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Abstract: In order to obtain the optimal perspectives of the recognition target, this paper combines
the motion path of the manipulator arm and camera. A path planning method to find the optimal
perspectives based on an A* algorithm is proposed. The quality of perspectives is represented by
means of multi-view recognition. A binary multi-view 2D kernel principal component analysis
network (BM2DKPCANet) is built to extract features. The multi-view angles classifier based on
BM2DKPCANet + Softmax is established, which outputs category posterior probability to represent
the perspective recognition performance function. The path planning problem is transformed into a
multi-objective optimization problem by taking the optimal view recognition and the shortest path
distance as the objective functions. In order to reduce the calculation, the multi-objective optimization
problem is transformed into a single optimization problem by fusing the objective functions based
on the established perspective observation directed graph model. An A* algorithm is used to solve
the single source shortest path problem of the fused directed graph. The path planning experiments
with different numbers of view angles and different starting points demonstrate that the method can
guide the camera to reach the viewpoint with higher recognition accuracy and complete the optimal
observation path planning.

Keywords: multi-view recognition; path planning; A* algorithm; perspective selection

1. Introduction

With the rapid development of artificial intelligence, it is an inevitable trend to realize
intelligence for robots that integrate machine vision technology. Different images observed
from different perspectives provide information on different features. Information in a
certain direction from a fixed perspective cannot satisfy recognition requirements. Dynamic
observation from high-quality multi-view angles can obtain more comprehensive features
of the target, which can improve the recognition accuracy greatly. Series linkage robots
are widely used in the industrial field with simple structures and flexible operations. It
depends on the path planning of the manipulator whether the mechanical arm can complete
tasks efficiently and accurately in the workspace. Therefore, in order to improve the target
recognition accuracy of the robot in different environments, it is of great significance to
plan the motion of the manipulator to obtain the optimal multi-view observation path of
the target.

Selection of perspectives, motion of cameras and path planning of mechanical arms
have been researched separately in general. For the selection of perspectives, the traditional
selection methods can be divided into two types, based on geometric features and semantic
features according to the different measurement criteria. Viewpoint metrics based on geo-
metric features include profile curvature [1], depth map [2], region of interest [3], curvature
variation of target projection on viewpoint-related imaging plane [4], etc. Local geometric
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features reflect details which cannot represent the main content of the target. Scholars
have proposed some methods based on information theory, such as viewpoint interaction
information [5], relative entropy [6], viewpoint visibility KL distance [7], and surrogate
information [8]. These methods can be used to further measure global features based on
geometrical property measurement. For features such as texture and functionality, which
are called semantic features, the proposed viewpoint metrics methods include discernibility
region [9], upright direction [10], implication segmentation [11], Schelling Points [12], etc.
The viewpoint metrics method based on geometric feature detection is simple and fast,
but the measurement quality is far from expected. The method based on semantic feature
detection can generally obtain good results, but its operation is complex and inefficient.
With the development of artificial intelligence, deep learning is also gradually applied
to the study of viewpoint selection. With the introduction of long short-term memory
networks (LSTM) [13], multi-loop-view convolutional neural networks (MLVCNN) [14],
the hierarchical multi-view context modeling method (HMVCM) [15] and others combined
with compact 3D shape descriptors, Wei et al. [16] presented a view-based convolution
neural network (view-GCN), and aggregated the multi-view features as a global shape
descriptor. Zhou et al. [17] proposed a multi-view saliency guided depth neural network,
which consisted of a model projection-rendering module, visual context learning module
and multi-view learning module. In the visual context learning module, convolutional
neural network was used to extract the visual features of a single view, and then the salient
LSTM was used to select the representative view adaptively. Multi-view learning mod-
ules generated compiling three-dimensional object descriptors using the designed LSTM
classification. The method utilized a multi-view context to select representative views
and measure similarity. Meng et al. [18] proposed a target detection model based on a
convolution neural network, which was combined with a three-dimensional CAD model
to select viewpoints. The above viewpoints were preset, all views were entered into the
network, and the best performance could be achieved by using all views. In order to reduce
calculation, RotationNet [19] only needed a few images. The perspective variable was used
as the optimized latent variable in the training process, which could obtain the ability to
establish the corresponding viewpoint for the input views. The pose and the category label
of the object were estimated. Then, the base axis of the object determined in an unsuper-
vised mean based on the appearance was added to achieve alignment, and the views were
enhanced [20]. However, this method mainly finds the corresponding viewpoint for the
input view, and still needs to contain a predefined complete multi-view image set. Inspired
by the attention mechanism, Chen et al. [21] proposed a view-enhanced recurrent attention
model (VERAM), which was a real active viewpoint selection mechanism. It contained a
camera module, observation sub-network, cyclic subnet, viewpoint evaluation subnet and
classification subnet. The information flow of the reverse gradient was added to balance
the perspective prediction network and classification sub-network. The reward and loss
functions were designed to improve the performance of view classification and perspective
selection. The network can select the shortest view sequence independently and input it
into a three-dimensional shape classification network with the active camera viewpoint
selection ability. However, the problems appear easily in this mixed system such as too
many parameters lead to fit, and difficult to balance the subnets. It is not difficult to find
that perspectives selection methods based on deep learning describe the features of the
observed objects more comprehensively and the selection results are more representative.

For the study of camera motion planning, Sokolov et al. [22] used a greedy algorithm
to obtain the optimal viewpoint set. A method of camera auto-roaming guidance based
on a good viewpoint set was proposed, and it was optimized based on semantic distance.
Alam et al. [23] planned a virtual camera in an all-round way using heuristic methods to solve
the viewpoint coverage problem. Yao et al. [24] fixed the viewpoint height, optimized the
camera layout, and converted the three-dimensional problem into a two-dimensional discrete
coverage problem. Amriki et al. [25] proposed a SmarkMax algorithm, which achieved
maximum coverage with a minimum number of viewpoints. Marchand et al. [26] proposed
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a camera relocation method based on multiple output learning. Valentin et al. [27] studied
the uncertainty in forest regression to achieve accurate camera positioning. Lan et al. [28]
proposed a viewpoint selection evaluation method based on the Kullback–Leibler Divergence
method. The aesthetic evaluation method was interpreted by the three-point method and
diagonal composition method, and the probability density formula with the existence of the
target was defined. The optimal viewpoint for searching scenes in the robot photography
system was constructed. Qiu et al. [29] proposed a framework for answering questions in
human-computer interaction by iteratively observing scenes. Yokomatsu et al. [30] proposed
a spatial search method combining Gaussian process and particle swarm optimization
(PSO) algorithm for indoor UAV photography, whose objective was to effectively predict the
heuristic optimal viewpoint with short time. With regard to camera motion planning, it can be
found that some of the research results do not consider the choice of the optimal perspective,
and camera motion planning considering the optimal perspective do not consider factors
such as camera motion time and efficiency.

