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Abstract: The growth in the number of automobiles in metropolitan areas has drawn attention to the
need for more efficient carpark control in public spaces such as healthcare, retail stores, and office
blocks. In this research, dynamic pricing is integrated with real-time parking data to optimise parking
utilisation and reduce traffic jams. Dynamic pricing is the practice of changing the price of a product
or service in response to market trends. This approach has the potential to manage car traffic in the
parking space during peak and off-peak hours. The dynamic pricing method can set the parking fee
at a greater price during peak hours and a lower rate during off-peak times. A method called deep
reinforcement learning-based dynamic pricing (DRL-DP) is proposed in this paper. Dynamic pricing
is separated into episodes and shifted back and forth on an hourly basis. Parking utilisation rates
and profits are viewed as incentives for pricing control. The simulation output illustrates that the
proposed solution is credible and effective under circumstances where the parking market around
the parking area is competitive among each parking provider.

Keywords: pricing control; off-street parking; parking optimisation; parking management

1. Introduction

A major problem in many metropolitan areas, particularly in major cities such as
London, Hong Kong and Kuala Lumpur, is the dramatic rise of private automobiles. The
growing number of automobiles has detrimental effects on both the local population and
the surroundings. The growing number of automobiles increases the need for parking
spaces. A 2017 poll conducted by New Strait Times found that the average time spent
seeking parking in certain urban areas is roughly 25 min per day. The cars continue to circle
the location, wasting time looking for an open parking lot. This increases fuel consumption
and emissions of carbon dioxide which devastate the climate and generate the greenhouse
effect. The greater the time driver spent on driving, the greater the traffic jam in that region.
This starts a domino effect that aggravates other drivers and causes more delays.

Numerous academics have attempted to address the issues of traffic congestion and the
enormous demand for parking lots after realising the difficulties brought on by the growth
in the number of automobiles. Parking information, such as the availability of free parking
spaces, can be received in real time using technologies such as sensors (loop or ultrasonic
sensor), tickets or e-payment systems. This offers a chance to develop a smart parking
system with dynamic pricing. To maximise the income and simultaneously improve
parking space utilisation, the parking vendor can provide adjustable price regulation
depending on various periods of time by adopting dynamic pricing.

In this research, a deep reinforcement learning-based dynamic pricing (DRL-DP)
model is proposed to manage parking prices depending on vehicle volume and parking
occupancy rate. Because it does not require raw labelled data in environment modelling,
reinforcement learning (RL) is recommended. RL makes it possible to make decisions
sequentially and offers a complete series of wise choices throughout the experiments. The
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dynamic pricing model keeps track of various price plans and how they are used in various
contexts to reduce traffic congestion and increase profits for parking vendors. The dynamic
pricing model distributes vehicle flows and predicts vehicle volume and traffic congestion.
By suppressing drivers’ visits to a certain region during peak hours at specified intervals of
the day, the vehicle flows are distributed to non-peak hours to boost the parking utilisation
rate and decrease traffic jams. This is accomplished by controlling prices through price
reductions such as parking payment cash back. In order to improve the returned incentive
in the following episode, the deep learning agent will learn from the sequential choice of
dynamic pricing.

The remainder of this article is structured as follows. Section 2 covers related research
on topics including dynamic pricing and smart parking. The proposed approach is de-
scribed in Section 3. The experiment’s findings are presented in Section 4. The final section,
Section 5, discusses further developments.

2. Literature Review
2.1. Dynamic Pricing

Because e-commerce is now a common choice for business models, dynamic pricing
has been a pricing technique that has a significant impact on our society. The Internet
allows any trade-off, saves many physical costs and has facilitated simple market entrance.
Due to the availability of giant data that make user behaviour transparent, many academics
are now concentrating on dynamic pricing in e-commerce.

Four pricing techniques for e-commerce were given by Karpowicz and Szajowski [1]:
(1) time-based pricing; (2) market segmentation and restricted rations; (3) dynamic market-
ing; (4) the combined usage of the aforementioned three kinds. On the other hand, Chen
and Wang [2] presented a data mining-based dynamic pricing model for e-commerce. The
data layer, analytical layer and decision layer were the three bottom-up layers that made
up the model.

The best pricing strategy for an agent in a multi-agent scenario is influenced by the
strategies used by the other agents [3]. Han et al. [3] suggested a multi-agent reinforcement
learning system that incorporates both the opponents’ inferential intentions and their observed
objective behaviours. A novel continuous time model with price and time-sensitive demand
was presented by Pan et al. [4] to take into consideration of dynamic pricing usage, order
cancellation ratios and various quality of service (QoS) levels in online networks.

Reinforcement learning (RL) was suggested as a method by Chinthalapati et al. to
examine pricing dynamics in a digital commercial market [5]. The suggested strategy
involved two vendors in competition, price and lead time-sensitive customers. They took
into account the no-information scenario and the partial information situation as two
illustrative examples. In order to establish dynamic pricing on the internet, Ujjwal et al. [6]
presented a bargaining agent that made use of a genetic algorithm. Because the mutually
agreed deal price is greater than the seller’s reserved price but lesser than the buyer’s
reserved price, online bargaining benefits both the seller and the buyer.

The authors in [7] suggested Pareto-efficient and subgame-perfect equilibrium and
provided a bounded regret over an infinite horizon. They defined regret as the anticipated
cumulative profit loss in comparison to the ideal situation with a known demand model.
However, they presupposed that all vendors faced equal marginal costs when considering
an oligopoly with dynamic pricing in the face of demand uncertainty.

Another research in [8] examined companies’ pricing policies in the presence of
ambiguous demand. Reference prices and the cost of competition, per the study, were the
two variables that impacted demand dynamics. Results from simulations showed that
companies might reduce the volatility of their pricing path if they collected and analysed
customer data and competition since doing so allowed them more control than ever before
over uncertainty.
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In the scenario that supply exceeds demand or vice versa, Wang [9] suggested a
dynamic pricing mechanism for the merchant. The study determined the best dynamic
pricing techniques and stated the equilibrium conditions for those strategies.

“Compared to the myopic, strategic consumers may have stronger incentive to delay the
purchase once they perceive that a signifcant cost reduction will result in a markdown” [10].
Liu and Guan examined the cost-cutting impact of dynamic pricing on a market with both
myopic and strategic customers. Their study showed that consumers tend to delay the
purchase when a significant cost-cutting is available, especially for strategic customers.

Recently, dynamic pricing research mainly focuses on the financial aspect. Mathematical
models are adopted to calculate dynamic pricing based on different game theories applied
in different circumstances. Some of the studies have yet to combine dynamic pricing with
transdisciplinary research such as artificial intelligence (AI). In fact, there is some dynamic
pricing research that utilises AI components, but they only focus on e-commerce online
platforms such as TaoBao and Shoppee which analyse user behaviour on their platforms.

2.2. Smart Parking Solutions

In order to successfully deploy on a broad scale, parking solutions incorporate knowl-
edge from several fields. Recent developments, such as the 5G network, also make real-time
machine-to-machine (M2M) communication feasible. There are a few review articles that
offer a useful perspective on the most current smart solutions utilising various technolo-
gies. According to the objectives of the many study domains, intelligent parking systems
are divided into three macro-themes in [11]: data gathering, system implementation and
service diffusion.

