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Abstract: The Smart Readiness Indicator (SRI) is a newly developed framework that measures a
building’s technological readiness to improve its energy efficiency. The integration of data obtained
from this framework with data derived from Building Information Modeling (BIM) has the potential
to yield compelling results. This research proposes an algorithm for a Recommendation System
(RS) that uses SRI and BIM data to advise on building energy-efficiency improvements. Following a
modular programming approach, the proposed system is split into two algorithmic approaches linked
with two distinct use cases. In the first use case, BIM data are utilized to provide thermal envelope
enhancement recommendations. A hybrid Machine Learning (ML) (Random Forest–Decision Tree)
algorithm is trained using an Industry Foundation Class (IFC) BIM model of CERTH’S nZEB Smart
Home in Greece and Passive House database data. In the second use case, SRI data are utilized
to develop an RS for Heating, Ventilation, and Air Conditioning (HVAC) system improvement, in
which a process utilizes a filtering function and KNN algorithm to suggest automation levels for
building service improvements. Considering the results from both use cases, this paper provides
a solid framework that exploits more possibilities for coupling SRI with BIM data. It presents a
novel algorithm that exploits these data to facilitate the development of an RS system for increasing
building energy efficiency.

Keywords: recommendation system; Smart Readiness Indicator; energy efficiency; thermal envelope;
building automation; K-Nearest Neighbor; Random Forest regressor; Decision Trees

1. Introduction

Buildings play an important role in energy consumption in cities, including cities in
the European Union (EU). Buildings are responsible for approximately 40% of EU energy
consumption and 36% of the energy-related greenhouse gas emissions [1]. Heating, cooling,
and domestic hot water account for 80% of the energy that citizens consume [1]. At present,
about 35% of the EU’s buildings are over 50 years old, and almost 75% of the building stock
is energy inefficient. In the US, buildings account for about 40% of all energy consumption
and a similar proportion of greenhouse gas emissions [2]. Based on the 2018 Commercial
Buildings Energy Consumption Survey (CBECS), the estimated 5.9 million U.S. commercial
buildings consumed 6.8 quadrillion British thermal units of energy and spent 141 billion
dollars on energy in 2018. These statistics underscore the significant impact that buildings
have on energy usage and emphasize the urgent need for energy-saving measures.

The Energy Performance of Buildings Directive (EPBD) has been instrumental in
drawing attention to the immense potential for energy savings through improvements in
building design, construction, and operation. It catalyzes discussions and actions aimed at
enhancing energy efficiency. Furthermore, recent geopolitical events have shed more light
on the EU’s dependence on Russia for energy resources. This geopolitical situation has
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prompted increased discussions about energy security and the need for greater self-reliance
in the EU. It has also fueled conversations about energy efficiency as a means to reduce
dependence on external energy sources and ensure a more sustainable and resilient energy
future. The recognition of energy efficiency as a critical aspect of sustainable building
design, renovation [3] and operation has gained traction and is driving the demand for
effective tools and strategies to optimize energy consumption [4], occupant comfort [5] and
minimize the carbon footprint of buildings.

In response to the need to enhance energy efficiency in buildings, there has been a
notable shift from conventional buildings to smart buildings [6]. To improve the smartness
of buildings, it is necessary to incorporate digital components into the pre-existing techno-
logical infrastructure within these structures. These additions have a direct impact on the
diverse range of services, such as heating, cooling, ventilation, and others, that collaborate
to achieve optimal human comfort. In the context of improving building intelligence, the
2018 edition of the EPBD [7] introduced a novel framework called the Smart Readiness
Indicator (SRI). This framework was designed to address the requirement of evaluating
the degree of intelligence in contemporary buildings and to encourage the adoption of
digitalization in the built environment.

For improving the energy efficiency of traditional buildings, research has been con-
ducted on both active and passive methods. The idea of using Recommendation Systems
(RSs) originated from companies like Amazon, Netflix, etc. with many other applications
including products, movies, and content promotion [8]. It soon found its way into the
buildings sector as researchers attempted to work on user behavior. RSs have emerged as
valuable tools for improving energy efficiency in buildings. These systems leverage ad-
vanced technologies and data analysis algorithms to provide personalized suggestions and
guidance to building managers and designers. By analyzing data from multiple sources,
such as SRIs and Building Information Modeling (BIM), RSs can offer tailored recommen-
dations that align with specific building characteristics and energy-efficiency goals.