For the path planning of the manipulator, the research achievements are mainly fo-
cused on the path planning of the manipulator end in Cartesian space and the trajectory
optimization of joints in joints space. The purpose of this paper is to optimize the view
angle of the camera driven by the end of the manipulator; therefore, only the path planning
of the manipulator in Cartesian space is studied in this paper. Currently, the path planning
algorithms proposed by domestic and foreign scholars can be divided into sample-based
planning algorithms and search-based combined planning algorithms. Sample-based plan-
ning algorithms capture the connectivity properties in an infinite number of free spaces
approximately according to the conditions to be met using a countable set of sampling
points or sampling sequences. Some classical methods include the Probabilistic Road
Map (PRM), Rapid-Exploring Random Tree (RRT), Artificial Potential Field (APF), etc.
PRM [31] is a typical global planning algorithm, and map information (including all barrier
information) is fully known. The PRM algorithm can be directly used in the path planning
of different tasks under the constant obstacle environment with simple operation and
probability completeness. It is suitable for static offline planning. However, the PRM
algorithm requires a lot of time and memory. The more degrees of freedom the manip-
ulator has, the more complex random sampling and collision detection are. RRT, as a
one-way query global path planning algorithm uses a tree structure for node-to-target
planning [32,33]. The algorithm satisfies probability completeness and has lower planning
efficiency for high-dimensional sampling space. The methods based on APF [34,35] cal-
culate the force of gravity and repulsion to drive the robot to the target point. They are
suitable for low-dimensional and high-dimensional space planning with simple models.
Meanwhile, deficiencies also exist, such as to the danger of falling into local optimum and
insensitivity to dynamic obstacle avoidance.

The search-based combinatorial programming algorithm searches a path after con-
structing a topological graph in free space using a graph search algorithm. The commonly
used algorithms include Dijkstra [36] and A* algorithms [37]. The Dijkstra algorithm
generally solves the shortest path problem in directed graph. It works by using greedy
algorithms. Each iteration, it traverses a vertex nearest to the starting point, and each
iteration traverses adjacent vertices from vertices that have not been visited, until it extends
to the target point. The A* algorithm combines information from the Dijkstra algorithm
with the Breadth-First Search (BFS) algorithm for path searching. The A* algorithm is also
often used to solve the shortest path in a static road network, which is one of the commonly
used heuristic algorithms.

In recent years, with the rise of in-depth learning, some scholars have applied machine
learning methods in the path planning of mechanical arms, and have accomplished more
achievements. Qureshi et al. [38] proposed motion planning networks (MPNets) based on
deep neural networks, which achieve end-to-end planning. However, the data depended
on the RRT algorithm and had some limitations. Li et al. [39] transformed the shortest
path problem of the manipulator path planning into a linear programming problem, which
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was solved using a zeroing neural network (ZNN). A zero-return neurodynamic method
was constructed, and a ZNN model was established for the shortest path problem of the
manipulator. Then, the stability of the ZNN model was proved by the Lyapunov method.
Finally, the ZNN model was applied in the path planning of the manipulator to generate
the optimal planning path. Zhang et al. [40] combined reinforcement learning with an intel-
ligent optimization algorithm, and proposed a deep deterministic policy gradient-adaptive
ant colony optimization algorithm (DDPG-AACO) for complex parts of welding manipu-
lators. Deep deterministic policy gradient (DDPG) training was used to learn local path
planning strategies to control the safe movement of a welding manipulator between two
weld endpoints. Then, global path planning, with the shortest path length and traversing
all seams under the constraint of the welding direction, was achieved using an adaptive
ant colony optimization algorithm (AACO) that manually alters the pheromone value.
The simulation results showed the effectiveness of this method. Hua et al. [41] proposed
a deep learning training method for motion decoupling solution of redundant mechani-
cal arm. Zou et al. [42] set up a multi-objective decision optimization function for route
planning based on the idea of reinforcement learning. Wang et al. [43] proposed a hybrid
bidirectional rapidly exploring random tree H-BRRT algorithm based on reinforcement
learning to solve problems such as slow random generation and convergence generated by
the rapidly exploring random tree (RRT) algorithm. Target gravity strategy was introduced
to model the random exploration process. Enhanced learning was applied to improved
target gravity exploration strategies, and adaptive switch operations were carried out based
on cumulative performance. Experiments showed that this strategy improved the search
efficiency and shortened the generated path. Santos et al. [44] established a multi-objective
optimization formula considering the maneuverability of the manipulator and the max-
imum torque. The trajectory of the space manipulator was optimized by the machine
learning. Fang et al. [45] presented a snake tongue algorithm based on a slope potential
field, which was combined with the genetic algorithm (GA) to complete a shorter path
search. The reinforcement learning (RL) was further fused to reduce the number of path
points, which achieved efficient collision-free path planning for the robot.

Sampling-based methods, such as PRM and RRT algorithms, have the characteristic
of probability completeness; that is, the solution can be guaranteed, but not necessarily
the optimal solution in the presence of solutions as long as the planning or searching
took. Compared with the machine learning method, the traditional planning methods can
directly plan the route and find the near-optimal path more effectively, but they also face the
problems that complex calculation and poor planning timeliness. The A* algorithm has the
advantages of rapid response to the environment and direct path search. As a direct search
algorithm, it is widely used in path planning problems. In order to ensure the real-time
performance in the process of path planning and reducing the speed of planning, this paper
established a directed-graph path-planning model. The nodes search method based on
directed graph was selected. The A* algorithm has both the features of the fast speed in the
depth and obtaining the optimal solution in the width by adding the evaluation function. It
has the maximum probability to find the optimal solution and can reduce the redundancy
time. Therefore, the A* algorithm was selected for path planning.

From the above analysis, it is clear that the current research does not combine the
optimal viewpoint selection, camera motion and path planning of mechanical arms. The
current path planning studies are generally conducted on the premise of setting the path
and obstacle avoidance functions given the starting point and end point, which have no
awareness of autonomous end point selection. In order to make the most widely used
linkage robots in the industrial field complete the accurate identification of the operated
target and have the awareness of autonomous viewpoint selection with the help of machine
vision technology, this paper integrates the camera and the end of the robot arm together,
and combines the optimal viewpoint selection, camera motion and path planning of the
mechanical arm to conduct the research on viewpoint-seeking path planning technology.
Specifically, the main contributions of this paper are as follows:



Algorithms 2022, 15, 171 5 of 26

(1) A multi-view feature extraction model based on the BM2DKPCANet is constructed
and a multi-view classifier combing with Softmax is built. The output category
posterior probability is used to characterize the viewpoint performance.

(2) The recognition performance and interval distance are abstracted as directed graph
models and the multi-objective optimization problem is transformed into a sin-
gle optimization problem by fusing two adjacency matrices. The single-source
shortest path problem of the fused directed graph based on the A* algorithm is
solved to complete the optimal observation path planning, satisfying the shortest
distance requirement.

(3) Observation path planning experiments are implemented based on the UR5 robot
manipulator with different observation viewpoints and different path starting points.
The results demonstrated the effectiveness of the A* algorithm for perspective-seeking
path planning. The effect of viewpoint number on recognition results is analyzed
and discussed.

The remainder of this paper is structured as follow. Section 2 presents the related re-
search on multi-view target recognition. Section 3 establishes the target observation model,
determines the objective function characterizing the viewpoint recognition performance
and shortest path, and studies in detail the A* algorithm-based multi-viewpoint recognition
optimal path planning. Different path starting points are selected for perspective-seeking
path planning experiments in Section 4. The research content of this paper is summarized
in Section 5.