An intelligent resource allocation, reservation and pricing framework was presented in
the paper published in [12] as the foundation of an intelligent parking solution. The solution
provided drivers with assured parking reservations at the lowest feasible cost and seeking
duration while also providing parking managers with the maximum income and parking
usage rate. A crowdsourcing method called ParkForU was presented by Mitsopoulou and
Kalogeraki [13] to locate the available and most practical parking alternatives for users in a
smart city. It was a car park matching and pricing regulator technique that let users enter their
destination as well as a list of preferences for price and distance (from the car park to their
desired location), as well as the total amount of matches they wanted to see.

Nugraha and Tanamas suggested a dynamic allocation approach to reserve car parks
using Internet applications in [14]. Finding the empty parking lot and making the booking
for the car owner removed the requirement to look through the whole parking zone. To
keep the parking lot’s utilisation level, they employed an event-driven schema allocation
when a car pulled up to the gate.

In [15], the authors suggested a carpooling model using two matching algorithms that
followed the single and dual side matching approach to give additional alternatives on grab
time and cost, allowing travellers to select the car that best suits their preferences. The default
approach for carpooling matching techniques entered a request for a ride into a kinetic tree
and returned all feasible matches of grab time and cost that did not prevail over one another.

Jioudi et al. [16] presented a dynamic pricing scheme that modifies costs proportion-
ately to the arrival time upon every carparks and, as a result, lessens congestion and gets rid
of drivers’ preferences for particular carparks. They used the discrete batch arrival process
(D-BMAP) to assess the parking time in close to real-world circumstances. According to
their parking time, the drivers that arrived in accordance with D-BMAP were chosen for
service in random order (ROS).

In [17], the authors sought to enhance the rotation of prime locations and establish a
usage-based carpark allocation through the use of a suitable reward, which is the same as
using tactical pricing to reduce parking average waiting time and enhance traffic situation
in the intended area. Decreasing the number of long-term parking spaces and taking ap-
propriate steps to allow short-term parking is essential for improving the use of insufficient
parking spaces in demanded regions.
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Two prediction models were presented by the authors in [18] for the qualitative and
quantitative enhancement of parking availability data. The term “quality problem” refers
to the network latency between parking sensors and the data server as well as the preset
update interval. The term “quantity problem” refers to unsupervised, non-smart parking lots.
In order to increase quality, a future availability forecasting model was created by studying
the trend of parking and variations in occupancy rate using past data. By supposing the
prediction of target’s occupancy rate might be predicted using occupancy rate data from
neighbouring smart parking for quantity enhancement, they also presented an availability
forecasting method for non-smart parking spaces that were not fitted with sensors.

In [19], the authors presented a macroscopic parking pricing and decision model for
responsive parking pricing. They considered the value of time, parking fee and search time
cost of a driver to get the vacant parking and analysed the short-term influence on the traffic.

A dynamic pricing model was presented by [20] for parking reservations to maximise
the parking revenue. The dynamic pricing model was formulated as a stochastic dynamic
programming problem in the paper. The efficacy of the parking schema is provided in the
numerical experiments to increase parking profit and decrease drivers’ circling expenses.

The aforementioned recent study concentrates on reservations or pricing regulation
using real-time algorithms and providing users with results of smart parking systems. For
instance, ParkForU [13] uses parking matching and price regulator algorithm, notifying
parking vendors after a driver’s decision and adjusting their price adaptively to impress
the driver, while iParker [12] utilises real-time booking requests with share time booking to
discover the vacant and most adequate parking selection for the user. A reservation-based
parking system [14] uses the driver’s estimated time of arrival to allocate open spaces and
dynamically redistribute spaces when a specific automobile arrives without a booking.

Jioudi et al. [16] utilised a dynamic pricing approach that adjusts prices in accordance
with arrival time. By permitting them to park in the most desirable zones, Jioudi et al. [17]
exploited area zonification to promote short and mid-term parking stays. K. N. and Kim
Koshizuka [18] used two forecasting methods for the qualitative and quantitative aug-
mentation of parking availability data. In order to propose a suitable discount scheme to
optimise parking occupancy utilisation and reduce traffic congestion, we intended to utilise
dynamic pricing and reinforcement learning in this work to estimate future arrival rates.
The simulation may be created for many scenarios using the suggested system, taking into
account the number of parking operators, their price structures and the volume of traffic in
the parking space. This improved the proposed method’s dependability.

3. Proposed Method

This study presents a deep reinforcement learning-based dynamic pricing (DRL-
DP) model for training the dynamic pricing mechanism using a reinforcement learning
approach. The suggested model functions as a market environment for the parking sector.
A parking vendor and the other competitors (the other parking vendors) in this setting
play the role of the player. The number of cars which park in the player’s parking space
and the money made from parking are the rewards.

We concentrate on smoothing the regression distribution model of the past parking
utilisation rate by raising the utilisation rate during non-peak hours, in contrast to prior
smart parking research that focuses on reservations for drivers and pricing regulation by
parking providers.

In reinforcing learning, the deep learning agent learns to achieve a higher reward
using the returned reward from the environment. In the proposed environment, the state
represents the time step and parking occupancy ratio of the player and opponent, the action
represents the discount value of dynamic pricing, while rewards constitute the vehicle
arrival rate, parking revenue and vehicle flow regulation result. The environment is a
sequential decision-making process to decide whether a parking lot will be taken in the
dynamic pricing problem. The environment is formulated using the Markov decision
process (MDP) to achieve rewards for the player with each action taken. MDP receives the
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discount action of the player and decision making of the drivers and returns the decision
of the drivers as a reward to the environment. In the parking environment simulation,
MDP demonstrates the drivers’ decisions based on prices regulated by the parking vendors.
Thus, MDP simulates the drivers’ decision based on the forecasted vehicle flow in every
time step to obtain the reward. Figure 1 shows the block diagram of the proposed method,
which is comprised of deep learning and Markov decision processes.

Figure 1. Block diagram of the proposed solution.

In the proposed method, environment data such as time-step, pricing scheme and
occupancy of the player and opponent are input to DRL-DP. DRL-DP simulates the parking
environment using the input data. After that, DRL-DP outputs the sequence of decision-
making, accuracy performance and reward result from the simulation. The environment
simulator utilises the vehicle flow prediction from SARIMAX as the vehicle flow around
the parking area. Multiple modules are constructed to assist the parking market simulation
such as a pricing engine and grid system. The details of each module are presented in
Section 3.2.2.

3.1. Datasets
3.1.1. Data Collection

In this study, the in- and outflows of the vehicle at parking premises are collected. An
IoT device is attached to the barrier gate and the number of vehicles coming in and out
from the parking premise is recorded based on the movement of the barrier gate. The data
received in the loop sensor in a real-world road network may be affected by noise. Thus,
the vehicle arrival rate of certain parking areas is collected using a sensor in the barrier
gate. Once the barrier gate rises for incoming or outgoing vehicles, the IoT will record and
trace vehicle plates using a camera with vehicle plate recognition. With the data collection
using IoT in the barrier gate, the in and out records with vehicle stay time can be collected
and analysed.

