-level fusion was implemented with feature
concatenation. Neighborhood elimination was used to discard features that were within
a certain radius of other features. The features were categorized as excellent or poor-
quality features based on five evaluation factors: the number of input minutiae, the size of
effective area, the change in the number of minutiae before and after minutiae reduction,
the proportion of the number of registered minutiae and input minutiae, and the degree
of center deviation. Matching was performed by dynamic weighting matching in which
the quality of the features was used to determine the weights of the weighted sum of the
matching pairs of features. The proposed method reported a recognition rate of 98.93%
using a local database with 40 pairs of images where each pair was composed of a finger
vein sample and a fingerprint sample.

He et al. [8] adopted the reduction of high-scores effect (RHE) normalization for score
level fusion of fingerprint, face, and finger vein biometrics. The normalization would only
be done when the two feature sets have different ranges, in order to minimize information
loss. The normalization was performed by using the sum of standard deviation and mean
of the genuine distribution to replace the maximum value used in min-max normalization.
The proposed normalization was tested using support vector machine (SVM)-based fusion
and sum rule-based fusion. The sum rule-based fusion was done by summing all the scores
from the matches and when the summed score is above a threshold, it is matched. The
SVM-based fusion used C-support vector classification (C-SVC) where the scores from
all matches are the feature vector. C-SVC refers to the support vector classifier that uses
parameter C as a regularization parameter that implements a penalty on misclassifications,
that ranges from zero to infinity. The GAR from the proposed system using sum rule-based
fusion was 99.6% at 0.001% FAR using a local database with 510 individuals. The GAR
from the proposed system using SVM with radial basis function (RBF) kernel was 99.9% at
0.00003% FAR using a similar dataset.

Khellat-Kihel et al. [9] performed a study exploring the fusion of fingerprint, finger-
knuckle-print, and finger vein traits at feature level fusion and decision level fusion. The
study made use of Gabor filter 2D to preprocess the three different types of biometric images.
The feature extraction was done by using a bank of Gabor filters to obtain a single feature
vector. Feature selection was then conducted for each feature vector by using kernel fisher
analysis (KFA). In the feature level fusion, the feature vector of three different biometric
traits was simply concatenated and then classified by SVM and k-nearest neighbors (KNN).
In the enhanced feature level fusion, the feature vectors were concatenated and this was
followed by feature selection using KFA. After that, the selected concatenated feature vector
was classified by SVM and KNN. Additionally, decision level fusion of the classification
results was performed by using majority voting. Two publicly available datasets, the
SDUMLA-HMT finger vein database, and the Poly U dataset were used for performance
evaluation. The best results for the proposed system using SVM with feature level fusion
enhanced feature level fusion, and decision level fusion were 99.96%, 99.69%, and 94.91%,
respectively, while the results of KNN with the three fusion methods were 88.21%, 99.06%,
and 95.28%, respectively.

Kim et al. [10] proposed a multimodal biometric system by using finger vein and
finger shape biometrics for personal recognition. The finger image is first segmented by
using Sobel filtering, component labeling, thresholding, and convex hull processing to
determine the finger ROI. The finger is then normalized by rotating and cropping. For
finger shape recognition, the finger is transformed into a two-dimensional spectrogram
image by calculating the frequency of the finger thickness using a short-time Fourier
transform (STFT) by sliding a window along the length of the finger. The spectrogram
image is then used in a convolutional neural network (CNN) to extract the finger shape
feature vector. The feature vector of finger shape is then matched using Euclidean distance
matching to obtain the finger shape score. For finger vein recognition, the finger is matched
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by finding the difference between the images. The difference image is then fed into CNN to
obtain the finger vein score. Next, both finger shape score and finger vein score are then
normalized with min–max normalization. The scores are then fused together at the score
level fusion using weighted sum, weighted product, Bayesian rule, and perceptron rule
for multi-modal recognition of the finger shape and finger-vein. The experimental results
reveal the robustness of the proposed solution with EER as low as 2.3445% (SDUMLA-HMT
dataset) and 0.7859% (Poly U dataset).