2. Related Works
2.1. Multi-View Target Recognition

The view-based approach is widely used in the 3D object recognition, that is, 3D object
recognition problem is transformed into the recognition of multiple 2D images. Features are
captured from multiple viewpoints and fused to improve the recognition rate. Due to the
dimensionality reduction, 2D images only need 2D convolution filters for feature learning,
which greatly reduces the computation. The images acquired from different viewpoints
can also complement the detailed features of the target. Therefore, the view-based multi-
view target recognition method with excellent adaptability and flexibility has become a
common method for three-dimensional object recognition and detection, and has gained
the attention of many research scholars.

The model, based on the multi-view convolutional neural network (MVCNN) [46], is
a milestone in multi-view target recognition. It plays a pioneering role by fusing features
from multiple views through a maximum pooling layer to generate a simple and efficient
descriptor. Gao et al. [47] unified feature extraction and target recognition into a CNN,
and proposed an end-to-end pairwise multi-view convolutional neural network. Slice
and Concat layers were added and a multi-view pairwise recognition model [48] was
established, which could discriminate multiple batches of inputs to improve the robustness
of feature extraction. Lin et al. [49] built an end-to-end multi-view three-dimensional
fingerprint learning model based on full convolutional networks and Siamese networks.
Han et al. [50] developed a SeqViews2SeqLabels model. An attention module was used to
assign weights for each view. Sequential views were further aggregated to improve the
recognition accuracy. Xu et al. [51] proposed a lightweight multi-view network (PVLNet)
based on a parametric view learning mechanism. Views are directly constructed as pa-
rameters of PVLNet under the guidance of the parametric view learning mechanism. The
gradient descent method was used for automatic optimization. A simplified microscopic
deep graph generator was used to ensure the gradient propagation of the images, and the
global maximum pooling was used to aggregate the multi-view features extracted by the
CNN. The recognition efficiency was significantly improved.

In addition, the fusion of view features is one of the research trends used to reduce
the number of operations. Zhang et al. [52] proposed a classification method based on
semi-supervised learning, which included CNN-LP (label propagation) with label prop-
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agation capability and multi-view fusion strategy based on expectation maximization.
Zhang et al. [53] designed a multi-view based local information fusion network (MV-LFN)
for a 3D shape recognition task. A local relevance attention mechanism was introduced to
generate more efficient view descriptors. Local information was effectively extracted and
maintained by hierarchical aggregation of multi-view feature maps, which significantly
improved the recognition capability. Fei et al. [54] coded the multi-view feature projec-
tions as binary codes, and assembled them into block statistical features as recognition
descriptors. Liang et al. [55] proposed a new multi-view based hierarchical fusion pooling
method (MHFP) for 3D model identification, which hierarchically fused features from
multiple views into a compact descriptor. A 3D attention module was designed to mine
the correlation between views. Redundant information was removed effectively, and a
large amount of essential information was retained. Considering the complex structure
and long training period of target recognition algorithms based on deep learning, we
proposed the binary multi-view kernel principal component analysis network (BMKP-
CANet) model [56] and binary multi-view two-dimensional kernel principal component
analysis network (BM2DKPCANet) model [57] successively based on the principal com-
ponent analysis network (PCANet) model [58]. The BM2DKPCANet model can directly
perform feature extraction on two-dimensional images. Features are clustered and fused
through binary encoding, obtaining better recognition and computational efficiency. This
paper conducts a characterization study of viewpoint recognition performance based on
BM2DKPCANet model.

2.2. Feature Extraction Based on BM2DKPCANet Model

The BM2DKPCANet model for feature extraction of the input sequence images is
divided into three stages. As shown in Figure 1, the output features are binary hashed
and clustered after two-layer 2DKPCA convolutional filtering, followed by histogram
features output.
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Figure 1. BM2DKPCANet model.

The process of 2DKPCA convolutional filtering for the first filtering layer is described
as follows. Suppose that there are S multi-view image sequences Ii (i = 1, 2, . . . , S) ∈ Rm × n

as samples for training. S local feature matrices Ti sized k2 × mn are obtained after k × k
windows for block sliding sampling. Then, the column direction kernel matrix dimension
is Smn × Smn when performing centralized learning training. To reduce the computation,
the average column vector is computed instead of the original column vector to obtain a
nonlinear mapping sample Ti, which is mapped to the kernel feature space as follow:

Φ1 = [Φ(T1), Φ(T2), . . . , Φ(TS)] (1)
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The kernel matrix can be expressed as:

K1 = Φ1
TΦ1 = [k(Ts, Ts)] = [

〈
Φ(Ts), Φ(Ts)

〉
] (2)

The dimensionality is reduced to S × S. The kernel matrix is centralized such that

K1 = K1 −
1
S

K11− 1
S

1K1 +
1
S2 1K11 (3)

where 1 is the s-order matrix with all 1 components. The eigenvectors corresponding to
the first L1 largest eigenvalues are taken as 2DKPCA filter banks W l

1 = [w1, w2, . . . , wL1],
which are convolved with the training sample Ii after the zero-filled boundary and then
output the first-layer filtering:

Il
i = Ii ∗W1

l , i = 1, 2, . . . , S; l = 1, 2, . . . , L1 (4)

where ∗ is two-dimensional convolution.
It is also used as input for the second stage of convolutional filtering to further explore

the effective classification features. The same steps as described previously are used to
obtain the second stage filter set convolution kernel W2

` = [w1, w2, . . . , wL2], The second
layer filtering output is obtained by convolving the training samples Il

i with the zero-
padding boundary.

Ol
i = Il

i ∗W2
` = Ii ∗W1

l ∗W2
` ,

s.t.i = 1, 2, . . . , S; l = 1, 2, . . . , L1; ` = 1, 2, . . . , L2
(5)

In order to reduce the data redundancy caused in the process of multi-view image
acquisition and reduce the computation time and storage space to solve problems such
as large data storage and long-time operation of multiple views, the binary multi-view
clustering algorithm [45] is used to optimize the binary encoding and cluster of multiple
views jointly. The total optimization function is written as:

minF(Um′ , B′, C, G, α)

= ∑M
m′=1 (α

m′)
r
(‖B′ −Um′Φ(Olm′

)‖
2

F + β‖Um′‖2
F

−γ/n′tr((Um′Φ(Olm′
))(Um′Φ(Olm′

))
T
) + λ‖B′ − CG‖2

F
s.t.CT1 = 0, ∑m′ α

m′ = 1, αm′ > 0, B′ ∈ {−1, 1}q′×n′ ,
C ∈ {−1, 1}q′×c, G ∈ {0, 1}c×n′ , ∑j gj i = 1.

(6)

where αm′ is the weight of the m
′
th perspective of some fruit box, m

′
= 1, ..., M. Different per-

spectives have different weights. r > 1 is the scalar controlling the weight. B′ = [b1, . . . , bn′ ],
bi is the collaborative binary code for the ith instance. Each code b is represented by the
product of clustering centroids C and indicator vector g. Um′ is the mapping matrix under

the m
′
th perspective. Φ(Olm′

) is the kernel function based on nonlinear RBF mapping of
the output features after the second layer KPCA and randomly selected sample points
from the m

′
th perspective. γ is a non-negative constant. G = [g1, . . . , gn′ ] and λ are the

regularization parameters.
Each of the clustering characteristics after the above optimization is transformed

into decimal:

Tlm′

i =
L2

∑
l=1

2l−1
(

hlm′

i

)
(7)
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Each pixel of Tlm′

i (l ∈ [1, L1]) is an integer, and the range is [0, 2L2−1]. Each Tlm′

i is
divided into Z blocks. For each block, histogram statistics are conducted. Full connection is
taken to obtain:

f m′
i = [Zhist(T1m′

i ), · · ·, Zhist(TLm′
1

i )]
T
∈ R(2L2 )L1Z (8)

f m′
i is the BM2DKPCANet feature of the ith sample from the m

′
th perspective.

