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Abstract: Data augmentation methods enrich datasets with augmented data to improve the perfor-
mance of neural networks. Recently, automated data augmentation methods have emerged, which
automatically design augmentation strategies. The existing work focuses on image classification
and object detection, whereas we provide the first study on semantic image segmentation and
introduce two new approaches: SmartAugment and SmartSamplingAugment. SmartAugment uses
Bayesian Optimization to search a rich space of augmentation strategies and achieves new state-
of-the-art performance in all semantic segmentation tasks we consider. SmartSamplingAugment,
a simple parameter-free approach with a fixed augmentation strategy, competes in performance
with the existing resource-intensive approaches and outperforms cheap state-of-the-art data aug-
mentation methods. Furthermore, we analyze the impact, interaction, and importance of data
augmentation hyperparameters and perform ablation studies, which confirm our design choices
behind SmartAugment and SmartSamplingAugment. Lastly, we will provide our source code for
reproducibility and to facilitate further research.

Keywords: data augmentation; hyperparameter optimization; semantic segmentation

1. Introduction

In many real-world applications, only a limited amount of annotated data is available,
which is particularly pronounced in medical imaging applications, where expert know-
ledge is indispensable to annotate data accurately [1,2]. Given insufficient training data,
deep learning methods frequently overfit and fail to learn a discriminative function that
generalizes well to unseen examples [3]. Data augmentation is an established approach that
improves the generalization of neural networks by adjusting the limited available data to
achieve more and diverse samples for the network to train on. In most cases, additional
data are constructed by simply applying label-preserving transformations to the original
data. In image processing, for instance, these can be simple geometric transformations (e.g.,
rotation), color transformations (e.g., contrast adjustments), or more complex approaches
such as CutMix [4], Cutout [5], and Mixup [6]. Data augmentation has been applied to
various areas, such as image classification [6], object detection [7], and semi-supervised
learning [8] and segmentation [9]. This work provides a first and extensive study on
automated data augmentation for semantic segmentation on different and diverse datasets.

Data augmentations used in practice are mostly simple and easy to implement. De-
spite this simplicity, the choice of augmentations is crucial and requires domain knowledge.
Recently, automated data augmentation methods were proposed that learn optimal aug-
mentation policies from data without the need for domain knowledge. These approaches
improve performance over manually designed data augmentation strategies commonly
used across different domains and datasets [10–13].
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The main focus of existing research in automated data augmentation is image classifi-
cation [10,12], with a particular blind spot being dense prediction tasks such as semantic
segmentation. Furthermore, these methods either use complicated proxy tasks to learn
an optimal augmentation strategy [10] or optimize the augmentation operations with-
out taking the type of augmentation applied and the probability of their application into
account [12].

In this work, we introduce two novel data augmentation methods, SmartAugment
and SmartSamplingAugment with key focus on diverse semantic segmentation applications:
medical imaging (RaVeNNa, EM), bridge inspection (ErFASst), and autonomous driving
(KITTI). SmartAugment uses Bayesian Optimization [14,15] to optimize data augmentation
strategies and outperforms the previous state-of-the-art methods (see Table 1) across all
semantic segmentation tasks we consider. In contrast to existing approaches, we define a
separate set of each color and geometric data augmentation operations, search for their
optimal number of operations and magnitudes, and further optimize a probability P of
applying these augmentations.

Table 1. Test mean Intersection over Union (IoU) in percentage for different algorithms on semantic
segmentation datasets. SmartAugment outperforms all other data augmentation strategies across
all datasets. SmartSamplingAugment competes with the previous state-of-the-art approaches and
outperforms TrivialAugment, a comparably cheap method. For DefaultAugment, TrivialAugment,
and SmartSamplingAugment, we evaluated each experiment three times using different seeds to
obtain the mean performance. For RandAugment++ (an extended version of RandAugment) and
SmartAugment, we took the mean test IoU over the three best performing validation configurations.
Please note that DefaultAugment represents the baseline, and the higher the value, the better the
performance. # iterations refers to the number of BO iterations completed to find best configuration.