3. Contributions

In general, the performance of unimodal biometrics is easily affected by noisy data,
interclass similarities, and intraclass variations as compared to the multimodal biometrics
approach [1], while the conventional score-level fusion method is limited by the variability
of the performance accuracies of different matches. To address these issues, the paper
presents the following contributions:

• A multi-instance finger vein system uses different instances of a finger vein, such
as index, middle, and ring finger as the feature set. The use of multiple instances
increases the number of unique patterns and lowers the interclass similarities. It also
allows different finger vein instances to provide more information and thus maintain
a minimum performance.

• We propose to optimize the hyperparameters of the histogram of oriented gradients
(HOG) feature extractor and support vector machine (SVM) matcher for better perfor-
mance. Improved performance is observed using the proposed optimization method,
which will be indicated in the experimental analysis section. The use of optimizer for
HOG features was inspired by the work of Nickfarjam et al. [11] that show improved
performance of HOG when using self-adaptive particle swarm optimization (SPSO) for
hyperparameter optimization. However, we propose the use of Bayesian optimization
as an alternative optimizer to SPSO. SPSO is a population-based optimizer, which
means it performs multiple objective function evaluations, according to the size of the
population in each optimization step. This makes SPSO much more computationally
expensive compared to Bayesian optimization which only performs a single objective
function evaluation in each optimization step while maintaining a robust performance.

• The score level fusion method based on Bayesian optimized SVM score fusion (BSSF)
and Bayesian optimized SVM based fusion (BSBF) is proposed. In the BSSF method,
each finger vein instance is matched using SVM. The resulting score for each finger
vein instance is then multiplied with a weight that is optimized using a Bayesian
optimizer. The weighted scores are then summed and used to determine the decision
of match or not match. In the BSBF method, each finger vein instance is matched using
an Euclidean distance matcher. The resulting score for each finger vein instance is
then normalized and concatenated as a score vector. The score vector is then fed into
the SVM classifier for decision. BSSF should give better performance as compared
to BSBF, since there is less information loss, by classifying the HOG feature with
SVM. Meanwhile, BSBF classifies the score after Euclidean distance matching, which
results in more information loss. However, BSSF requires access to the features from
a biometric system, which is not always available in the biometric system. On the
other hand, BSBF only requires access to the scores from a biometric system, which
is usually available even in a proprietary biometric system; this gives BSBF wider
compatibility as compared to BSSF.

4. Proposed Method

The proposed solutions adopt multi-instance finger vein features as the feature de-
scriptors for user recognition. At first, preprocessing of the finger vein images is performed
to improve the image quality. A histogram of oriented gradients (HOG) is then used to
extract the feature from each finger vein instance, and this is followed by matching for
score level fusion. Score level fusion can be approached in two ways: classification or
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combination approach [12]. In the proposed method, BSSF uses the combination approach
and BSBF uses the classification approach.

In BSSF, the fusion can be viewed as a SVM combination problem and termed SVM
score fusion, where the score is generated from the scoring function of trained SVM on the
HOG feature of each finger vein instance. The resulting SVM scores of each finger vein
instance are then multiplied with the score weight-optimized using a Bayesian optimizer.
The scores will be fused with a weighted sum for final decision (accept or reject). In this
context, the hyperparameters of HOG feature extractor, SVM matcher, and the weights
infusion are optimized using Bayesian optimization approach. The overall framework of
the proposed BSSF is presented in Figure 1.
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Figure 1. The Proposed Bayesian optimized SVM Score Fusion (BSSF).

In the second classification approach which is termed as SVM based fusion (BSBF),
the HOG feature of different instances is matched using Euclidean distance to construct
the normalized scores. For example, the resulting scores of the index and middle finger
are concatenated as a score vector. The score vector is then fed into SVM for classification
purposes. The overall framework of the proposed BSBF is presented in Figure 2.
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4.1. Preprocessing

Preprocessing helps to enhance the quality of the finger vein images, which will aid to
improve the performance of the system in turn. In the proposed method, preprocessing is
divided into different processes which include watershed segmentation, morphological
operation, histogram equalization, and image resize. Watershed segmentation is used
to segment the finger from the background and obtain the ROI. It works by treating the
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input image as an elevation map based on the pixel values and flooding the basins from
user-defined markers. The markers label the flooded region as either finger vein structure
or background image. Morphological operation is then used to further remove unwanted
background. It does so by removing small regions and dark regions since the whole finger
region is typically big and gray. Histogram equalization is subsequently applied to increase
the contrast of the image by more evenly distributing the pixel values through the use of
the histogram. Image resizing is performed to change the size of the input image to a fixed
size since many matchers require a fixed input size. The preprocessing steps involved are
illustrated in Figure 3.
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4.2. Feature Extraction