The current shift from conventional buildings to smart buildings presents a notable
research gap that necessitates attention. Specifically, there is a need to develop a robust
RS that is tailored to the unique requirements of modern smart buildings. The primary
focus of this paper is to develop a novel algorithmic approach for an RS that harnesses the
potential of SRI and BIM data to suggest energy-efficiency improvements. By capitalizing
on the newly introduced SRI framework and integrating it with BIM data, the developed
RS algorithm aims to assist building managers and designers in optimizing energy perfor-
mance through relevant suggestions. To ensure a streamlined development process and the
effective utilization of data from SRI and BIM, the paper is structured around two distinct
algorithms (one per use case), each leveraging a specific data source.

• The first use case concentrates on the thermal envelope of the building and relies on
BIM data. This includes essential information, such as the U-value of walls, roofs, and
windows, as well as recommendations for insulation materials. By leveraging these
data, the RS can provide valuable insights and recommendations for improving the
thermal performance of buildings. These recommendations can guide designers and
building managers in making informed decisions and implementing energy-efficient
design strategies.

• The second use case centers around the SRI data source, which provides information
about a building’s readiness for smart services, including building automation systems,
lighting control, heating, cooling, ventilation, and more. By analyzing these data, the
RS can generate tailored recommendations for enhancing energy efficiency through
the integration and implementation of smart technologies. It is important to note
that while the recommendations do not guarantee an immediate increase in efficiency,
they represent significant opportunities for improvement by adopting the suggested
smart-ready services.

The archival value addition of the ‘use case’ approach used in this study lies in the
combination of information that comes from two different sources. Furthermore, the study
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introduces a new approach to using BIM and SRI data, which is the main novelty of this
work. However, it does not delve into the computational aspects of the proposed RS and
instead focuses on the algorithmic aspects.

The rest of the paper is organized as follows. Section 2 presents a literature review
on three main terms related to this study: namely, RS, SRI, and BIM. Section 3 details the
methodology used to develop the algorithms for both use cases. Results are discussed in
Section 4 of the paper with comparisons of alternative Machine Learning (ML) algorithms
and their results. Section 5 discusses the results, implications of this work, challenges, and
directions for future work. Finally, Section 6 summarizes the important aspects of this
research while also providing the main takeaway message.

2. Background

To clearly demonstrate the relevant studies associated with the topic of this paper, the
following subsections are presented to explore the key publications related to RSs, SRI,
and BIM.

2.1. Recommendation Systems

As mentioned previously, the need for RSs was initially realized when platforms
like Amazon and Netflix wanted to predict the interests of their users based on their
historical data to make their platforms more attractive to their users as well as become
more profitable. The development of these systems started in 2009. As discussed by [9] in a
detailed article on the research trends on RSs, 2009–2012 was the stable period that saw the
initial development of RSs. After the stable period, the rapid growth period started, which
saw an increase in publications related to RSs. Next came the outbreak period (2016–2017),
which was accompanied by the period where Artificial Intelligence (AI) came back into
the spotlight. The increase in the popularity of AI can be considered a reason behind the
outbreak period of RSs. From 2019 onward, studies related to RSs started to focus on energy
efficiency in buildings.

Meanwhile, in the domain of energy efficiency, most studies focused on the techno-
logical aspect of energy saving through monitoring [10]. The shift toward focusing on
user behavior became important when occupant participation and behavioral change was
identified as an important factor [11] for improving energy efficiency in buildings. Context-
aware RSs became a great option in this regard because they could take into consideration
human behavior, AI, and human decision-making processes [12]. This resulted in the use
of RSs and AU in the domain of energy efficiency and buildings.