Dataset Default Rand++ Trivial Smart SmartSampling

KITTI 65.07 67.19 64.82 68.84 66.53
RaVeNNa 88.37 90.71 90.53 91.00 90.72
EM 77.25 78.83 78.15 79.04 78.42
ErfASst 67.01 68.75 66.79 73.72 70.24

# Iterations 1 50 1 50 1

SmartAugment performs well compared to existing approaches in performance and
computational budget. However, it still requires multiple iterations to find the best augmen-
tation strategy, which can be expensive for researchers with computational constraints. With
this in mind, we develop a fast and efficient data augmentation method, SmartSampling-
Augment, that has a competitive performance to current best methods and outperforms
TrivialAugment [16], a previous state-of-the-art simple augmentation method. Smart-
SamplingAugment is a parameter-free approach that samples augmentation operations
according to their weights, and the probability of application is annealed during training.
We summarize our contributions in the following points:

• We provide a first and extensive study of data augmentation on different and diverse
datasets for semantic segmentation.

• We introduce a new state-of-the-art automated data augmentation algorithm for
semantic segmentation that outperforms previous methods with half of the computa-
tional budget. It optimizes the number of applied geometric and color augmentations
and their magnitude separately. Furthermore, it optimizes the probability of augmen-
tation, which is crucial according to our hyperparameter importance analysis.

• We present a novel parameter-free data augmentation approach that weighs the ap-
plied data augmentation operations and anneals their probability of application. Our
method is competitive with the previous automated data augmentation approaches
and outperforms TrivialAugment, a cheap-to-evaluate method.
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We will provide our source code: https://github.com/mvg-inatech/SmartAugment.
(accessed on 1 April 2022).

2. Related Work

Data augmentation has been shown to have a considerable impact, particularly on
computer vision tasks. Simple augmentation methods such as random cropping, horizontal
flipping, random scaling, rotation, and translation have been effective and popular for
image classification datasets [17–20]. Other approaches add noise or erase part of an
image [5,21] or apply a convex combination of pairs of images and their labels [6]. Other
approaches use generative adversarial networks to generate new training data [22,23].

Automated augmentation methods focus on learning an optimal data augmentation
strategy from data [10,12]. Many recent methods define a set of data augmentations
and their magnitude, where the best augmentation strategy is automatically selected.
AutoAugment [10] uses a search algorithm based on reinforcement learning to find the
best data augmentation policy with a validation accuracy as the reward. The search space
consists of policies which in turn, have many sub-policies. Each sub-policy contains two
augmentation operations, their magnitude, and a probability of application. A sub-policy
is selected uniformly at random and applied to an image from a mini-batch. This process
has high computational demands; therefore, it is applied on a proxy task with a smaller
dataset and model. The best-found augmentation policy is then applied to the target task.

Population-Based Augmentation (PBA) [24] uses a population-based training algo-
rithm [13] to learn a schedule of augmentation policies at every epoch during training.
The policies are parameterized to consist of the magnitude and probability values for each
augmentation operation. PBA randomly initializes and trains a model with these different
policies in parallel. The weights of the better-performing models are cloned and perturbed
with noise to make an exploration and exploitation trade-off. The schedule is learned with
a child model and applied to a larger model on the same dataset.

Fast AutoAugment [25] speeds up the search for the best augmentation strategy with
density matching. This method directly learns augmentation policies on inference time and
tries to maximize the match of the distribution between augmented and non-augmented
data without the need for child models. The idea is that if a network trained on real
data generalizes well on augmented validation data, then the policy that produces these
augmented data will be optimal. In other words, the policy preserves the label of the
images, thus the distribution of the real data.