In the proposed method, a histogram of oriented gradients (HOG) is adopted for
finger vein feature extraction. HOG is a popular feature descriptor proposed for object
recognition [2]. Based on optimization findings, the finger vein image can be optionally
normalized with power-law compression to achieve illumination invariance, which is de-
termined by the hyperparameter transform_sqrt. The finger vein image is then divided into
small connected regions called cells with the size of pixels × pixels. In each cell, the gradient
is computed, which is then used to create a histogram where the histogram bins, with the
size of orientations, are based on the orientation of the gradient, and the histogram value is
based on the magnitude of the gradient. Next, the cells are grouped into large spatial blocks
and each block is then normalized. The final histogram is computed from normalized gra-
dient orientation of all cells within the block. This normalization results in better invariance
to changes in illumination and edge contrast. There are four choices of block normalization,
determined by the hyperparameter norm, used in HOG for optimization purposes:

• L2: f (v) = v/
√
||v||22 + ε2

• L2-Hys: L2, followed by limiting the maximum value of v to 0.2, and renormalizing.
• L1-sqrt: f (v) =

√
v/(||v||1 + ε)

• L1: f (v) = v/(||v||1 + ε)

where v is the histogram vector of a block and ε is a very small constant to prevent
division by zero. After that, all the histograms are appended to form the final HOG feature
set. In summary, the hyperparameters λ of HOG are:

λHOG = {orientations, pixels, cells, norm, transform_sqrt} (1)
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4.3. Fusion and Matching with BSSF and BSBF

Next, the extracted HOG features are fused and matched using SVM based on the
implementation of BSSF and BSBF. SVM is a classifier that classifies data by constructing
a hyperplane to separate the training data of a class to the nearest training data of other
classes with the largest distance. Another characteristic of SVM is the use of kernel function,
which allow SVM to classify nonlinear data by creating a similarity matrix between the
data for classification purpose.

Given a sample of N independent and identically distributed training instances
{(xi, yi)}N

i=1 where xi is the D dimensional input vector (HOG feature) and yi ∈ {−1, 1} is
its class label, and the kernel function k (xi, xt) where xt is the test instances. The SVM is
trained by optimizing the following:

maximize

∑N
i=1 αi −

1
2 ∑N

i=1 ∑N
j=1 αiαjyiyjk

(
xi, xj

)
with respect to

α ∈ RN
+

subject to

∑N
i=1 αiyi = 0 C ≥ αi ≥ ∀i (2)

where α is the dual coefficients and C is the regularization hyperparameter. The hy-
perparameter C will be optimized by Bayesian optimizer. After training, the resulting
discriminant function of the SVM is:

s = score(x) = ∑N
i=1 αiyi k (xi, xt) + b (3)

The proposed system is tested with two kernel functions: linear kernel and radial
basis function (RBF) kernel. The linear kernel formulation can be seen in the following:

klinear
(
x, x′

)
=
〈

x, x′
〉

(4)

In summary, the hyperparameter λ of linear SVM is

λLinearSVM = {C} (5)

The RBF kernel can be formulated with the following:

kRBF
(
x, x′

)
= exp

(
−γ ‖ x− x′ ‖2

)
(6)

where x and x′ are the HOG vector and γ is the width of the RBF kernel. The hyperparameter
γ is optimized by Bayesian optimizer. In summary, the hyperparameters λ of RBF SVM are:

λRBFSVM = {C, γ} (7)

BSSF works by multiplying the weight with the resulting score from SVM prediction
and summing them. The summed score is then used to determine a match. The weights
are optimized with Bayesian optimization. The BSSF function is given by:

Fs = ∑
n f ingers
i=1 wi score

(
xi

t

)
(8)

where w is the weight of the score and Fs is the fused score.
BSBF works by computing the score between two samples of a finger vein instance

with Euclidean distance matcher. The Euclidean distance is defined as:

d
(
x, x′

)
=
√

∑D
=i (xi − xi

′)2 (9)
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The resulting scores from each finger vein instance are then concatenated as a score
vector and normalized with z-score normalization as follows:

s′ =
s−mean(S)

std(S)
(10)

where S is the score vector from the matcher, s ∈ S, s′ is the normalized score, mean(S) is
the arithmetic mean of S, and std (S) is the standard deviation of S. The normalized score
vector is then fed into SVM for classification.