In this study, the parking data are collected from two locations, denoted as Location A
and Location B, for a period of about six months. The two locations are parking areas in busy
commercial areas in Kuala Lumpur, Malaysia. Due to privacy and confidentiality issues,
the location names could not be disclosed. Figures 2 and 3 show the graph of the vehicle
arrival rate of Location A and Location B, respectively. Both figures show that Location A
and Location B demonstrate similar vehicle flow patterns, higher arrival rates during the
weekday (Monday to Friday) and lower arrival rates during the weekend (Saturday and
Sunday). Location A has a parking capacity of 165 while Location B has a parking capacity
of 950. Thus, they have different peak vehicle arrival rates because of their capacities.
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Figure 2. Vehicle arrival rate of Location A from September 2020 to January 2021.

Figure 3. Vehicle arrival rate of Location B from September 2020 to November 2020.

3.1.2. Data Extraction

In the proposed method, environment simulation is the most conclusive component
because it influences the accuracy and reliable interactive feedback between the agent
action and the environment. Thus, valuable environment parameters such as parking
capacity, pricing policy and vehicle arrival rate as the controllable variables are important
to simulate a reliable and robust real-world model. From real-time parking occupancy,
the vehicle arrival rates for each hour are extracted and analysed. Different parking areas
have different types of visitors, such as short-term (intermittent) visitors and long-term
visitors. From the vehicle stay time, the visitor type of that parking area can be identified
because the visitor type will influence the pricing policy and discount scheme used in the
simulation model.

3.1.3. Parking Occupancy Data (Arrival In- and Outflow)

The parking occupancy data are collected from Location A and Location B from
September 2020 to Jan 2021. The parking occupancy data represents the in and out events
in the parking space. Performing dynamic pricing in the parking industry will result in
affecting the vehicle arrival rate because it will affect the driver’s willingness to park in
different parking areas. Thus, forecasting future vehicle arrival rates is an important part
of the proposed solution to increase robustness in the face of different situations affecting
the vehicle arrival rate. SARIMAX (Seasonal Auto-Regressive Integrated Moving Average
with eXogenous factors) [21] is used to forecast future in and out arrival, which will be
used in the RL simulations. SARIMAX is an updated version of ARIMA which includes an
autoregressive integrated moving average, while SARIMAX includes seasonal affect and
eXogenous factors, so it can deal with datasets that have seasonal cycles.



Algorithms 2023, 16, 32 7 of 26

Figures 4 and 5 show the arrival in and out of the sample parking area. In Figure 5,
blue color line represents the observed vehicle arrival rate, orange color represents the
one-step ahead forecast vehicle arrival rate, the shadowed region represents the confidence
interval of predicted arrival rate. A repeating pattern can be observed from the pattern
of arrival flow. Thus, the SARIMAX model can forecast future vehicle arrival with high
accuracy using three months of training data (Figure 3). The RL simulation will use the
forecasted arrival flow for both the player and the opponent.

Figure 4. Weekly in and out arrival from 1 November 2020 to 7 November 2020 at Location A.

Figure 5. Sample of SARIMAX forecasting in arrivals for November 2020 at Location A.
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3.1.4. Vehicle Stay Time

The vehicle stay times are extracted from the parking occupancy data from Section 3.1.1.
Vehicle stay time analysis can be used to predict the vehicle stay time in RL simulation
and calculate the parking fee of each parking vendor with the aid of the driver to make a
decision. Figure 6 shows the vehicle stay time analysis graph of the sample parking area.
The vehicle stay time was arbitrary, but the vehicle mostly stays within one to five hours.

Figure 6. Vehicle stay times from 1 November 2020 to 7 November 2020 at Location A.

3.2. Deep Reinforcement Learning-Based Dynamic Pricing (DRP-DP)

In this section, the decision-making components of the proposed DRL-DP method are
defined and discussed. The main components in RL are the agent and environment. The
agent performs actions while the environment returns the state (observation) and reward
(incentive mechanism where the benefit is obtained by the player through the action).

In DRL-DP, the deep learning agent acts as an agent to maximise the reward from
the environment. The deep learning agent uses the state (observation of the environment,
including time step and occupancy of player and opponent) as inputs and outputs the
action (discount value taken by the player). The actions are retrieved by the environment
and modelled by the Markov decision process (MDP). In a parking environment, the MDP’s
state is initiated with the action retrieved from the player. Then, MDP initialises the driver
with the numbers of vehicle flow in the current time step. Each driver undergoes decision
making to decide whether to park at the parking lot. The reward (including occupancy
rate, accumulated revenue and comparison of vehicle arrival with targeted arrival after
vehicle flow regulation) in the current time step is obtained as the result of MDP. The state
and reward are forwarded to the deep learning agent to learn and maximise the revenue in
the next episode.

3.2.1. Notation and Assumption

In this study, the players and opponents refer to the parking vendors, respectively.
They compete with each other to get a higher occupancy rate and revenue. Each parking
vendor is assumed to have at least one pricing scheme for their parking fee. The highest
and lowest parking costs for the driver are included in the pricing policy. At the beginning
of the simulation, each of the players and the competitors shall decide on the parking
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lot’s overall capacity as well as the maximum and lowest parking rates. The following
presumptions are made on how vehicle flows relate to one another:

1. A weekly iteration with a global reward reset on every episode that lasts seven days
is referred to as an episode.

2. Maximising parking utilisation, maximising driver contentment and maximising
business income are issues that parking operators must take into account.

3. Parking vendors with pricing scheme: arrival-time-dependent pricing (ATP)—the
driver pays the parking fee by calculating the arrival time of the driver’s vehicle with-
out considering the parking interval (flat rate); progressive pricing—the driver pays
the parking fee by calculating the parking interval of the driver without considering
the arrival time, etc.

4. The pricing engine calculates the parking fee based on the arrival time and the vehicle
stay time by referring to the pricing policy of the parking vendor.

5. The parking market demands are predicted by calculating past vehicle flow (entry
and exit) as demand and supply rate.

6. The episode rewards are calculated from occupancy and revenue obtained at each
hour and normalised at each period section to yield a global revenue.

3.2.2. Modules

In this proposed solution, the dynamic pricing model is divided into different modules
to perform different tasks. With the input of parking environments such as vehicle arrival
rate and pricing scheme used by the target parking vendor, the model will produce accurate
performance, reward results and sequence of decision making. Accuracy performance
and reward results are used for the evaluation of DRL-DP, while a sequence of decision
making assists the parking vendor to make a decision on price regulation. Figure 7 shows
the modules and the corresponding tasks in the proposed method.

Figure 7. Relationship of module interactions.

Parking Operator An organisation that offers parking services is the parking operator. The
capacity, pricing and location of the parking vendor will be specified. It will function as a
player in this RL setting. The entity attribute such as capacity, price rate and location will
refer to actual data collected from Location A and Location B.

Driver The driver is an entity that requires a parking lot. The drivers can be classified as
commuters (long-term), frequent visitors (medium-term) and intermittent visitors (short-
term) [17]. The driver is defined by its current location, destination and preferences between
price and distance (described as price-focused, balanced and distance-focused) [13]. The
price and distance preference rates for the driver are normalised to a 0 to 1 interval. The
higher the value, the higher the drivers’ preference. For the driver to decide which parking
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area to park his/her vehicle, this entity will calculate the preference score for each player
and opponent. A lower score of preference will be chosen as the decided parking lot for the
driver. The driver will be randomly initiated with a destination and starting location inside
the defined grip boundary. The distance between the driver and the parking vendor will be
pre-calculated by the grid module before the driver makes the decision.