Adversarial AutoAugment [26] optimizes a target network and augmentation policy
network jointly on target task in an adversarial fashion. The augmentation policy network
generates data augmentations policies that produce hard examples, therefore increasing
the target network’s training loss. The hard examples force the target network to learn
more robust features that improve its generalization and overall performance.

RandAugment [12] uses a much reduced search space than AutoAugment and opti-
mizes two hyperparameters: the number of applied augmentations and the magnitude.
RandAugment tunes these parameters with a simple Grid Search [27] on the target task,
therefore, removes the need for a proxy task as is the case in AutoAugment [10]. The
authors argue that this simplification helped the strong performance and efficiency of their
approach.

TrivialAugment [16] samples one augmentation from a given set of augmentations
and its magnitude uniformly at random and applies on a given image. This method is
efficient, parameter-free, and competes with RandAugment [12] in performance for image
classification.

In this work, we introduce two novel (automated) data augmentation methods for
semantic segmentation: SmartAugment and SmartSamplingAugment. With hyperparam-
eter optimization, SmartAugment finds optimal data augmentation strategy and Smart-
SamplingAugment’s efficient and parameter-free approach competes with the previous
state-of-the-art methods.

https://github.com/mvg-inatech/SmartAugment
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3. Methods

In this section, we present our data augmentation algorithms: SmartAugment and
SmartSamplingAugment. Similar to previous methods, namely RandAugment and Trivial-
Augment, we define a set of color and geometric augmentations along with their magni-
tudes as shown in Table 2. We describe our algorithms in detail in the following subsections.

Table 2. Detailed overview of data augmentation operations and their magnitude ranges. We use the
same augmentations as in RandAugment paper [12]. * The Identity operation only belongs to this list
for the RandAugment and TrivialAugment approaches.

Color Ops Range Geometric Ops Range

Sharpness (0.1, 1.9) Rotate (0, 30)
AutoContrast (0, 1) ShearX (0.0, 0.3)
Equalize (0, 1) ShearY (0.0, 0.3)
Solarize (0, 256) TranslateX (0.0, 0.33)
Color (0.1, 1.9) TranslateY (0.0, 0.33)
Contrast (0.1, 1.9) Identity *
Brightness (0.1, 1.9)

3.1. Smartaugment

SmartAugment optimizes the number of sampled color and geometric augmentations
and their magnitude separately (see Figure 1b and Algorithm 1). Having these distinct
sets of augmentations allows control over the type of applied augmentation instead of
optimizing the total number of sampled augmentations and their magnitude collectively.
SmartAugment also optimizes a parameter that determines the probability of applying
data augmentations P instead of having the Identity operation in the augmentation list, as
done by recent approaches.

SmartAugment uses Bayesian Optimization (BO) [15] to search for the best augmen-
tation strategy. The space of augmentation strategies include the following parameters:
number of color augmentations NC, number of geometric augmentations NG, color magni-
tude MC, geometric magnitude MG, and probability of applying augmentations P. These
hyperparameters are optimized with the BO algorithm until a given budget is exhausted.
Once BO chooses the augmentation parameters, the augmentations are sampled randomly
without replacement for each epoch and image from the given list of augmentation op-
erations as listed in Table 2. RandAugment, in contrast, samples with replacement and
therefore allows sampling the same augmentation several times for the same image.

(a) RandAugment (b) SmartAugment

Figure 1. Comparison of RandAugment and SmartAugment.
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Algorithm 1: Pseudocode for SmartAugment.
Input: Data D,

List of color augmentations CLIST ,
List of geometric augmentations GLIST

1 for each configuration do
2 Select 5 hyperparameters via BO:
3 1) # Color augmentations NC to sample,
4 2) # Geometric augmentations NG to sample,
5 3) Color magnitude MC,
6 4) Geometric magnitude MG,
7 5) Probability P of applying augmentations
8 for each epoch do
9 for each image I in D do