4.4. Optimization

Optimization is an iterative process to find the desired solution (minimum or maxi-
mum) of a problem while satisfying all of its constraints. An optimization problem could
be non-linear or linear. In non-linear optimization, search methods are used iteratively
before a solution is achieved.

In a typical machine learning model, the model is trained with data {(xi, yi)}N
i=1 to

learn or set the parameters p of the model. While parameters are set by the model, the
model also has hyperparameters λ that are typically set by the user manually. In other
words, given an objective function f to be minimized, a typical machine learning problem
solves the following problem:

minimize
p

f (p | {( xi, yi )}N
i=1 , λ) (11)

While this gives decent performance and is easily solvable for some machine learning
models, it, unfortunately, leaves out potential higher performance of the model by not
optimizing λ. It is also much more difficult to solve when optimizing both as:

minimize
p,λ

f (p, λ | {( xi, yi )}N
i=1) (12)

The basic method to solve this is with grid-based search or random search of the
hyperparameters. While usable, the problem with hyperparameter optimization is that
each evaluation of the hyperparameters is very expensive, since it requires retraining the
model. Hence, it is important for hyperparameter optimization to use as little evaluation
of objective function as possible. Bayesian hyperparameter optimization is better than
grid or random search since it uses previous optimization results for the next optimization,
allowing it to be more efficient [13]. Bayesian optimization is also used due to its nature as
a non-gradient-based optimizer and has high compatibility. since not all objective functions
of machine learning models provide gradient information for optimization [11].

Specifically, the proposed Bayesian optimization can be formalized as sequential
model-based optimization (SMBO) [14]. SMBO is started by first initializing a probabilistic
regression model M using a small set of samples from domain χ, which is the range of hyper-
parameters to be optimized. A new sample is selected by optimizing an acquisition function
A which uses the model as a cheap surrogate for the expensive objective function f (for BSSF
or BSBF). Each sample xi produces an observation of the objective function yi = f (xi). The
new sample is appended to the set of all samples or data Q = {(x1, y1), . . . ,(xi, yi)}, which is
later used to update the model. A limit T is used to restrict the number of optimization
runs. This process is presented in Algorithm 1 [Adapted with permission from [14]].



Algorithms 2022, 15, 161 9 of 15

Algorithm 1 Sequential Model-Based Optimization (SMBO)

Data: f , χ, A, M
// initialize dataset with random samples from domain
Q← InitSamples( f , χ);

// run for T steps
for i← |Q| to T do
// train a model based on data
p(y|x, Q)← FitModel(M, Q);

// select best hyperparameters based on model

xi ← argmaxx∈χ A(x, p(y
∣∣∣x, Q)) ;

// evaluate the hyperparameters
yi ← f (xi);

// append new data
Q← Q ∪ (xi, yi);
end

SMBOs can be roughly differentiated by their regression models and acquisition
functions. In this work, tree-structured parzen estimator (TPE) [15] is used as the regression
model and expected improvement (EI) is used as the acquisition function. The SMBO with
TPE algorithm is used to optimize the HOG hyperparameters, the SVM hyperparameters,
and the weights of the score level fusion. The use of optimization exhibits better results than
using a fixed combination of hyperparameters while being faster than using the brute force
approach to search for the best combination of hyperparameters. In our implementation,
the objective function of BSSF method can be seen in Algorithm 2. The objective function
of BSBF method can be observed in Algorithm 3.

Algorithm 2 BSSF Objective Function

Input: xtrain, xtest, ytrain, ytest, w, λHOG, λSVM
Output: error rate eer
// use hyperparameters from Bayesian optimizer
λHOG ← trial from Bayesian optimizer;
λSVM ← trial from Bayesian optimizer;
w← trial from Bayesian optimizer;

// run for each finger
for i← 1 to n f ingers do
// HOG feature extraction from data
xi

train ← GetHOG (xi
train, λHOG);

xi
test ← GetHOG (xi

test, λHOG);
// train SVM using HOG features
SVMFit(xi

train, yi
train, λSVM);

// use the trained SVM to predict test data to produce probability, which is used as score
yi

pred ← SVMPredict(xi
test);