Grid Module The grid module is a two-dimensional (2D) Euclidean plane to represent
the location of the parking operator and driver in the city’s urban area [13]. The 2D grip
map refers to the geographic coordinate system using latitude and longitude. Each parking
operator and driver will have their own location. The grid module consists of information
about this parking area, such as road capacity, vehicle volume and direction. The grid
module also calculates the distance between the driver and the parking vendor upon
request from the driver.

Pricing Engine The pricing engine fetches information about the parking service, such as
the current pricing, the parking availability at the moment and the likelihood of the next
arrival. According to the specified pricing scheme, such as arrival-time-dependent pricing
(ATP), usage-aware pricing (UAP), and flat rate, the engine runs and designs new pricing
for the next condition.

Arrival Process SARIMAX is used to forecast the arrival of the vehicle at one-hour intervals
using [21]. The forecasted arrival flow will be utilised in the RL simulation.

Reward Module The reward module calculates the reward as environmental feedback
of an action taken by the learning agent. The reward is calculated with the MDP and
normalised to avoid bias.

3.2.3. Vehicle Flow Regulation

To alleviate the traffic congestion caused by a lack of vacant parking lots, smoothing the
regression distribution model of vehicle arrival rate is the key to success. With smoothing
the regression distribution model, a vehicle flow regulator is used to disperse the vehicle
flow from peak hour to non-peak hour based on the historical parking occupancy rate. The
simulated parking environment will use the regulated vehicle flow as a reference to calculate
the reward at each time step. In this paper, the simple moving average (SMA) method is used
as the vehicle flow regulator. It helps to identify the trend direction of the time series data.
The local minimum and local maximum are moved towards the centre value by averaging the
value in a moving window. The window represents a series of the number with the window
width (number of observations used to calculate the moving average). The moving window
slides along the time series data to calculate the average value. Given a set of numbers over
a selected period of time, the SMA is extracted by calculating the arithmetic mean in these
numbers as shown in Equation (1). In Equation (1), An indicates the number at period n, while
n indicates the number of total periods. Figure 8 shows the result of vehicle arrival rate after
the SMA.

SMA =
A1 + A2 + ... + An

n
(1)
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Figure 8. Sample of the vehicle flow after the SMA.

3.2.4. Decision Maker

In this study, the driver acts as the decision maker, which affects the overall rewards
returned in each time step of the episodes. The driver module makes a decision on the
parking area and whether to visit the area or to shift to other time steps due to dynamic
pricing adjustments. Table 1 shows the notation used in the driver decision-making process.

Table 1. Notation used in driver decision making process.

Notation Unit Description

D [0, . . . , 1] Distance preference.
P [0, . . . , 1] Price preference.
O [0, . . . , 1] Occupancy preference.
LP [lat, lng] Location of the player.
LO [lat, lng] Location of the opponent.
LD [lat, lng] Location of the driver.
Ld [lat, lng] Location of driver’s destination.
DP, DO [meter] Distance from driver’s destination to the location of player and opponent.
PP, PO [float] Price of player and opponent.
SP [float] Sum of price of player and opponent.
OP, OO [0, . . . , 1] Parking occupancy of player and opponent.

Every driver has his/her own preferred distance between the parking area and the
destination D), parking lot price (P) as well as parking occupancy (O). The values for
distance, price and occupancy preferences are normalised between 0 and 1. The distance
and price preference pair uses preference value in common. For example, a price-preferred
driver opts for a preference value of (0.7, 0.3) as they think highly of price. On the other
hand, a distance-preferred driver prefers (0.3, 0.7), while a balanced-preferred driver uses
(0.5, 0.5). Occupancy preference is a standalone option because it is common that drivers
tend to avoid visiting a full parking area. The locations of player (LP), opponent (O), driver
(LD) and driver’s destination (Ld) are represented using latitude and longitude. DP and
DO are the measured distances between the driver’s destination and the location of the
player and opponent, these two values will be used in the equation of the driver to make a
decision. PP and PO are the calculated prices if the driver parks at the parking area of the
player and opponent. Equation (2) shows the decision-making process of the driver.

((D ∗ DP) + (P ∗ PP
SP

) + (O ∗OP)) < ((D ∗ DO) + (P ∗ PO
SP

) + (O ∗OO)) (2)
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Equation (2) is divided into two parts. The first part on the left represents the player
preference score, while the second part represents the opponent. The preference score is the
total from the distance score, price score and occupancy score, and each will be normalised
to 0 and 1 and multiplied by its preference value ratio.

3.2.5. Markov Decision Process (MDP)

Markov decision process (MDP) is a discrete-time stochastic control mechanism for
modelling sequential decision making with state transition in a framework. At each time,
the system might be in a different state. The decision maker makes an action in that state
and the state transition will transfer from one state to another. The decision maker aims
to seek a future state with the maximum reward. The proposed method is a partially
observable Markov decision problem where the player only knows the opponent’s parking
capacity, which is open to the public. The parking vendor does not have access to traffic
information and the vehicle arrival rate throughout the simulation. Thus, the dynamic
pricing problem is defined by the following components:

• Time step: Each time step represents a time over a finite time horizon from Monday
to Sunday. It can be a different period section, such as morning, afternoon and night.

• State: To derive an intuitive state representation, it only contains the time step, the
player’s parking occupancy and the opponent’s observable parking occupancy. The
other predefined environment parameters such as parking capacity and parking
pricing policy act as a constant value over the simulation.

• Observation: At every time step, the observation is done after the player performs an
action. The vehicle arrival rate will be forecasted using SARIMAX. With the forecasted
vehicle arrival rate, the driver simulates and performs decision making by observing
the environmental variables such as parking fee and distance of parking vendor. The
driver makes their decision on price and distance preferences. If there are rooms
between the forecasted arrival rate and smoothed arrival rate, it will be declared as a
controllable vehicle arrival. It will perform a decision on whether to continue parking
or pay the next visit based on parking price and parking occupancy.

• Action: An action in the state is the discount performs at the current time step. The
action is modelled as a fixed discount. The discount will be applied to the parking fee
in the current time step.

• Transition: It is nondeterministic using the model-free RL methods for solving the
parking problems. Thus, the transition moves from the current state to another state
with the action taken.

• Reward: In this model, we consider multiple objectives: maximising parking occu-
pancy rate, increasing parking revenue and traffic regulation result. Thus, the reward
is obtained based on these objectives after taking an action in the state.

3.2.6. Deep Learning Model

A deep neural network (DNN) is used in the proposed solution to learn from the
environment observation and player action. The DNN model takes the environmental data
such as time step and parking occupancy as the input variables and produces action as the
output variable. The time step and parking occupancy of the parking vendor (player and
opponent) are normalised as input for the DNN model. The model outputs the action with
the maximum reward based on its historical training data.