10 Sample var uniformly from [0, 1]
11 if var > P then
12 use I ; // do not augment

13 else
14 C := random sample NC ops from CLIST
15 G := random sample NG ops from GLIST
16 IAUG := apply C with MC
17 and G with MG to I
18 use IAUG

3.2. SmartSamplingAugment

The number of sampled augmentations in SmartSamplingAugment, a tuning-free
and computationally efficient algorithm, is fixed to two augmentation operations, and the
magnitude is sampled randomly from the interval [5, 30] (see Figure 2b and Algorithm 2).
These design choices are based on our preliminary experiments and seem to generalize well
to unseen datasets. SmartSamplingAugment samples augmentations with a probability
derived from the weights, which we set based on an ablation study for image classification
on CIFAR10 from RandAugment [12]. In this study [12], the average improvement in perfor-
mance is computed when a particular augmentation operation is added to a random subset
of augmentations. We selected the augmentations with a positive average improvement
and transformed this value into probabilities, by which we define the weights.

In SmartSamplingAugment, we linearly anneal the parameter P, that determines
the probability of applying data augmentations, from 0 to 1, increasing the percentage of
applying augmentation over the whole training epochs. That way, the model first sees the
original data in the early epochs and encounters more variations as the training progresses.

(a) TrivialAugment (b) SmartSamplingAugment

Figure 2. Comparison of TrivialAugment and SmartSamplingAugment.
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Algorithm 2: Pseudocode for SmartSamplingAugment.
Input: Data D,

List of augmentations A := [a1, a2, . . . , a−1],
Weights W := [wa1 , wa2 , . . . , wa−1 ]

1 for each epoch do
2 Update P ; // P is linearly annealed
3 for each image I in D do
4 Sample var from [0, 1]
5 if var > P then
6 use I ; // do not augment

7 else
8 AW := random sample 2 ops ai, aj ∈ A with weights wi, wj ∈W
9 M := random sample magnitude from [5,28]

10 IAUG := apply AW with M to I
11 use IAUG

4. Experiments and Results

In this section, we empirically evaluate and analyze the performance of SmartAugment
and SmartSamplingAugment on several datasets and compare it to the previous state-of-
the-art approaches. Furthermore, we investigate the impact, interaction, and importance of
the optimized data augmentation hyperparameters.

4.1. Experimental Setup
4.1.1. Default and TrivialAugment

For completeness, we include in our experiments a “standard” augmentation strategy,
a strategy based on augmentations often manually selected by researchers , we dubbed
DefaultAugment and use it as our baseline. This default augmentation strategy is inspired
by semantic segmentation literature [28,29] and uses the following standard augmentations:
horizontal flipping (p f lip = 0.5), random rotation (range = [−45, 45]), random scaling
(range = [−0.35, 0.35]), where p f lip represents the probability of applying this particular
augmentation. Furthermore, we extended another recent method, TrivialAugment (see
Figure 2a), for semantic segmentation and integrated it in our experiments.

4.1.2. RandAugment++

Classical RandAugment [12] uses simple Grid Search [27] to optimize its hyperpa-
rameters. Evaluating the full grid of classical RandAugment would lead to evaluate
nearly 100 iterations (31 × 3 iterations: magnitude in the range of [0, 30] and the number
of operations in the range of [1, 3]) which is computationally very expensive. There-
fore, we decided to implement an updated version of RandAugment, which we call
RandAugment++ (see Figure 1a) that uses the same algorithm but optimizes its hyperpa-
rameters with Random Search. Random Search is known to perform better than Grid
Search [30] and its number of iterations is not limited to the size of the grid in the search
space. Furthermore, using Random Search enabled us to reduce the number of iterations
and increase the search space for RandAugment++ with less computational costs. We
analyzed the performance of RandAugment++ with different operations on the EM dataset
and found out that constraining the number of applied operations to three is not optimal
(see Figure 3). From this observation, we increase the upper limit for the number of applied
operations from 3 to 16, which denotes the total number of augmentations in the list we
sample from. To ensure comparability between RandAugment++ and SmartAugment,
we use the same computational budget of 50 iterations for both methods. We show in an
ablation study (see Section 4.4) that RandAugment++ is a better choice than the classical
RandAugment.
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Figure 3. Performance (mean IoU) analysis for different numbers of operations for RandAugment++
on EM. These results indicate that the number of applied operations should optimally not be limited
to three, as in classical RandAugment.