3. Optimal Path Planning for Multi-View Recognition Based on the A* Algorithm
3.1. Geometric Model for Target Observation

To search for the best path for accurate identification of multi-view targets, a geometry
model for target observation is first built. Then, the best path search problem is transformed
into a solving optimization problem.

Within the working space of the robot arm, the observation geometry model is con-
structed as large as possible to obtain a better observation path. For meeting the require-
ments, an outer envelope sphere of the target is constructed. The radius range of the
observation model is 3–5 times the radius of the outer envelope sphere. The hemispher-
ical ring observation model shown in Figure 2 is constructed based on the target center
position. The minimum and maximum observation circle radii of the observation area
boundary are Rmin and Rmax, respectively. Suppose that the target centroid is located at
the origin of coordinates O(0,0,0) and R is the distance of the camera viewpoint from the
coordinate origin, that is, arc radius of perspective. Due to the specificity of the target
observation model, a spherical coordinate system is used for position representation. Then,
the viewpoint imaging coordinates of point P are denoted as P (R, λ, θ,), λ is the angle
between the positive direction of z-axis and the directed line segment OP, 0≤ λ ≤ π/2, and
θ (0 ≤ θ ≤ 2π) is the angle between the positive direction of the x-axis and the projection
of the directed line segment OP on the xOy plane. The right-angle coordinate system is
converted as: 

x = R sin λ cos θ
y = R sin λ sin θ
z = R cos λ

(9)Algorithms 2022, 15, x FOR PEER REVIEW 9 of 28 
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Figure 2. Geometric model of hemispherical ring observation.

The conversion relation from a right-angle coordinate system to a spherical coordinate
system is 

R =
√

x2 + y2 + z2

λ = arccos z
R

θ = arctan y
x

(10)

The location of the optimal viewpoint is optimized by MHWOA, and the camera
observation path passes through a series of imaging points and is planned as a polynomial
function for interpolation to form a smooth curve. The camera observation path can be
expressed as a sequence of coordinates as:
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Pc =
{

Pv
1, Q1, Q2, . . . , Qn1

, Pv
2, Qn1+1, Qn1+2, . . . , Qn2

, . . . , Pv
k−1, Qnk−2+1, . . . , Qnk−1

, Pv
k

}
(11)

where Pv
p = (Rp, θp, λp), p = 1, 2, ..., k, are the coordinates of each imaging point,

Qq = (θq, λq, Rq) (q = 1, 2, . . . , nk−1) are coordinates of the interpolation points between
each imaging point.

The coordinate set of obstacles in the observation scene are set as B = {B1,B2,..., BE},
where Be = (Re, λe, Re), (e = 1, 2, ..., E) is the position coordinate of the eth surface obstacle.
As one of the important measurement parameters, the influence range of obstacles on the
path of manipulator can be expressed as parameter vector β (β1, β2, . . . , βE).

The observation area is uniformly divided according to the latitude and longitude
regions. Assuming that the longitude direction is uniformly divided into Mlo regions,
and the dimensional direction is uniformly divided into Mla regions, then the observation
model is divided into Mlo ×Mla arc cone regions, and at most one imaging point is defined
to exist in each arc region.

3.2. Objective Functions and Constraints

The path planning of viewpoints only needs to consider the shortest movement route
and high efficiency of viewpoint recognition. The objective function of the mathematical
model that transforms the viewpoint seeking path planning problem into a multi-objective
optimization problem at this point can be expressed as:{

max
_
R(X)

min
_
D(Pc, P1)

(12)

where the monotonically increasing function
_
R(X) represents the recognition performance

of the multi-view target recognition system. The larger the function value is, the higher
the recognition accuracy is. The information contained in the images obtained from dif-

ferent viewpoints at different locations is different, and the function
_
R(X) is also different.

_
D(Pc, P1) denotes the distance from the starting point P1 of the observation path to the
target point Pc.

It is very difficult to find a specific analytic function to represent to characterize the
recognition performance of the system theoretically. Based on the previous study of multi-
view recognition of targets, this section selects the Softmax classifier for classification and
outputs the category posterior probabilities to characterize the recognition performance.
For more accurate identification, while the design of the classifier is further improved,
combined with integrated learning theory, the single classifier is effectively combined, as
shown in Figure 3 for the basic structure of BM2DKPCANet network-integrated multi-view
classification. xi is the original image acquired by the camera, and the imaging viewpoint
of the pair of factors is P(xi) = (Rp, θp, λp). The multi-viewpoint image is decomposed into
image pairs and input to the two-viewpoint base classifier for classification and recognition,
and then all the reco_gnition results are fused using an integrated learning method.
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The structure of the two-view classifier network is shown in Figure 4. To better
describe the recognition performance optimization function, the Softmax classifier is chosen
to calculate the posterior probability to classify the image attributes.
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In order to reduce the planning complexity and the number of divided intervals, this
paper sets that the subsequent planning is carried out along the sphere with R as the
radius when the viewpoint enters within the allowed boundary region, i.e., R is between
Rl and Ru. According to the region division of the target observation model, the sphere is
homogenized into Mlo·Mla regions, and the set of view intervals can be expressed as:{

(θi, λj)|θi =
[

2π·(i−1)
Mla

, 2π·i
Mla

]
, λj =

[
π·(i−1)

2Mlo
, π·i

2Mlo

]}
s.t.i = 1, 2, . . . , Mla, j = 1, 2, . . . , Mlo

(13)

Φij is used to express the above perspective range. The set of perspective range can be
further expressed as: {

Φij|Φij = (θi, λj)
}

(14)

Each original image xi belongs to only one of the view intervals. The classifier classifies
only the image pairs within the viewpoint interval, and the original data set is reorganized
into a series of image pairs as:{

(xu, xv)|xu ∈ Xi, xv ∈ Xi+d, P(Xi) ∈ Φij, P(Xi+d
)
∈ Φ(i+dθ)(j+dλ)

}
(15)

where dθ is perspective interval difference in the dimensional direction and dλ is perspective
interval difference in longitude.

Some of these image pairs are randomly selected as training samples, and other image
pairs are used as test samples to evaluate the recognition performance of the constructed
BM2DKPCANet + Softmax classifier.