Figure 9 depicts the architecture used in the DNN model. In the proposed solution,
the environment data in each episode are produced from time to time. The DNN model
is fit and updated every 200 episodes to achieve higher accuracy. In the simulations, an
epsilon value is introduced to increase environment data exploration.
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Figure 9. Architecture of the proposed neural network model.

In the proposed method, we use an array consisting of the time step and parking
occupancy rate of the player and opponent as the input layer because parameters such as
pricing policies are updated based on the basis of the time step at each simulation. Table 2
shows the parameters used in the model. In each episode, the parking price is regulated
based on the action taken. Hidden layers with 32 units and relu activation are used in the
proposed method to achieve a faster processing speed. An output layer with 5 units is used
following the number of actions in the action space.

Table 2. Parameters used in the DNN model.

Parameter Variable Unit Description

Input layer array [0, . . . , 1] An array consisting of the time step and parking
occupancy rate of the player and opponent.

Activation function relu Relu transforming weighted input layer to
output layer.

First hidden layer int 64 First hidden layer produces the output layer from
the set of weighted input.

Second hidden layer int 32 Second hidden layer produces the output layer
from the set of weighted input.

Third hidden layer int 16 Third hidden layer produces the output layer
from the set of weighted input.

Output layer array [0, . . . , 1] An array consisting of the result of the output of
action space from the input time step.

3.2.7. Reinforcement Learning

The proposed model uses RL as a core mechanism to perform training from an envi-
ronment based on rewarding desired price regulation and deep learning as a learning agent
to learn and predict from the training dataset. Environment factors including traffic flow,
parking availability and time step are received by the environment. The agent learns from
interactive interaction within the environment. Figure 10 shows the general mechanism of
the proposed RL mechanism.

As a real-world simulation to simulate a parking environment with a driver entity,
the environment notation is important to demonstrate real-world behaviour and feedback.
Table 3 shows the notation of variables used in the environment simulation.
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Figure 10. RL mechanism in the proposed method.

Table 3. Notation of used variables in environment simulation.

Notation Unit Description

Y (int) Year.
M (int) Month.
D (int) Date.
t (hour) One hour interval.
T (hour, . . . , hour) A period of hours.
V - Parking vendor.
d - Driver.
Ld (lat, lng) Location of driver.
LP (lat, lng) Location of player.
LO (lat, lng) Location of opponent.
DP, DO (meter) Distance of driver’s destination to location of player and opponent.
FP, FO (int) Vehicle arrival flow rate of player and opponent.
FA (int) Vehicle arrival flow rate after SMA.
PP, PO - Pricing policies of player and opponent.
D(·) - Discount function.
N (int) Number of inflows.
NT (int) Number of inflows after SMA.
NC (int) Number of controllable inflows.

Y, M and D represent the environment datetime, t ∈ T, T = {0, 1, . . . , 23}. T is a period
of hours, while t is the component of T. V is the parking vendor that includes the player
and opponents, while d represents the driver. Ld, LP and LO signify the locations of the
driver, player and opponent, respectively. DP and DO are the distances between the driver’s
destination and locations of the player and opponent. FP and FO are the vehicle arrival
flow rates of the player and opponent, while FA is the vehicle arrival flow rate after the
SMA. PP and PO are the pricing policies of the player and opponent. On the other hand,
D(·) denotes the discount function which returns the discount schema in the current time
step and also acts as the action. N is the number of forecasted inflows in the current time
step. NT is the number of inflows after the SMA, while NC is the controllable inflows which
are obtained from the difference between N and NT.

The Q-learning algorithm is a model-free off-policy reinforcement learning algo-
rithm [22]. In the proposed method, the reward is obtained through a sequence of the
driver’s decision making. A decision is made by the driver to park at a parking area to
reflect the result of the action taken at each time step. The Q-table stores and updates the
accumulated reward (q-value) at each time step. The Q-learning algorithm predicts the
state-action combination based on a greedy policy where it takes the action with the maxi-
mum q-value in the Q-table. The learning agent studies to improve the reward by taking
an action from the Q-table. In the proposed method, the epsilon-greedy policy is used.
Exploration allows the agent to explore its knowledge to make a better action in the long
term by avoiding choosing the maximum q-value and ignoring an action that has never
been taken before. Exploitation allows the agent to exploit the current estimated maximum
q-value and select the greedy approach. Exploration is increased using the epsilon value to
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avoid being trapped at a local optimum, as a trade-off between exploration and exploitation.
An episode in this study refers to the selected week to undergo environment simulation.
The episode will be repeated three thousand episodes to achieve learning efficiency and
accuracy. The proposed approach is summarised in Algorithm 1.

The environment entity computes the entry and exit flow of the player and competitors
in the reward function. The number of drivers will choose their parking space based on
price and distance preference with the computed in and outflows. Algorithm 2 shows the
procedure of the reward function.

Algorithm 1 Implementation of RL with Q-Learning for the parking industry.

1: Initialise environment variable (number of opponents, price range, datetime, period
section and etc.)

2: Get the current time-step
3: N⇐ number of hours in period section (a period of hours)
4: while N > 0 do
5: Gets an action based on the Q values of the Q-table.
6: Performs the action
7: Observe the environment and get the reward
8: Update current state of environment
9: Calculate new Q value and update to Q-table

10: Increment the current time-step
11: N ⇐ N − 1
12: end while

Algorithm 2 Proposed reward function to return reward at each time step.

1: Get player current state
2: Get opponent current state
3: Normalise vehicle stay time from player and opponent
4: Initialise rewards, in and out flow of vehicle to 0
5: N ⇐ number of hours in period section (a period of hours)
6: while N > 0 do
7: Define hourly reward to 0
8: IN_N ⇐ number of inflow of current hour (day and hour)
9: IN_CN ⇐ controllable inflow by calculating the difference between target vehicle

flow after vehicle flow regulation with forecasted inflow using historical parking
occupancy data

10: while IN_N > 0 do
11: Initialise driver with stay time
12: Driver makes decision on parking area
13: Update reward value
14: IN_N ⇐ N − 1
15: end while
16: while IN_CN > 0 do
17: Initialise driver with stay time
18: Driver makes decision whether to park or visit next time and its parking area
19: Update reward value
20: IN_CN ⇐ N − 1
21: end while
22: Update parking occupancy of player and opponent
23: Add hourly reward to rewards
24: Update occupancy of player and opponent
25: Increment the current time-step
26: N ⇐ N − 1
27: end while
28: Return rewards and updated environment data
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4. Experimental Results