4.1.3. Training Setup

For all experiments, we use the U-Net architecture [31] to train the models and split the
datasets into training, validation, and test set. To find good fitting training hyperparameters
(e.g., learning rate and weight decay) for our in-house datasets, we performed Random
Search over ten configurations until model convergence. As a preprocessing step, we apply
with 50% probability either random crop or downsize operations before passing the data to
the different augmentation strategies for efficient memory and computing use. For KITTI
and EM datasets, we use a similar training setup as in [28]. To speed up memory intensive
processes, we use mixed precision training with 16 bits. For our experiments, we made use
of four GeForce GTX 1080 GPUs. For better reproducibility, we list the training parameters
for each of the datasets for a detailed view in Table 3.

Table 3. Training parameters for each dataset. Train, val, test denote the data split used during
training.

Dataset Resolution Batch Learning Epochs # Data #Train #Val #TestSize Rate

KITTI 185× 612 4 0.001 4000 200 140 30 30
RaVeNNa 180× 180 3 0.001 2000 1684 1107 216 361
EM 512× 512 2 0.01 500 30 20 5 5
ErfASst 864× 864 2 0.05 5000 50 30 10 10

Furthermore, we performed early stopping on the validation set. To save computing
and still obtain enough samples on the validation set for early stopping, we evaluate every
10% of the total epochs on the validation set. This ensures that for each dataset, independent
of the number of epochs needed until convergence, the number of epochs evaluated on
the validation set is proportional to the total number of epochs. We run these experiments
three times for the different data augmentation approaches and take the mean of the test
IoU to ensure a fair comparison. In the case of RandAugment and SmartAugment, we
evaluated 50 configurations for each method and report the mean test IoU of the three best
performing configurations on the validation set.

For all our experiments, we use Stochastic Gradient Descent (SGD) optimizer [32] and
Cosine Annealing [33] as our learning rate scheduler, and anneal the learning rate over the
total number of epochs.
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4.1.4. Datasets

We evaluate all approaches on four datasets with pixel-level annotated images from
diverse semantic segmentation applications. ErFASst is a bridge inspection dataset with
50 images and two classes used for crack detection (Figure 4a). We use KITTI [34], a
popular autonomous driving dataset consisting of 200 images with 19 classes (Figure 4b).
RaVeNNa [1], is a cystoscopic medical imaging dataset comprises 1684 images with seven
classes that is used in detecting artifacts such as tumors in human bladder (Figure 5a).
EM [35] is a brain electron microscopy dataset of 30 images derived from a 2D segmentation
challenge dataset and consists of two classes (Figure 5b). To achieve meaningful results,
these datasets differ in size, resolutions, and type of images (RGB natural images, Grayscale,
see Table 3). Since RaVeNNa and ErFASst are highly class-imbalanced datasets, we use a
weighted cross-entropy loss during training. The weights are computed beforehand with
inverse frequency of the number of pixels belonging to a specific class in the training set.

(a) ErFASst (b) KITTI

Figure 4. Infrastructure mapping datasets.

(a) RaVeNNA (b) EM

Figure 5. Biomedical datasets.