Based on the above approach, the final recognition results of the multi-view classifier
after integrated learning can be expressed by the following equation:

_
R(x1, x2, . . . , xk) = ∏(

k−1

∑
i=1

pi(y|xi, xi+1)) (16)

where {x1, x2, . . . , xk} is a sequence of input multi-view images. ∏(·) is the index of the
position of the maximum element of the input vector. pi(y|xi, xi+1) is the C-dimensional
posterior probability vector derived from the image classification by the base classifier,
expressed as
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pi(y|xi, xi+1) =


pi(y1|xi, xi+1)
pi(y2|xi, xi+1)
...

pi(yC−1|xi, xi+1)
pi(yC|xi, xi+1)

 (17)

where pi(yh|xi, xi+1) (h = 1, 2, . . . ,C) is the category posterior probability recognized of the
input image by the basic classifier. It can be expressed as:

pi(yh|xi, xi+1) = pi(yh|z) =
exp(zh)

C
∑

c=1
exp(zc)

(18)

where z is the input of the classifier of the i-th identification network.
The constraint of viewpoint seeking path planning for robotic arms requires that the

planned path points are in the target observation space, and also belong to the reachable
workspace of the robotic arm. The difference in viewpoints between adjacent path points
cannot exceed the number of base classifiers. The arm joint angles are within the joint
limit angles. The speed, acceleration and pulse speed of each joint cannot exceed the
corresponding maximum value. In summary, the mathematical model for transforming the
viewpoint seeking path planning problem into a multi-objective optimization problem can
be expressed as: max

_
R(X) = max(

_
R(Pv

1, Pv
2, . . . , Pv

k)) = max(∑ R̂
.
d(Φij, Φ(i+dθ)(j+dλ)

))

min
_
D(Pc, P1)

s.t.



{
Pv

1, Pv
2, . . . , Pv

k
}
∈ Ω ∈W

Pv
f ∈ Φij, Pv

f+1 ∈ Φ(i+dθ)(j+dλ)
, f = 1, 2, . . . , k− 1, dθ ≤ Cl , dλ ≤ Cl

θd
s ≤ θs ≤ θu

s

|
.
θ

s
(t)| ≤ Vs

max

|
..
θ

s
(t)| ≤ As

max
|
...
θ

s(t)| ≤ Js
max

(19)

where Ω is the viewpoint position search space, W is the accessible workspace of the
manipulator, Φij is the range of view angle, dθ is the view angle difference of latitude, dλ is
the view angle difference of longitude, k is the number of view angles in path planning, Cl
is the number of basic classifiers, θs is the joint angle of the sth joint, θd

s and θu
s are the upper

and lower boundary of the angle movement for the sth joint, respectively.
.
θ

s
(t),

..
θ

s
(t) and...

θ
s(t) are the actual velocity, acceleration and pulse of the sth joint of the manipulator at

t time, respectively. Vs
max, As

max and Js
max are respectively the maximum velocity, maximum

acceleration and maximum pulse of the sth joint of the manipulator.

3.3. Optimal Path Planning Based on A* Algorithm for Multi-View Recognition

This section abstracts the recognition performance distribution of the base classifier
as a directed graph model for planning. The defined recognition rate of the base classifier
for image pairs with inputs from the set of view intervals {Φij, Φ(i+dθ)(j+dλ)

} is denoted as
R̂(Φij, Φ(i+dθ)(j+dλ)

). The recognition performance directed graph model built when the
number of base classifiers Cl = 3 is shown in Figure 5. The hemispherical view interval
faces are expanded and displayed in the form of a plane, and the set of view intervals
{Φ11, Φ12, . . . , Φ1Mlo ,Φ21, . . . , Φ2Mlo , . . . , ΦMla1, . . . , ΦMlaMlo } constitute the vertices of the
directed graph. To avoid confusion, only the first row and the first column are shown in this
figure; the remaining rows and columns are the same as the first row and the first column
respectively. Angle interval difference is define as

.
d, and then

.
d is set 1,2,3. The orange line

represents the direction at
.
d = 1, the blue curve represents the direction at

.
d = 2, the purple
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curve represents the direction at
.
d = 3, the green line represents the direction diagonally at

.
d = 2, and the red line represents the direction diagonally at

.
d = 3. The recognition rates of

image pairs with different sets of view intervals R̂
.
d(Φij, Φ(i+dθ)(j+dλ)

) are the edge weights
of the directed graph.
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The adjacency matrix corresponding to the recognition accuracy of the directed graph is:

AR =



A11 A12 A13 · · · A1(Mla−2) A1(Mla−1) A1Mla

A21 A22 A23 · · · A2(Mla−2) A2(Mla−1) A2Mla

A31 A32 A33 · · · A3(Mla−2) A3(Mla−1) A3Mla
...

...
...

. . .
...

...
...

A(Mla−2)1 A(Mla−2)2 A(Mla−2)3 · · · A(Mla−2)(Mla−2) A(Mla−2)(Mla−1) A(Mla−2)Mla
A(Mla−1)1 A(Mla−1)2 A(Mla−1)3 · · · A(Mla−1)(Mla−2) A(Mla−1)(Mla−1) A(Mla−1)Mla

AMla1 AMla2 AMla3 · · · AMla(Mla−2) AMla(Mla−1) AMlaMla


(20)

where AR ∈ RMloMla×MloMla , Aij ∈ RMlo×Mlo .
When i = j, the matrix Aij = Aii is shown in Equation (21). Cl is defined as the number

of basic classifiers.
.
d = 1,2..., Cl. When j = i +

.
d ≤ Mla, the specific elements of matrix

Aij = Ai(i+
.
d)

is shown in Equation (22). When i ≥ Mla −
.
d + 1 and j = i +

.
d − Mla, the

specific elements of matrix Aij = A
i(i+

.
d−Mla)

are shown in Equation (23). Aij of the other
cases is the 0 matrix f Mlo ×Mlo.
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Aii =



0 R̂1
[i1,i2] R̂2

[i1,i3] · · · R̂
.
d
[i1,i(1+

.
d)]

0 · · · 0

0 0 R̂1
[i2,i3] R̂2

[i2,i4] · · · R̂
.
d
[i2,i(2+

.
d)]

0 · · ·
0 0 0 R̂1

[i3,i4] R̂2
[i3,i5] · · · 0 · · ·

...
...

...
...

...
...

...
...

0 0 0 0 R̂1
[i(Mlo−

.
d),i(Mlo−

.
d+1)]

· · · R̂
.
d−1
[i(Mlo−

.
d),i(Mlo−1)]

R̂
.
d
[i(Mlo−

.
d),iMlo ]

0 0 0 0 0 R̂1
[i(Mlo−

.
d+1),i(Mlo−

.
d+2)]

· · · R̂
.
d−1
[i(Mlo−

.
d+1),iMlo ]

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 R̂1
[i(Mlo−1),iMlo ]

0 0 0 0 0 0 0 0



(21)

A
i(i+

.
d)

=



R̂
.
d
[i1,(i+

.
d)1]

0 · · · 0 R̂
.
d
[i1,(i+

.
d)(1+

.
d)]

0 0 · · · 0

0 R̂
.
d
[i2,(i+

.
d)2]

0 · · · 0 R̂
.
d
[i2,(i+

.
d)(2+

.
d)]

0 · · · 0

0 0 R̂
.
d
[i3,(i+

.
d)3]

0 · · · 0 R̂
.
d
[i3,(i+

.
d)(3+

.
d)]

0 · · ·
...

...
...

...
...

...
...

...
...