We present a series of experiments and simulations to assess the performance of the
proposed method. In the parking industry, parking vendors in different parking areas aim at
different types of visitors. For example, tourism areas usually target short-term visitors while
office buildings used to have long-term visitors. Thus, test cases with different pricing policies
are considered because they show competition among nearby parking vendors. The following
shows the uniform arrivals in the simulations: (i) {“Begin”:0, “End”:4, “Fee”:4.0}, {“Begin”:5,
“End”:10, “Fee”:10.0}, {“Begin”:11, “End”:17, “Fee”:8.0}, {“Begin”:18, “End”:24, “Fee”:6.0}; (ii)
{“Begin”:0, “End”:24, “Fee”:10.0}. “Begin” indicates the beginning time boundary of the rate,
“End” indicates the end time boundary of the rate, and “Fee” indicates the flat rate of the
pricing policy. The following shows the progressive pricing in the simulations: (i) {“Unit”:
1.0, “Fee”: 3.0}, {“Unit”: 1.0, “Fee”: 2.0}, (ii) {“Unit”: 1.0, “Fee”: 5.0}, {“Unit”: 1.0, “Fee”: 3.0},
{“Unit”: 1.0, “Fee”: 2.0}. Unit indicates the unit of hour, while fee indicates the parking fee
within the time, which means every X unit of hour cost Y. In the case of PP (i), one hour costs
3, two hours costs 5 and three hours costs 7, every one-hour increment will cost 2. Three sets
of action spaces are designed for the parking vendors, and each action space contains five
actions. By considering the big disparity of price range, the action space is set in a wider
range to ensure rooms for the players to obtain better rewards. Some parking vendors use
a relatively cheap pricing policy; thus some action spaces will provide price adjustments
(rising in price) to get better rewards. The action spaces provided are: (i) [0, −5, −10, −15,
−20], (ii) [−10, −5, 0, 5, 10], (iii) [−20, −10, 0, 10, 20]. For example, in action space [0, −5,
−10, −15, −20], these five numbers are the selection to be taken by the player. Thus, each
pricing policy pair of player and opponent will be repeated three times to obtain the results of
using different action spaces under the same pricing policy pair. Each test case is tested using
different reward approaches, including occupancy, revenue, traffic regulation performance
and these three in union. The player updates the discount at each time step in the simulation.
In the simulation, a time interval of one week is selected as the running episode for dynamic
pricing. The combination of uniform arrival rate and progressive pricing will be simulated
under three different action spaces. Each combination of pricing schemes used by the player
and the enemy will be repeated three times with the different action spaces.

4.1. Evaluation for Occupancy Approach

This section evaluates the learning output of the proposed method using the occupancy
approach. With a dynamic pricing model under the occupancy approach, training always
worsens because there is limited capacity for each parking vendor. If the parking vendor
aims to achieve a greater occupancy rate, he can always provide the greatest discount
regardless of parking revenue. Thus, the parking lot will always be full, and the action
taken (discount) will be meaningless. The deep learning agent always reaches a higher
accuracy in the first 50 episodes because the learning agent easily reaches high accuracy
with a random choice of action in this approach. However, the exploration will make
the deep learning agent confused because sometimes it cannot get higher accuracy by
selecting the greatest discount (action) since it does not have enough parking spaces for
the upcoming vehicles. Table 4 shows the accuracy performance under the occupancy
approach. Figure 11 shows the reward performance under the occupancy approach. The
dynamic pricing model always reaches an optimal value after around 2500 episodes.
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Table 4. Accuracy performance under occupancy approach.

Steps

50 100 500 1000 2000 3000Experiment

Accuracy

1 0.58 0.47 0.36 0.5 0.63 0.59
2 0.78 0.61 0.48 0.58 0.53 0.61
3 0.77 0.67 0.56 0.64 0.58 0.61
4 0.59 0.48 0.44 0.55 0.52 0.59
5 0.73 0.64 0.47 0.59 0.61 0.63
6 0.73 0.59 0.5 0.61 0.72 0.75
7 0.67 0.53 0.42 0.56 0.58 0.55
8 0.83 0.63 0.53 0.66 0.58 0.63
9 0.8 0.66 0.63 0.56 0.69 0.81
10 0.61 0.48 0.41 0.61 0.42 0.69
11 0.78 0.61 0.5 0.64 0.67 0.7
12 0.77 0.64 0.53 0.58 0.72 0.64
13 0.59 0.52 0.56 0.63 0.47 0.56
14 0.72 0.58 0.53 0.59 0.56 0.59
15 0.73 0.56 0.48 0.61 0.56 0.59
16 0.56 0.48 0.55 0.59 0.5 0.69
17 0.63 0.55 0.48 0.55 0.66 0.61
18 0.66 0.58 0.5 0.61 0.45 0.63
19 0.66 0.53 0.41 0.5 0.52 0.59
20 0.75 0.59 0.56 0.56 0.56 0.52
21 0.73 0.58 0.5 0.58 0.59 0.61
22 0.59 0.47 0.48 0.56 0.48 0.52
23 0.67 0.58 0.5 0.58 0.66 0.72
24 0.67 0.59 0.41 0.66 0.47 0.61
25 0.7 0.66 0.55 0.59 0.47 0.63
26 0.86 0.64 0.61 0.58 0.69 0.86
27 0.81 0.67 0.63 0.55 0.5 0.66
28 0.7 0.63 0.53 0.59 0.67 0.66
29 0.84 0.64 0.61 0.63 0.61 0.73
30 0.81 0.67 0.53 0.56 0.53 0.63
31 0.67 0.63 0.61 0.48 0.64 0.75
32 1 0.91 0.92 0.94 0.84 0.84
33 0.84 0.64 0.61 0.53 0.56 0.72
34 0.66 0.64 0.55 0.58 0.48 0.61
35 0.97 0.88 0.81 0.92 0.67 0.66
36 0.84 0.64 0.64 0.55 0.48 0.81
37 0.58 0.47 0.39 0.67 0.53 0.64
38 0.8 0.66 0.53 0.56 0.5 0.63
39 0.78 0.64 0.5 0.66 0.53 0.8
40 0.61 0.45 0.45 0.7 0.69 0.64
41 0.72 0.56 0.45 0.61 0.61 0.69
42 0.73 0.59 0.45 0.59 0.58 0.61
43 0.66 0.55 0.41 0.48 0.56 0.59
44 0.89 0.63 0.58 0.53 0.56 0.61
45 0.8 0.67 0.63 0.58 0.59 0.77
46 0.56 0.48 0.44 0.44 0.47 0.67
47 0.81 0.61 0.52 0.52 0.5 0.58
48 0.78 0.67 0.58 0.58 0.53 0.59



Algorithms 2023, 16, 32 18 of 26

Figure 11. Reward result under the occupancy approach.

4.2. Evaluation for Revenue Approach

This section compares the experiments using the revenue approach as the reward.
Table 5 shows the accuracy performance under the revenue approach. Figure 12 shows
the reward results under the revenue approach. Under the revenue approach, the deep
learning agent is able to achieve higher rewards in the training period. However, in some
circumstances, the agent cannot get a higher reward such as in the ninth experiment. In
the ninth experiment, the player has a pricing scheme with higher competitive power
(cheaper than the opponent), so it is difficult to increase its competitive power by applying
a discount. The action space used [−20, −10, 0, 10, 20] also restricts the player from getting
a higher reward because the action space has an excessive gap because of each action. The
player has difficulty increasing its competitive power, discount will cut off its revenue while
rising in price will make it lose its competitive advantage. However, other experiments
under the revenue approach can get higher rewards depending on the competitive power
(pricing scheme and action space used in each experiment).



Algorithms 2023, 16, 32 19 of 26

Table 5. Accuracy performance under the revenue approach.