4.2. Comparison to the State-of-the-Art

In Table 1, we compare our methods, SmartAugment and SmartSamplingAugment,
to the aforementioned data augmentation methods as well as to our baseline, Default-
Augment, a basic augmentation strategy that is commonly used in semantic segmentation
literature [28,29]. SmartAugment outperforms the previous state-of-the-art methods across
all datasets, while SmartSamplingAugment competes with the previous state-of-the-art
methods and outperforms the comparably cheap augmentation method, TrivialAugment.
Moreover, SmartSamplingAugment outperforms RandAugment++ on half of the datasets,
even though the latter has 50 times more budget.

Approximate Analysis of Compute Costs

We calculate the computing costs for each dataset for all the experiments done with
GeForce GTX 1080. In Table 4 we list our cost estimates that each method requires until
convergence.
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Table 4. Approximate estimate of computing costs (in hours) for each dataset and augmentation
approach. The costs are the time required until the maximum number of epochs is reached. Due to
computational resource constraints, we run Smart, Rand++, Randclassic with four GPUs in parallel.
Randclassic is RandAugment that uses GridSearch for optimization.

Dataset Default Rand++ Trivial Smart
Smart

Sampling Randclassic

KITTI 12 h 150 h 12 h 150 h 12 h 276 h
RaVeNNa 13 h 163 h 13 h 13 h 163 h 302 h
EM 0.5 h 6 h 0.5 h 6 h 0.5 h 11.6 h
ErfASst 23 h 287 h 23 h 287 h 23 h 537 h

# Iterations 1 50 1 50 1 93

4.3. Analysis with fANOVA

We analyze the impact, interaction, and importance of augmentation hyperparameters
across different datasets with fANOVA [36]. Moreover, we quantify and visualize the
effect of different augmentation configurations on the overall model performance on the
validation mean IoU metric.

4.3.1. Impact of Hyperparameters across Different Datasets

The results in Figures 6 and 7 show that the optimal strategy of augmentation hy-
perparameters is dataset-specific and predominantly impacts the overall performance: As
shown in Figure 6, applying many color operations with a high color magnitude to the
data can be good for the EM dataset, but can have a detrimental effect on the performance
of the KITTI dataset. There are areas in the augmentation space where it is sub-optimal to
sample from for a particular dataset but are good for another one. Furthermore, Figure 7
indicates that the probability hyperparameter of applying data augmentations strongly
varies across the datasets.

(a) SmartAugment on EM (b) SmartAugment on KITTI

Figure 6. The impact of hyperparameters on different datasets based on performance metric mean
IoU. This figure shows that the good values for each hyperparameter depend on the dataset. In this
example, higher number of color ops and color magnitude is optimal for EM dataset but detrimental
for KITTI dataset.
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(a) SmartAugment on RaVeNNa (b) SmartAugment on EM

Figure 7. Comparison of the probability hyperparameter of applying data augmentations. These
results indicate that the EM dataset needs much more data augmentation than the RaVeNNa dataset.
MeanIoU is used as performance metric.

4.3.2. Hyperparameter Interaction Analysis

Furthermore, we analyze the interaction of hyperparameters and their effect on the
performance. As mentioned in Section 3, SmartAugment optimizes the color and geometric
augmentations separately. The results in Table 1 and Figure 8 confirm our hypothesis
that this is a good design choice. Looking more closely, the figure shows that for optimal
performance, it does not suffice to optimize the total number of applied augmentations;
rather, it is crucial to sample the right type of augmentation from the augmentation list
carefully. For instance, according to Figure 8b, choosing four operations from the total
number of augmentation seems to be the optimal choice for the KITTI dataset. However,
according to Figure 8a, just sampling “blindly” four augmentation operations from the
entire augmentation list might not always be a good choice. If we would pick four color
augmentation operations and zero geometric augmentation operations, the performance
would be significantly sub-optimal.

(a) SmartAugment on KITTI (b) RandAugment++ on KITTI

Figure 8. Comparison considering the number of applied augmentations: RandAugment++ optimizes
the total number of augmentations, whereas SmartAugment differs between the number of color
augmentations and geometric augmentations. This figure shows that the performance of a total
number of augmentations depends on the types of augmentations. Please note that mean IoU is used
as a performance metric.