// weighted sum of scores for all fingers
ypred ← ypred + wi × yi

pred ;
end
// calculate EER by comparing prediction with actual result

eer ← GetEER
(

ytest, ypred);
return eer;
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Algorithm 3 BSBF Objective Function

Input: x, y, λHOG, λSVM
Output: error rate eer
// use hyperparameters from Bayesian optimizer
λHOG ← trial from Bayesian optimizer;
λSVM ← trial from Bayesian optimizer;

// run for each finger
for i← 1 to n f ingers do
// HOG feature extraction from data

xi ← GetHOG(xi, λHOG);
// calculate Euclidean distance from data

si ← EuclideanDistance(xi) ;
// normalize the scores
si ← Normalize(si);
end
// concatenate all the scores from each finger as a score vector

S←
{

s1, . . . , sn f ingers

}
;

// split dataset into train and test data
Strain, Stest, ytrain, ytest ← TrainTestSplit(S, y);

// train a SVM model
SVMFit(Strain, ytrain, λSVM);
// use the trained model to predict test data
ypred ← SVMPredict(Stest);

// calculate EER
eer ← GetEER(ytest, ypred);
return eer;

5. Experimental Analysis
5.1. Experimental Setup

In this work, two publicly available datasets are used for the experimental evalua-
tion of the proposed methods. The SDUMLA-HMT database is the first dataset used.
It is a homologous multimodal traits database from the Group of Machine Learning
and Applications, Shandong University (SDUMLA) [16]. The SDUMLA-HMT database
contains data from 106 individuals of different biometric traits. The biometric traits
available in the database include the face, finger vein, gait, iris, and fingerprint. As
the focus of this study is on finger vein recognition, only the SDUMLA-HMT finger
vein database is used. The images from the index, middle, and ring fingers of both
hands were collected six times for 106 individuals. Therefore, there are a total of 3816
(106 individuals × 6 fingers × 6 samples) images in the dataset. Each image is stored in
a “bmp” format with the size of 320 × 240 pixels. Some samples of finger vein images in
the dataset are shown in Figure 4.
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University of Twente Finger Vascular Pattern (UTFVP) dataset is the second dataset
used for experimental evaluation. The dataset was collected from 60 individuals with 73%
male, 87% right-handed, and 82% aged 19–30 at Twente University [17]. The finger vein
images were captured with a local custom device. Each individual provides the index,
middle, and ring finger of both hands, and each finger is sampled four times. In total, there
are 1440 (60 individuals × 3 fingers × 2 hands × 4 samples) images in the dataset. Each of
them is in a “png” format with 672 × 380 pixels in size. The samples of finger vein images
from UTFVP can be seen in Figure 5.
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For the subsequent experimental analysis purpose, the following conventions are used:
li stands for the left index finger, lm stands for the left middle finger, lr stands for the left
ring finger, linear1 stands for linear SVM matching without optimization, linear2 stands
for linear SVM matching with optimization, while rbf1 stands for RBF SVM matching
without optimization, rbf2 stands for RBF SVM matching with optimization, BSSF stands
for Bayesian optimized SVM score fusion, and BSBF stands for Bayesian optimized SVM
based fusion. Equal error rate (EER) is used as the performance measurement of the
proposed methods. EER is the rate at which the false acceptance rate and false rejection
rate are (almost) equal. In this work, linear1 and rbf1 are used to serve as a baseline score
level fusion method for comparison purpose.

The proposed system is tested with stratified three-fold cross-validation to ensure
the validity of the system. The optimization of the hyperparameters is also done with the
cross-validation using a different random seed from the test cross-validation to prevent
overfitting to the test cross-validation [18].

5.2. Performance Analysis of Multi-Instance Feature Descriptors Biometrics

The proposed system uses the Bayesian optimization approach to search for an optimal
set of hyperparameters of the histogram of oriented gradients (HOG). The hyperparam-
eters are: orientations, pixels, cells, norm, and transform_sqrt. Orientations is the number of
orientations. Pixels is the number of pixels in a cell, while Cells is the number of cells in
a HOG block. Norm is the type of block normalization being used, and Transform_sqrt
indicates whether the power-law compression is being used to normalize the image before
processing. For optimization purposes, the orientations hyperparameter is set in the range
of four to twenty. The pixels hyperparameter is set in the range of eight to thirty. The cells
hyperparameter is set in the range of one to four. The norm hyperparameter is set for either
L1, L1-sqrt, L2, or L2-Hys. On the other hand, the transform_sqrt hyperparameter is set to
Yes or No.