0 0 0 0 R̂
.
d
[i(Mlo−

.
d),(i+

.
d)(Mlo−

.
d)]

0 · · · 0 R̂
.
d
[i(Mlo−

.
d),(i+

.
d)Mlo ]

0 0 0 0 0 R̂
.
d
[i(Mlo−

.
d+1),(i+

.
d)(Mlo−

.
d+1)]

0 · · · 0

0 0 0 0 0 0 R̂
.
d
[i(Mlo−

.
d+2),(i+

.
d)(Mlo−

.
d+2)]

· · · 0

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 R̂
.
d
[iMlo ,(i+

.
d)Mlo ]



(22)

A
i(i+

.
d−Mla)

=



R̂
.
d
[i1,(i+

.
d−Mla)1]

0 · · · 0 R̂
.
d
[i1,(i+

.
d−Mla)(1+

.
d)]

0 0 · · · 0

0 R̂
.
d
[i2,(i+

.
d−Mla)2]

0 · · · 0 R̂
.
d
[i2,(i+

.
d−Mla)(2+

.
d)]

0 · · · 0

0 0 R̂
.
d
[i3,(i+

.
d−Mla)3]

0 · · · 0 R̂
.
d
[i3,(i+

.
d−Mla)(3+

.
d)]

0 · · ·
...

...
...

...
...

...
...

...
...

0 0 0 0 R̂
.
d
[i(Mlo−

.
d),(i+

.
d−Mla)(Mlo−

.
d)]

0 · · · 0 R̂
.
d
[i(Mlo−

.
d),(i+

.
d−Mla)Mlo ]

0 0 0 0 0 R̂
.
d
[i(Mlo−

.
d+1),(i+

.
d−Mla)(Mlo−

.
d+1)]

0 · · · 0

0 0 0 0 0 0 R̂
.
d
[i(Mlo−

.
d+2),(i+

.
d−Mla)(Mlo−

.
d+2)]

· · · 0

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 R̂
.
d
[iMlo ,(i+

.
d−Mla)Mlo ]



(23)

Given the starting imaging point, the multi-view target viewpoint optimization path
planning in barrier-free environment is equivalent to the directed graph path search prob-
lem with a given starting point. The number of nodes to be searched is k − 1, and the
maximum path corresponding to the sum of edge weights is the search path. In order to
facilitate the graph search, the problem of maximizing the sum of edge weights is trans-
formed into the problem of minimizing the sum of search path weights by finding the
reciprocal and normalized to (0,1):

Re(Φij, Φ(i+dθ)(j+dλ)
) =

1
R̂(Φij ,Φ(i+dθ )(j+dλ)

)
− R̂emin

R̂emax − R̂emin
+ ε (24)

where R̂emax,R̂emin are the maximum and minimum values of the reciprocal of edge weights,
respectively. ε is the parameter to ensure the continuity of directed edges.

The transformed matrix Re becomes a new recognition performance matrix. In ad-
dition to recognition performance, it also ensures the shortest end running distance to
improve operation efficiency. When the end enters the set observation radius range, the
fixed radius does not move, and the path planning is carried out on the semicircular sphere
with this radius as the radius. Similarly, viewpoint intervals are set as the vertexes of the
directed graph, and the distances between two viewpoints are defined as the edge weights
of the directed graph. The adjacency matrix DR is constructed, which can be expressed as:
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DR =



D11 D12 D13 · · · D1(Mla−2) D1(Mla−1) D1Mla

D21 D22 D23 · · · D2(Mla−2) D2(Mla−1) D2Mla

D31 D32 D33 · · · D3(Mla−2) D3(Mla−1) D3Mla
...

...
...

. . .
...

...
...

D(Mla−2)1 D(Mla−2)2 D(Mla−2)3 · · · D(Mla−2)(Mla−2) D(Mla−2)(Mla−1) D(Mla−2)Mla
D(Mla−1)1 D(Mla−1)2 D(Mla−1)3 · · · D(Mla−1)(Mla−2) D(Mla−1)(Mla−1) D(Mla−1)Mla

DMla1 DMla2 DMla3 · · · DMla(Mla−2) DMla(Mla−1) DMlaMla


(25)

where DR ∈ RMloMla×MloMla ,Dij ∈ RMlo×Mlo , i = 1,2, . . . ,Mla, j = 1,2, . . . ,Mla.

When i = j, the specific elements of Dij = Dii are shown in Equation (26).
.
d = 1, 2, . . . ,

Cl, 0 < rˆ1 < rˆ2 < ...< rˆ
.
d ≤ 1 are the normalized weight set proportional to the distance

between viewpoints.

Dii =



0 r̂1 r̂2 · · · r̂
.
d 0 · · · 0

0 0 r̂1 r̂2 · · · r̂
.
d 0 · · ·

0 0 0 r̂1 r̂2 · · · 0 · · ·
...

...
...

...
...

...
...

...

0 0 0 0 r̂1 · · · r̂(
.
d−1) r̂

.
d

0 0 0 0 0 r̂1 · · · r̂(
.
d−1)

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 r̂1

0 0 0 0 0 0 0 0



(26)

When j = i +
.
d ≤Mla, matrix Dij = Di(i+

.
d)

, specific elements are listed in Equation (27).

When i ≥Mla −
.
d + 1 and j = i +

.
d −Mla, specific elements of matrix D

i(i+
.
d−Mla)

are listed

in Equation (27). The difference of two non-0 elements in each row is
.
d columns. Dij of the

other cases are Mlo ×Mlo 0 matrix.

D
i(i+

.
d)

= D
i(i+

.
d−Mla)
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(27)

Considering the two optimization problems of optimal recognition performance and
shortest planning path, based on the same directed graph model, the weight ω is introduced
to adjust the recognition performance and planning path distance to further transform
the problem into a single optimization problem, which is the shortest path search on the
directed graph. The directed graph is defined as G = (Φij,A), then the fused adjacency
matrix can be expressed as:

A = ω ·Re + (1−ω)DR (28)

As a typical heuristic search algorithm in artificial intelligence, the A* algorithm has
been widely used in path solving. The algorithm introduces the path evaluation formula
when selecting nodes:

f (n) = g(n) + h(n) (29)
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where g(n) is actual cost from initial state to state n, h(n) is the estimation cost of the optimal
path from the state n to the target state.

In this section, the A* algorithm is used to solve the single-source shortest path
problem of the fused directed graph, and the sum of the edge weights of the fused directed
graph is defined as the cost function to complete the viewpoint optimization path planning
in a barrier-free environment. The specific search process is shown in Figure 6. The A*
algorithm uses two lists of openList and closeList to place the nodes to be examined and the
nodes that have been examined, and sets the subsequent node table to store the subsequent
nodes. Through the above operations, k viewpoints with the minimum sum of edge
weights in P can be obtained. However, since the path searched by the A* algorithm is a
spatial straight-line segment, in order to prevent the jitter and vibration of the manipulator
during operation, the B-spline curve is used for interpolation and smoothing between
the viewpoints of the end path to obtain the continuous and stable optimal observation
path of the target, and the target recognition results are obtained through the classifier
mentioned above.
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4. Experimental Verification and Analysis
4.1. Construction of Experimental Platform

The experimental platform include the UR5 six degree of freedom industrial robot
developed by Universal Robots, the stereo vision Bumblebee2 binocular camera developed
by Point Grey Research of Canada, the Fastec IL5 high-speed camera, the 2F-85 ROBOTIQ
double finger electric gripper, the image acquisition card matching the UR5 robot, etc.,
which are shown in Figure 7.
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UR5 manipulator is a cooperative manipulator with small shape, simple programming,
flexible action and safe use. It can complete loading, unloading, sorting, assembly and other
work in production. Its effective load is 5 ± 0.5 kg, the maximum working range can reach
the sphere space with 850 mm radius, the motion range of each joint is (−2π, 2π), and the
maximum motion speed is 180◦/s. Two kinds of cameras are used in this experiment. Fastec
IL5 high-speed camera is fixed and used as a global camera for monitoring. Combined
with the experimental content, it will not be introduced here. The Bumblebee2 binocular
camera is fixed at the end of the manipulator to obtain the local features of the target and
the depth information of the point cloud, and complete the viewpoint optimization path.