4.3.3. Hyperparameter Importance Study

In many algorithms that have a large hyperparameter space, only a few parameters are
usually responsible for most of the performance improvement [36]. In this study, we use
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fANOVA to quantify how much each hyperparameter contributes to the overall variance
in performance. As we observe in Table 5, the importance of a specific hyperparameter
strongly depends on the dataset. For instance, the geometric magnitude has a much higher
impact on the KITTI dataset than other datasets. Moreover, the results from Table 5 show
that optimizing the probability of application is an important design choice since this
parameter is the most important one in half of the datasets studied in these experiments.

Table 5. Hyperparameter importance study for different hyperparameters across different datasets
on SmartAugment experiments. For instance, for the RaVeNNa dataset, the probability of applying a
data augmentation strategy is responsible for 46% of mean IoU’s variability across the configuration
space. The higher the importance value, the more potential it has to improve the performance for a
given dataset.

Dataset p(aug) col_mag geo_mag #col_ops #geo_ops

KITTI 0.13 0.12 0.24 0.14 0.03
RaVeNNa 0.46 0.04 0.06 0.06 0.05
EM 0.25 0.14 0.09 0.04 0.03
ErFASst 0.1 0.12 0.04 0.22 0.04

4.4. Ablation Studies

In addition to comparing our methods to the state-of-the-art approaches and the
baseline, we report some ablation studies that give deeper insights into the impact of our
methods.

4.4.1. RandAugment(++) Ablation Studies

To confirm that the improvement of SmartAugment over RandAugment++ comes
from the method differences, we study RandAugment with different optimization methods.
For this purpose, we compare classical RandAugment with Grid Search, RandAugment++
with Random Search, and RandAugment with Bayesian Optimization as optimization
algorithms. We chose a cheap-to-evaluate dataset (EM) for this ablation study. As the
results in Table 6 confirm, SmartAugment outperforms RandAugment, independent of
the selected hyperparameter optimization algorithm. An interesting observation from
the study is that RandAugment++ improves over the classical RandAugment as shown
in Table 6. It is worthy to note that these improvement gains were achieved with fewer
iterations and less computational costs.

Furthermore, Figure 3 shows that it can be sub-optimal to limit the number of applied
augmentations to three, as is done in classical RandAugment. Therefore, increasing the
search space as in RandAugment++ allows finding a better number of augmentation
operations.

Table 6. Comparison of RandAugment variants with SmartAugment on the EM dataset. For each of
the results, we took the test mean IoU of the best three performing configurations evaluated on the
validation set. The results show that SmartAugment outperforms RandAugment(++), independent
of the hyperparameter optimization algorithm.

Method HPO Algorithm EM Dataset # Iterations

Rand Grid Search (classic approach) 78.54 93
Rand++ Random Search 78.83 50
Rand++ Bayesian Optimization 78.84 50
Smart Bayesian Optimization 79.04 50
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4.4.2. SmartSamplingAugment Ablation Studies

In these ablation studies, we analyze the impact of annealing the probability hyper-
parameter over epochs and weighting the augmentation operations. For the experiments
without annealing, we set the probability of augmentation P to 1.

The results in Table 7 show that for three out of four datasets, annealing as well
as weighting the augmentations are good design choices. Additionally, Table 7 shows
that the combination of annealing the probability of augmentation and weighting the
augmentations for RaVeNNa and ErFASst datasets improves the performance. Overall,
SmartSamplingAugment does comparatively well and outperforms DefaultAugment and
TrivialAugment across all datasets (see Table 1).