Figure 6 depicts the parallel coordinates plot of the hyperparameters. The figure shows
the overview of the hyperparameters that give optimal results. The figure consists of all
the hyperparameter optimization trials by the Bayesian optimizer for all fingers, datasets,
and matchers. Overall, it could be observed that most orientations hyperparameter values,
and most cells hyperparameter values are in the range of one to three, whereas L2 and
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L1-sqrt norm, without transform_sqrt, and high pixels hyperparameter values in the range of
twenty-six to twenty-nine are optimal.
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The experimental results of the proposed methods for SDUMLA-HMT are presented
in Table 1. The ROC curve of the proposed system for SDUMLA-HMT is illustrated in
Figure 7. For the UTFVP dataset, the experimental results of the proposed method can
be seen in Table 2, while the ROC curve of the proposed system for UTFVP is depicted
in Figure 8.

Table 1. Experimental results of the proposed system for SDUMLA-HMT.

Fingers Matchers Orientations Pixels Cells Norm Transform_sqrt EER

(‘li’,) BSBF-linear1 9 8 3 L2-Hys Yes 17.45%
(‘li’,) BSBF-linear2 15 30 2 L2-Hys No 12.85%
(‘li’,) BSBF-rbf1 9 8 3 L2-Hys Yes 17.45%
(‘li’,) BSBF-rbf2 9 29 2 L2-Hys No 12.77%
(‘li’,) BSSF-linear1 9 8 3 L2-Hys Yes 2.71%
(‘li’,) BSSF-linear2 16 26 2 L1-sqrt Yes 1.57%
(‘li’,) BSSF-rbf1 9 8 3 L2-Hys Yes 2.71%
(‘li’,) BSSF-rbf2 18 26 2 L2-Hys Yes 1.35%

(‘li’, ‘lm’) BSBF-linear1 9 8 3 L2-Hys Yes 14.78%
(‘li’, ‘lm’) BSBF-linear2 13 27 3 L2-Hys No 11.85%
(‘li’, ‘lm’) BSBF-rbf1 9 8 3 L2-Hys Yes 14.15%
(‘li’, ‘lm’) BSBF-rbf2 19 29 2 L2-Hys No 9.60%
(‘li’, ‘lm’) BSSF-linear1 9 8 3 L2-Hys Yes 1.10%
(‘li’, ‘lm’) BSSF-linear2 14 8 1 L1 Yes 0.58%
(‘li’, ‘lm’) BSSF-rbf1 9 8 3 L2-Hys Yes 1.10%
(‘li’, ‘lm’) BSSF-rbf2 7 26 2 L2-Hys No 0.77%

(‘li’, ‘lm’, ‘lr’) BSBF-linear1 9 8 3 L2-Hys Yes 12.22%
(‘li’, ‘lm’, ‘lr’) BSBF-linear2 17 28 1 L2 No 9.80%
(‘li’, ‘lm’, ‘lr’) BSBF-rbf1 9 8 3 L2-Hys Yes 10.94%
(‘li’, ‘lm’, ‘lr’) BSBF-rbf2 16 26 1 L2 No 6.44%
(‘li’, ‘lm’, ‘lr’) BSSF-linear1 9 8 3 L2-Hys Yes 0.68%
(‘li’, ‘lm’, ‘lr’) BSSF-linear2 8 15 1 L2-Hys No 0.56%
(‘li’, ‘lm’, ‘lr’) BSSF-rbf1 9 8 3 L2-Hys Yes 0.56%
(‘li’, ‘lm’, ‘lr’) BSSF-rbf2 10 17 1 L2 Yes 0.48%
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Table 2. Experimental results of the proposed system for UTFVP.