Steps

50 100 500 1000 2000 3000Experiment

Accuracy

1 0.97 0.88 0.92 0.88 0.89 0.86
2 0.77 0.66 0.66 0.69 0.69 0.73
3 0.53 0.59 0.83 0.7 0.72 0.91
4 0.98 0.88 0.98 0.92 0.98 0.75
5 0.78 0.7 0.77 0.56 0.78 0.66
6 0.83 0.81 0.84 0.75 0.88 0.69
7 0.83 0.7 0.56 0.86 0.92 0.92
8 0.78 0.78 0.83 0.92 0.88 0.83
9 0.48 0.58 0.73 0.63 0.8 0.59
10 0.92 0.88 0.89 0.86 0.88 0.86
11 0.78 0.81 0.75 0.66 0.58 0.94
12 0.48 0.59 0.75 0.69 0.78 0.91
13 0.98 0.91 0.86 0.98 0.89 0.86
14 0.78 0.58 0.69 0.55 0.42 0.7
15 0.8 0.66 0.63 0.52 0.42 0.64
16 0.98 0.92 0.92 0.86 0.97 0.89
17 0.84 0.75 0.58 0.58 0.53 0.67
18 0.81 0.66 0.63 0.5 0.63 0.56
19 0.98 0.88 0.91 0.84 0.91 0.92
20 0.77 0.67 0.64 0.56 0.5 0.56
21 0.8 0.73 0.58 0.53 0.55 0.81
22 0.98 0.88 0.91 0.84 0.95 0.83
23 0.86 0.66 0.64 0.58 0.69 0.72
24 0.8 0.7 0.61 0.58 0.45 0.73
25 0.98 0.89 0.92 0.89 0.73 0.91
26 0.95 0.88 0.89 0.84 0.75 0.91
27 0.92 0.94 0.92 0.78 0.78 0.83
28 0.98 0.88 0.89 0.92 0.86 0.91
29 0.89 0.8 0.86 0.84 0.77 0.91
30 0.94 0.8 0.92 0.78 0.8 0.81
31 0.56 0.56 0.5 0.73 0.72 0.77
32 0.55 0.56 0.52 0.72 0.63 0.61
33 0.47 0.63 0.59 0.75 0.72 0.72
34 0.7 0.78 0.63 0.77 0.67 0.7
35 0.63 0.67 0.66 0.64 0.72 0.72
36 0.66 0.78 0.69 0.77 0.77 0.75
37 0.97 0.88 0.97 0.89 0.88 0.84
38 0.67 0.73 0.63 0.61 0.64 0.83
39 0.58 0.61 0.84 0.67 0.7 0.89
40 0.98 0.88 0.89 0.89 0.89 0.95
41 0.8 0.67 0.69 0.5 0.7 0.84
42 0.81 0.69 0.75 0.63 0.61 0.73
43 0.84 0.73 0.7 0.81 0.83 0.86
44 0.61 0.69 0.73 0.83 0.8 0.86
45 0.56 0.53 0.59 0.7 0.78 0.81
46 0.91 0.8 0.89 0.8 0.77 0.92
47 0.84 0.7 0.67 0.58 0.63 0.77
48 0.56 0.78 0.81 0.63 0.7 0.91
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Figure 12. Reward result under the revenue approach.

4.3. Evaluation for Vehicle Flow Regulation Approach

The experiment in this section compares learning output using the vehicle flow regulation
approach. The deep learning agent learns to alleviate the vehicle flow during peak hours and
enhance the vehicle flow during non-peak hours. When calculating the reward at each time
step, the reward module use result from VFR (Section 3.2.3) as a reference, the nearer the target
vehicle flow, the higher the reward, and vice versa. Table 6 shows the accuracy performance
under the vehicle flow regulation approach. The accuracy performance under the vehicle flow
regulation approach is barely satisfactory. However, the reward result increases under some
circumstances. Figure 13 shows the reward result under the vehicle flow regulation approach.
When there are significant disparities of competitive power among parking vendors, the
deep learning agent finds it difficult to achieve higher rewards, such as in the 1st, 4th, 7th,
13th, 16th, 19th, 22nd and 40th experiments. In those experiments, the player uses a cheaper
pricing scheme (higher competitive power) with action space [0, −5, −10, −15, −20] (only
discount without rising in price). The action space used in those experiments will increase its
competitive power (or remain the same). Thus, it cannot decrease the vehicle arrival rate by
price regulation.
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Table 6. Accuracy performance under the vehicle flow approach.

Steps

50 100 500 1000 2000 3000Experiment

Accuracy

1 0.5 0.55 0.56 0.44 0.56 0.56
2 0.5 0.55 0.58 0.53 0.55 0.47
3 0.52 0.47 0.48 0.47 0.53 0.45
4 0.48 0.55 0.5 0.55 0.56 0.44
5 0.53 0.45 0.58 0.45 0.53 0.41
6 0.52 0.56 0.55 0.45 0.53 0.53
7 0.56 0.52 0.55 0.55 0.64 0.38
8 0.52 0.55 0.44 0.42 0.56 0.45
9 0.52 0.55 0.55 0.53 0.53 0.53
10 0.48 0.53 0.42 0.52 0.58 0.52
11 0.5 0.55 0.58 0.41 0.44 0.44
12 0.52 0.47 0.56 0.61 0.58 0.48
13 0.52 0.47 0.55 0.5 0.56 0.48
14 0.45 0.58 0.73 0.42 0.86 0.97
15 0.59 0.56 0.77 0.58 0.83 0.92
16 0.53 0.53 0.53 0.36 0.5 0.44
17 0.48 0.64 0.72 0.7 0.86 0.77
18 0.47 0.56 0.61 0.5 0.63 0.97
19 0.58 0.52 0.61 0.45 0.61 0.55
20 0.42 0.5 0.69 0.52 0.73 1
21 0.59 0.55 0.73 0.64 0.67 0.73
22 0.53 0.52 0.5 0.55 0.58 0.48
23 0.48 0.63 0.72 0.59 0.66 0.72
24 0.45 0.55 0.64 0.44 0.41 0.61
25 0.58 0.5 0.58 0.67 0.72 0.58
26 0.63 0.53 0.56 0.61 0.56 0.72
27 0.42 0.59 0.39 0.64 0.5 0.44
28 0.58 0.53 0.55 0.7 0.61 0.63
29 0.58 0.53 0.56 0.64 0.52 0.75
30 0.44 0.61 0.58 0.61 0.56 0.55
31 0.63 0.58 0.55 0.61 0.69 0.69
32 0.61 0.55 0.58 0.63 0.7 0.8
33 0.56 0.48 0.56 0.56 0.69 0.56
34 0.63 0.59 0.61 0.69 0.8 0.67
35 0.61 0.56 0.63 0.66 0.89 0.91
36 0.55 0.53 0.58 0.48 0.64 0.67
37 0.55 0.56 0.59 0.45 0.53 0.48
38 0.48 0.59 0.52 0.52 0.58 0.47
39 0.52 0.48 0.58 0.39 0.58 0.55
40 0.55 0.56 0.56 0.61 0.58 0.5
41 0.52 0.55 0.53 0.44 0.45 0.44
42 0.52 0.53 0.56 0.55 0.59 0.45
43 0.55 0.5 0.63 0.45 0.53 0.47
44 0.53 0.53 0.55 0.52 0.52 0.55
45 0.52 0.55 0.53 0.52 0.55 0.56
46 0.48 0.56 0.59 0.59 0.55 0.47
47 0.5 0.5 0.55 0.52 0.56 0.47
48 0.52 0.47 0.58 0.42 0.48 0.42
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Figure 13. Reward result under vehicle the flow regulation approach.