In the following, we give some possible explanations as to why annealing the augmen-
tations for the EM dataset and weighting the augmentations for the KITTI dataset might
not perform well. According to the hyperparameter importance study in Table 5, which
quantifies the effect of how the values of these parameters affects the overall performance,
the probability of augmenting data is the most important one for the EM dataset. Figure 7b,
indicates that the EM dataset benefits from a high percentage of data augmentation; and
therefore setting the probability of augmentation to 1 over the whole training yields better
results rather than slowly increasing the probability of applied augmentations over the
total number of epochs can be suboptimal. In contrast to the RaVeNNa dataset, where
the probability of augmenting data is also an important hyperparameter (see Table 5),
always augmenting data (P = 1) hurts performance. Figure 7a shows that annealing or
progressively increasing the probability of augmentation for this particular dataset does
seem to be a better alternative since we do early stopping.

Table 7. SmartSamplingAugment ablation study analyzing the impact of weighting the augmenta-
tions and annealing the probability hyperparameter over the whole epochs for different datasets.
We evaluated each experiment three times using different seeds to obtain the mean IoU. For the
experiments without annealing, we set the probability P of applying augmentations to 1.

Dataset Weighting Without Weighting
Annealing No-Annealing Annealing No-Annealing

KITTI 66.53 67.15 67.49 67.13
RaVeNNa 90.72 87.07 85.65 85.68
EM 78.52 79.26 77.94 78.47
ErFASst 70.24 68.27 64.99 64.51

Furthermore, for the KITTI dataset, the geometric magnitude is the most important
hyperparameter and Figure 9 shows that sampling a high geometric magnitude can hurt
performance. In SmartSamplingAugment, rotation is strongly weighted, and there is a
considerable probability that a higher magnitude for this operation is sampled. Figure 10
visualizes three KITTI and EM images, each rotated with a different magnitude, and
gives an intuition why augmenting the KITTI dataset with high geometric operations can
have a detrimental effect on performance. We note that we select the weights based on a
study performed on a classification dataset, which probably is sub-optimal for semantic
segmentation. However, this gives insight that studies focusing on optimizing the weights
for augmentation operations can be a next step for further research.
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Figure 9. Results from SmartAugment on the KITTI dataset indicate that the geometric magnitude,
which is the most important hyperparameter for this particular dataset, should be low. Taking this
into account gives a possible explanation for why weighting the data augmentation with weights
that focus on geometric augmentations might hurt performance (mean IoU) for the KITTI dataset.

Rotation with magnitude 10

Rotation with magnitude 30

2× Rotation with magnitude 30

Figure 10. Visualization of three images from the KITTI (left) and EM (right) datasets, each rotated
with a different magnitude.
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5. Conclusions

In this work, we provide a first and extensive study of data augmentation for seg-
mentation and introduce two novel approaches: SmartAugment, a new state-of-the-art
method that finds the best configuration for data augmentation with hyperparameter op-
timization, and SmartSamplingAugment, a parameter-free, resource-efficient approach
that performs competitively with the previous state-of-the-art approaches. Both methods
achieve excellent results on different and diverse datasets.

With SmartAugment, we show that Bayesian Optimization can effectively find an op-
timal augmentation strategy from a search space where the number of color and geometric
augmentations and their magnitudes are optimized separately, along with a probabil-
ity hyperparameter for applying data augmentations. Our results show that the type of
applied augmentation is essential in making good decisions for improved performance.
Furthermore, a hyperparameter importance study indicates that the probability of applying
a data augmentation strategy could have considerable responsibility for the mean IoU’s
variability across the configuration space.

With SmartSamplingAugment, we develop a simple and cheap-to-evaluate algorithm
that weighs the augmentations and anneals augmentations to increase the percentage of
augmented images systematically. The results show that this is a powerful and efficient
approach that is competitive to the more resource-intensive approaches and outperforms
TrivialAugment, a comparably cheap-to-evaluate method. Furthermore, SmartSamplin-
gAugment opens the gate for more research on weighting and annealing data augmentation.
A possible future work will study an extension of our methods to image classification,
detection and 3D segmentation, particularly for biomedical applications.
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