4.2. Camera Calibration and Motion Control
4.2.1. Camera Calibration

The binocular camera is connected to the end of the manipulator by a fixed clip to
ensure that there is no relative motion between the manipulator and the camera during the
motion. The calibration plate is fixed in front of the manipulator to calibrate the ‘eye on
hand’. Under the premise of ensuring that the left and right cameras can observe a complete
chessboard, the manipulator is controlled to reach 25 different poses, and the images are
collected. The images collected by the left and right cameras are saved respectively, and
calibrated based on Matlab. Some calibration results are shown in Figure 8. After removing
the image pairs with large errors in the calibration process, the average calibration error is
0.15 pixels. Camera parameters are then exported. The internal parameter matrix of camera
1 is:
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M1 =

 661.1927 0 258.8510
0 660.7811 196.0307
0 0 1

 (30)

Algorithms 2022, 15, x FOR PEER REVIEW 19 of 28 
 

2

661.8001 0 249.2579
0 661.1257 196.2485
0 0 1

 
 =  
  

M  (31) 

Its radial distortion parameters K1 = 0.0203 and K2 = −0.0815. Tangential distortion 
parameters P1 and P2 are 0. 

 
Figure 8. Partial calibration figures. 

4.2.2. Control of Manipulator 
The UR5 manipulator is controlled based on the ROS system in Linux environment. 

The system includes motion planning, 3D perception and other functional modules. The 
MoveIt! module for manipulator controlling can realize modeling, kinematics calcula-
tion, path obstacle avoidance planning, etc. The structure is shown in Figure 9. The core 
node is move_group, which connect to plug-ins to implement various functions. The 
Ubuntu version used in this experiment is 16.04, and the ROS version is Kinetic. The 
used toolkits are listed as follows. The ros_kinetic_ur_description contains the model 
information of UR series robots. The ur5_ros_controllers are connected with the robot 
hardware interface to obtain the robot information data in real time, which are sent to 
the manipulator driving part for path planning. The ROS Param Server is a parameter 
server which is used to define setting parameters, model files and configuration files. 
The Robot 3D sensors can obtain the image data from the camera, which are used to 
identify location, positioning, grasping, obstacle avoidance, etc. The User interface pro-
vides a series of API for function customization. The ur_ros_ sensors can obtain the sen-
sor data of the manipulator and calculate the motion state of the robot. 

Figure 8. Partial calibration figures.

Its radial distortion parameter K1 = 0.0325, K2 = −0.0619. Tangential distortion
parameters P1 and P2 are 0. The internal parameter matrix of camera 2 is:

M2 =

 661.8001 0 249.2579
0 661.1257 196.2485
0 0 1

 (31)

Its radial distortion parameters K1 = 0.0203 and K2 = −0.0815. Tangential distortion
parameters P1 and P2 are 0.

4.2.2. Control of Manipulator

The UR5 manipulator is controlled based on the ROS system in Linux environment.
The system includes motion planning, 3D perception and other functional modules. The
MoveIt! module for manipulator controlling can realize modeling, kinematics calculation,
path obstacle avoidance planning, etc. The structure is shown in Figure 9. The core node
is move_group, which connect to plug-ins to implement various functions. The Ubuntu
version used in this experiment is 16.04, and the ROS version is Kinetic. The used toolkits
are listed as follows. The ros_kinetic_ur_description contains the model information of UR
series robots. The ur5_ros_controllers are connected with the robot hardware interface to
obtain the robot information data in real time, which are sent to the manipulator driving
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part for path planning. The ROS Param Server is a parameter server which is used to
define setting parameters, model files and configuration files. The Robot 3D sensors can
obtain the image data from the camera, which are used to identify location, positioning,
grasping, obstacle avoidance, etc. The User interface provides a series of API for function
customization. The ur_ros_ sensors can obtain the sensor data of the manipulator and
calculate the motion state of the robot.
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4.3. Optimization Path Planning for Multi-View Recognition

In order to test the performance of the proposed multi-view target optimal view path
planning method in barrier free environment, this section takes the medicine box as the
recognition object and generates the training set and verification set. Different starting
points and different numbers of view angles are set to verify.

4.3.1. Path Planning with Different Perspectives

The viewing angle interval is divided into 36 parts in the latitude direction and nine
parts in the longitude direction. The number of divided viewing angle intervals of the
target observation model is 324. The images of the medicine box are collected, the data
set corresponding to the viewing angle interval Φij(i = 1, 2, . . . , 36; j = 1, 2, . . . , 9) is
reorganized, obtaining 324 groups of data. There are 15 original images in each group of
data, and any two groups of data can generate 15 × 15 image pairs, which are used for
classification training and verification of basic classifiers. Set the number of basic classifiers
Cl = 3. The input image size is 128 × 128. The sampling block size is 5 × 5. The size
of histogram block is 8 × 8. The block overlap rate is 0.5. Gaussian kernel function is
selected. In adjacency matrix Di, dˆ1 = 0.3, dˆ2 = 0.6, dˆ3 = 1, ω = 0.5, ε = 1 × 10−6. Firstly,
the starting point is set to interval Φ11, and the number of viewing angles k = 3, 4, 5 are
taken respectively. The observed viewpoint optimization path is shown in Figure 10.
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Figure 10 lists the top view, front view and camera recognition view that can character-
ize the position relationship with the target object at different viewpoints in path planning.
The first line is the starting viewpoint. When the number of viewing angles is selected as
three, the planned camera will reach the position of lines 2, 3 and 4 from the position of line
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1 one by one. Similarly, increasing the number of viewing angles, the manipulator adds the
planning to the position of line 5 and line 6. According to the image recognition results,
when the number of viewing angles is three, the recognition accuracy has reached 94.63%.
Increasing the number of viewing angles, although the recognition accuracy has increased,
it has little change. When the number of viewing angles is 5, the planned path is shown in
Figure 11. It can be seen that the initial path is mainly the elevation in the Z-axis direction,
and then move in the X-axis and Y-axis. The target is observed in multiple directions to
improve the recognition accuracy.
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4.3.2. Path Planning with Different Starting Points

Different starting points are selected to determine the optimal viewpoint path planning.
The top views of the observation models are shown in Figures 12–14. Figure 12 shows the
optimal path when the number of viewing angles is three. The starting point of the red real
line track is Φ11, the starting point of the green dotted line track is Φ(11)2, and the starting
point of the blue dotted line track is Φ(25)3.
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Figure 13 is the optimal path with viewing angles = 4, Figure 14 is the optimal path
with viewing angles = 5, and the color and track starting point is consistent with Figure 12.
By comparing the three figures, it can be seen that the planned path can quickly reach the
better viewing point. With the bottom as the benchmark, the longitude direction is about
50◦, and then the trend is mainly planned along the latitude direction. When the angle of
view is 3, the path planning can complete the identification of two sides and top surfaces.
Increasing the viewpoint angles, the movement is mainly along the latitude direction. It
can be concluded that this method can well complete the viewpoint optimization path
planning under different starting points and different viewing angle constraints in the
barrier free environment, and effectively complete the optimal balance between recognition
performance and search speed.