4.4. Evaluation for Occupancy, Revenue and Vehicle Flow Regulation (Unified) Approach

The experiment in this section compares the learning output using the union approach
which included occupancy, revenue and vehicle flow regulation. Table 7 shows that the
accuracy performances under the unified approach are barely satisfactory. Figure 14 shows
the reward result under the unified approach. This may be caused by the occupancy,
revenue and vehicle flow regulation approaches being influenced by each other, which
makes it harder to achieve higher accuracy. Nevertheless, the deep learning agent is
achieving higher rewards in the training period.
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Table 7. Accuracy performance under the occupancy, revenue and vehicle flow regulation (uni-
fied) approaches.

Steps

50 100 500 1000 2000 3000Experiment

Accuracy

1 0.53 0.5 0.69 0.7 0.92 0.77
2 0.63 0.47 0.58 0.55 0.47 0.69
3 0.58 0.56 0.56 0.47 0.59 0.66
4 0.52 0.53 0.55 0.56 0.66 0.53
5 0.44 0.59 0.61 0.56 0.55 0.7
6 0.58 0.58 0.58 0.53 0.52 0.66
7 0.61 0.56 0.77 0.75 0.94 0.91
8 0.56 0.47 0.63 0.56 0.48 0.7
9 0.58 0.56 0.53 0.56 0.59 0.58
10 0.52 0.5 0.66 0.7 0.89 0.98
11 0.61 0.58 0.58 0.58 0.64 0.83
12 0.58 0.56 0.56 0.58 0.64 0.7
13 0.58 0.56 0.61 0.64 0.66 0.56
14 0.81 0.66 0.86 0.7 0.89 0.94
15 0.77 0.56 0.72 0.75 0.44 0.59
16 0.5 0.48 0.56 0.56 0.55 0.39
17 0.69 0.67 0.81 0.77 0.83 0.91
18 0.86 0.7 0.75 0.7 0.73 0.92
19 0.58 0.58 0.7 0.59 0.69 0.66
20 0.7 0.58 0.83 0.67 0.95 0.95
21 0.58 0.5 0.81 0.67 0.91 0.77
22 0.52 0.53 0.55 0.59 0.5 0.52
23 0.66 0.69 0.81 0.77 0.67 0.86
24 0.78 0.69 0.77 0.78 0.7 0.78
25 0.55 0.63 0.7 0.56 0.88 0.94
26 0.53 0.56 0.44 0.55 0.47 0.88
27 0.5 0.58 0.55 0.36 0.48 0.47
28 0.58 0.66 0.7 0.59 0.94 0.69
29 0.52 0.58 0.52 0.39 0.61 0.86
30 0.5 0.61 0.52 0.61 0.56 0.83
31 0.58 0.45 0.5 0.7 0.77 0.64
32 0.56 0.53 0.34 0.52 0.58 0.5
33 0.52 0.56 0.45 0.42 0.5 0.56
34 0.58 0.47 0.48 0.69 0.78 0.86
35 0.56 0.53 0.52 0.55 0.64 0.84
36 0.53 0.56 0.41 0.53 0.55 0.48
37 0.53 0.52 0.66 0.75 0.61 0.89
38 0.53 0.48 0.59 0.5 0.48 0.45
39 0.53 0.56 0.59 0.63 0.58 0.48
40 0.52 0.55 0.48 0.41 0.56 0.48
41 0.39 0.64 0.69 0.52 0.67 0.52
42 0.59 0.48 0.59 0.5 0.69 0.59
43 0.63 0.63 0.8 0.69 0.56 0.53
44 0.53 0.53 0.53 0.48 0.59 0.67
45 0.52 0.53 0.55 0.52 0.47 0.44
46 0.52 0.52 0.66 0.69 0.64 0.69
47 0.56 0.58 0.66 0.48 0.59 0.67
48 0.55 0.53 0.59 0.56 0.48 0.59
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Figure 14. Reward result under the occupancy, revenue and vehicle flow regulation (unified) ap-
proaches.

4.5. Discussion

So far, we have performed the experiments using different approaches such as parking
occupancy and revenue. The same pricing schema and discount action space settings are
used for these approaches to evaluate the accuracy and learning efficiency of the learning
algorithm. Since the scale varies between each other, these approaches also show different
tendencies in the learning output. From the experiment observations, some discussions can
be concluded. The average reward fluctuated greatly during the training period [1, 100],
and it slowly converged to an optimal point (highest reward based on its approach) where
the exploration reduced at this training period and the exploitation starts to stabilise. The
exploration can help to avoid the learning agent from being biased towards short-term
gains. The optimal value of the experiments varies for different pricing schemas. This
might be caused by the competitive power of the player compared to competitors in the
parking market.

The higher the price adjustment range in the action space, the higher the variation of
the average reward. This is because a higher price adjustment range represents a higher
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possibility to change the driver’s preference. For example, the action space [−20, −10, 0, 10,
20] enables the player to make greater adjustments to the pricing schema. When the player
uses the uniform arrival rate (UA), the action space must be precise and narrow because the
high difference value is an obstacle for the learning agent to improve the reward. This might
be solved by using a more precise and complex action space for the player. When the player
uses a low-priced pricing policy, the player needs to raise the price to increase the revenue
reward. Otherwise, the revenue of the player is difficult to increase because the action taken
as a discount will only increase the parking occupancy rate, not help in increasing revenue.

Under the occupancy approach, the learning agent can reach an optimal reward easier
by selecting the best action because the player loses sight of the parking revenue. Under
the revenue approach, the learning agent can reach an optimal value except when the
player uses a low-priced pricing policy and the action space without a higher price. The
vehicle flow is much more difficult to regulate as compared to the occupancy and revenue
approaches because the low parking price will distract the drivers and vice versa.

5. Conclusions

This study examines a dynamic pricing mechanism for the parking sector based on
parking income and vehicle arrival rate. The parking industry’s dynamic pricing model is
then put out and studied using reinforcement learning. It is demonstrated that the dynamic
pricing method works well to arrive at the best outcome.

However, there are still some problems to be solved, such as on-street parking and
facility impacts. The amount of on-street parking may affect the willingness of the driver
to park at off-street parking (parking vendor with barrier-gate) because of the difference
in price. Moreover, the building type of the parking premise will also affect the drivers’
parking willingness if their destination is a tenant or a shop in the opponent’s building.
More human factors such as driver’s preference based on parking area also provide a high
impact on dynamic pricing. The driver’s preference may be affected by the type of parking
area such as tourism, office and residential area.

For future improvements, some important aspects have to be taken into account in
order to provide a more accurate and reliable result. Vehicle volume on the road is a critical
factor to influence vehicle arrival rate, especially in urban areas because vehicle volume on
the road may affect the ability of the driver to find a parking lot. Thus, the relationship
between vehicle volume and vehicle arrival rate in the parking area has to be observed and
analysed to provide a more sophisticated parking environment simulation. Thus, future
works may focus on customising flexible environment parameters to adapt to complicated
real-world environments.
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