Fingers Matchers Orientations Pixels Cells Norm Transform_sqrt EER

(‘li’,) BSBF-linear1 9 8 3 L2-Hys Yes 13.57%
(‘li’,) BSBF-linear2 9 18 1 L2 No 9.09%
(‘li’,) BSBF-rbf1 9 8 3 L2-Hys Yes 13.57%
(‘li’,) BSBF-rbf2 9 18 1 L2 No 9.09%
(‘li’,) BSSF-linear1 9 8 3 L2-Hys Yes 3.60%
(‘li’,) BSSF-linear2 14 23 2 L1-sqrt Yes 1.72%
(‘li’,) BSSF-rbf1 9 8 3 L2-Hys Yes 5.42%
(‘li’,) BSSF-rbf2 19 28 3 L1-sqrt No 2.19%

(‘li’, ‘lm’) BSBF-linear1 9 8 3 L2-Hys Yes 6.04%
(‘li’, ‘lm’) BSBF-linear2 19 30 1 L1-sqrt No 3.71%
(‘li’, ‘lm’) BSBF-rbf1 9 8 3 L2-Hys Yes 5.56%
(‘li’, ‘lm’) BSBF-rbf2 20 25 1 L2 Yes 3.61%
(‘li’, ‘lm’) BSSF-linear1 9 8 3 L2-Hys Yes 0.83%
(‘li’, ‘lm’) BSSF-linear2 14 14 1 L2 No 0.39%
(‘li’, ‘lm’) BSSF-rbf1 9 8 3 L2-Hys Yes 2.03%
(‘li’, ‘lm’) BSSF-rbf2 17 29 3 L1-sqrt No 0.22%

(‘li’, ‘lm’, ‘lr’) BSBF-linear1 9 8 3 L2-Hys Yes 5.00%
(‘li’, ‘lm’, ‘lr’) BSBF-linear2 7 30 1 L2 No 2.64%
(‘li’, ‘lm’, ‘lr’) BSBF-rbf1 9 8 3 L2-Hys Yes 4.74%
(‘li’, ‘lm’, ‘lr’) BSBF-rbf2 5 30 1 L2 Yes 1.84%
(‘li’, ‘lm’, ‘lr’) BSSF-linear1 9 8 3 L2-Hys Yes 0.47%
(‘li’, ‘lm’, ‘lr’) BSSF-linear2 8 27 1 L2 No 0.31%
(‘li’, ‘lm’, ‘lr’) BSSF-rbf1 9 8 3 L2-Hys Yes 1.67%
(‘li’, ‘lm’, ‘lr’) BSSF-rbf2 7 27 2 L1-sqrt No 0.47%
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Table 1 shows the EER for the different matching techniques with optimizations using
the SDUMLA-HMT dataset. It can be observed that BSSF with RBF kernel, in general,
gives the best result. The lowest EER for the left index finger (li) alone is 1.35%. The
fusion of the left index and middle fingers is able to attain better performance with an EER
of 0.77%, although it is slightly inferior to the linear kernel (BSSF-linear2) at 0.58%. The
best performance can be achieved by combining the left index, middle, and ring fingers
with the lowest EER of 0.48% in the RBF kernel. As compared to the BSSF approach, the
performance of BSBF is slightly poorer with higher EER for both linear and RBF Kernel. The
best results of the BSBF approach are with an EER of 6.44% with RBF kernel by combining
the three finger vein instances.

The EER for the UTFVP dataset is presented in Table 2. It can be observed that the
performance of the proposed methods tested using different optimization settings for
different finger vein combinations is presented. It can be observed that BSSF-linear2, in
general, gives better results with the EER of 1.72% for the left index finger. The lowest EER
that combines the left index, middle, and ring fingers is 0.31% for BSSF-linear2. Amongst
the results, BSSF-rbf2 gives the best EER of 0.22% when using the left index and middle
finger. Similar to Table 1, the BSSF method outperforms BSBF in terms of EER. The lowest
EER achieved for the BSBF method is 1.84% by using the RBF kernel. To conclude, both the
SDUMLA-HMT and UTFVP datasets are able to attain the best performance by using the
BSSF approach with RBF kernel, with EERs as low as 0.48% and 0.22%, respectively.

6. Conclusions and Future Works

In this work, two Bayesian optimized score level fusion approaches, namely BSSF
and BSBF are presented for multi-instance finger vein recognition. The proposed system
supersedes sum rule fusion by using Bayesian optimization in large parts of the system,
whereby the optimizations are applied in HOG extraction, SVM matching, and weighted
sum rule fusion for robust performance. As for future studies, different biometric traits,
such as face or iris, will be explored to evaluate the performance of the proposed methods.
Other feature descriptors, such as local binary patterns (LBP) could also be integrated into
the proposed system to evaluate its performance.
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