The performance of target recognition is compared with different starting viewpoints
and different viewing angles. When the number of viewing angles is 3, the recognition
accuracy of different starting viewpoints is shown in Table 1. The data is the identification
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accuracy starting from the intersection area of longitude and latitude. It can be seen that the
recognition accuracy is different at different starting points. As can be seen from the average,
when the longitude is 5, that is, 75◦ from the horizontal bottom, the average recognition
rate is the highest. Taking it as the boundary, the longitude value decreases gradually, and
the recognition accuracy decreases gradually. When the longitude value is greater than 5,
the higher the longitude and the higher the recognition angles, the recognition accuracy
gradually decreases.

Table 1. Recognition with different starting points with 3 viewing angles.

Latitude
Longitude

1 2 3 4 5 6 7 8 9

1 95.82 96.35 96.47 96.38 96.27 95.28 89.21 85.07 84.24
2 96.04 96.28 96.34 96.56 96.48 96.03 90.24 86.07 84.56
3 96.59 96.64 96.69 96.78 96.71 95.86 91.2 84.32 83.74
4 96.21 96.33 96.48 96.52 96.54 95.29 93.21 85.14 83.22
5 90.28 91.97 91.98 91.55 91.49 89.23 87.42 83.21 82.89
6 90.37 90.58 91.24 91.28 90.97 89.86 88.47 82.89 82.67
7 91.58 92.48 92.77 92.64 92.85 91.87 87.65 83.11 82.9
8 94.05 94.62 94.77 96.58 95.69 93.21 88.56 83.09 82.97
9 94.21 94.53 94.71 96.57 96.09 94.54 88.96 85.27 83.04

10 94.19 94.62 94.85 95.98 96.11 94.49 88.89 85.07 82.72
11 94.25 95.65 95.69 96.23 96.54 95.68 88.74 84.75 83.01
12 95.23 95.67 95.98 96.37 96.84 96.71 90.23 85.02 82.91
13 94.62 94.95 95.01 95.06 95.79 95.68 89.64 84.65 82.54
14 95.36 95.47 95.78 96.24 96.59 95.25 89.07 84.32 82.46
15 95.24 95.37 95.69 96.14 96.23 95.02 88.65 83.72 82.64
16 95.14 95.28 95.47 95.95 95.86 94.84 88.22 83.59 82.75
17 95.08 95.23 95.36 95.64 95.18 94.62 88.07 83.25 82.61
18 95.11 95.19 95.28 95.64 95.68 94.96 88.69 83.61 82.56
19 95.01 95.21 95.49 95.77 95.94 94.87 88.54 83.54 82.45
20 95.3 95.48 95.57 96.04 96.25 94.66 87.99 83.09 82.64
21 95.34 95.66 96.08 96.24 96.37 94.72 87.78 82.98 82.49
22 94.49 95.18 95.62 96.03 96.54 94.93 88.06 83.24 82.56
23 90.25 90.54 90.68 90.75 90.59 88.96 88.32 83.64 82.57
24 90.46 90.85 90.96 90.89 90.32 89.05 87.84 83.77 82.59
25 90.04 90.22 90.12 90.35 91.26 90.67 87.76 83.89 82.67
26 94.21 94.67 95.11 95.24 95.87 94.98 88.22 84.05 82.79
27 94.33 94.52 94.69 95.61 96.04 95.06 88.05 83.95 82.98
28 95.38 95.67 96.14 96.22 96.35 95.08 88 83.26 83.02
29 95.46 95.62 95.69 96.34 96.58 94.65 87.96 82.96 82.85
30 95.63 95.89 96.01 96.26 96.57 94.88 87.94 82.69 82.79
31 94.32 94.65 95.23 95.92 96.29 94.97 88.06 82.94 82.68
32 95.02 95.39 95.77 96.05 96.38 94.99 88.29 83.25 82.65
33 95.06 95.28 95.41 96.35 96.26 95.06 88.65 83.56 82.62
34 95.14 95.39 95.65 96.25 96.09 95.08 88.97 84.12 82.67
35 94.01 94.85 95.26 95.61 95.78 95 88.65 83.97 82.84
36 94.03 94.67 95.24 95.54 95.66 95.02 88.53 83.65 82.91

Average 94.23 94.63 94.87 95.27 95.36 94.20 88.69 83.77 82.87

Representative starting points of different regions are selected to carry out the influence
of different viewing angles on the recognition effect. As shown in Figure 15, the abscissa is
the interval where the starting viewpoint is located, and the ordinate is the corresponding
recognition rate. The dotted line with diamond mark represents the recognition rate
with 3 viewing angles, the dotted line with * mark represents the recognition rate with 4
viewing angles, and the solid line with triangle mark represents the recognition rate with 5
view angles.
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It can be seen from the Figure 15 that the recognition accuracy has a gradual downward
trend, tending to the vertex of the hemisphere of the starting point. The starting point is
at the 8th and 9th layers of longitude especially, because the set directed graph model is
in a single direction. The more it tends to the vertex, the less the observation surface is,
and the less the extracted features are. Even if the perspective is increased, the increase
in recognition effect is not obvious due to the particularity of its location. Therefore, in
practical application, try to avoid a starting point close to the top position. However, on the
whole, the average recognition rate is 91.51% in the case of three viewing angles, 92.25% in
the case of four viewing angles and 93.13% in the case of five viewing angles. The results
show that the more viewing angles, the higher the target recognition rate. This method can
obtain a higher recognition rate in an obstacle-free environment.

Through the above experimental analysis, it can be concluded that the proposed
directed graph perspective optimization path planning method based on the A* algorithm
considering the performance and efficiency of target recognition is feasible, and can obtain
more accurate recognition results in a shorter path.

5. Conclusions

In order to enhance the robustness of vision-based robots in natural environment,
a dynamic recognition method was used to improve the recognition performance. For
the common linkage robots in industry, the end-camera was driven by a manipulator to
complete the target observation with high accuracy efficiently in this paper. The perspective
optimization path planning of the manipulator was studied, and the path planning method
for finding optimal view angles based on the A* algorithm was proposed. An observation
geometry model was established and the viewing angle intervals were divided. Based on
the active viewpoint selection mechanism, a multi-view classifier based on BM2DKPCANet
and Softmax was constructed. The output class probability was set as the viewpoint
measure. The best identification performance and the shortest distances were taken as
the objective functions of path planning. The directed graph programming model was
constructed, and the directed graph adjacency matrix based on the planning distance was
determined. The multi-objective optimization problem was transformed into the single-
objective optimization problem by fusing the two adjacent matrices. The shortest path was
planned based on the A* algorithm. The experiments were performed with different view
count and different starting viewpoints. The results demonstrated that the method could
plan the optimal path with higher recognition accuracy and efficiency.
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