As more and more work was conducted in the domain of RSs, various algorithms were
used and found to produce results for varying scenarios. An extensive literature survey [13]
presented a taxonomy of RSs that have been developed so far with classifications in terms
of purpose, algorithms, and computing platforms. In terms of purpose, there are two main
categories of RSs. One is strategy-based and the other is action-based. Strategy-based RSs
provide an all-encompassing or general strategy toward a given challenge. The authors
in [14] developed an RS for energy management in buildings which suggested reductions
in energy based on previous cases for similar buildings. The suggested reduction in energy
consumption could be used in developing a strategy for energy management in buildings.
Action-based RSs are associated with the daily needs and life of the end user. Their objective
was to give daily recommendations to end users based on past data as well as energy-
efficiency principles. Finally, the authors in [15] developed an RS that gave suggestions for
energy savings to its end user.

Moving toward algorithms, there are various algorithms found in the literature that
are used to build an RS. Case-based RSs are one of the most common RSs. In common
product-based applications of RSs, case-based RSs find similarities between distinct product
features like color, price, and make. In the context of energy-efficiency RSs, these product
features are replaced by the user behavior linked with the actions at certain time stamps
that allow for energy saving. So, using past data [14], the algorithm suggests energy-saving
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measures. To identify similar behaviors at specific time stamps, the K-Nearest Neighbor
(KNN) approach can be used. Similarly, pattern-mining algorithms [16] can also be used for
creating appliance usage profiles that form a correlation with time stamps. This way, when
a behavior that is different from one of the profiles is detected, a notification is provided to
the user.

The second most popular is collaborative filtering. Collaborative filtering is different
from content-based filtering in a way that it takes into account a group of users and does
not specifically focus on the content. In the context of a movie RS, it works by focusing
on similar movies watched by different people in a group and then recommends a movie
to some people in the group who have already been observed by other people in the
same group. Concerning energy efficiency, collaborative filtering can help in predicting
the energy usage plans [17] and suitable consumption plans with adequate tariffs by first
analyzing the consumption data of a household. Taking more things into account, context-
based RSs are generally used for a longer period to give recommendations that are in
line with the particular contextual circumstances of the end user. This concept can be
used in storing historic energy consumption patterns with their underlying context in the
knowledge base and then using it with rule-based (content-based) recommendations to
achieve better results [18].

Moving onto a slightly different type of RSs, Rasch-based RSs help determine the
probability that a user will act out the recommendation provided to them while taking
into account the difficulty of the recommendation. In a practical scenario, these kinds of
RSs can help in reducing the difficulty of tasks given to the occupants while promoting
energy efficiency [19]. Different from content-based and collaborative filtering, probabilistic
relational models use a relational database instead of a user-item preference. They deploy a
Markov chain model to record the historical energy footprints in the workspace [20].

RSs that benefit from different kinds of data are termed fusion-based RSs. These
use data such as energy consumption footprints, ambient conditions like temperature,
and humidity [21]. Deep Learning (DL)-based RSs are becoming increasingly popular
because of the overall popularity of DL. DL-based RSs help with solving the cold start
problem, which is prevalent in collaboration filter-based RSs because of the lack of data at
the beginning [22].

2.2. Smart Readiness Indicator

Smartness concerning a building can be referred to as a building’s ability to sense,
interpret, communicate, and actively respond efficiently to ever-changing environments
concerning three main aspects: technical operation of the building, external factors like
grids and the building occupants [23].

Smart buildings are a result of digitalization efforts made toward how energy is gener-
ated, transmitted, and utilized with regard to buildings [24]. Smart buildings are part of the
larger scheme which includes the synergies among the energy, Information, and Communi-
cation Technology (ICT) industries. This synergy has allowed for the development of smart
grids being connected with smart buildings as well as with renewable energy generation
sources. It has also allowed buildings to become better equipped with fluctuating demand
while also becoming prosumers in cases of low demand. In this new paradigm, smart
buildings need to perform at an optimum level to meet the demand and still be energy
efficient. For this purpose, many indicators and metrics have been developed to judge a
building’s performance from different aspects.

Many sustainability rating systems have been developed to judge a building’s perfor-
mance. From a holistic point of view, there are three major categories of this type of rating
system. Cumulative Energy Demand (CED) systems only focus on energy consumption
criteria. A good example of CED is the Energy Performance Certificate (EPC), which is
internationally standardized and was introduced under the European standard of EN
15217 [25].
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The purpose of EPC is to standardize regulations and encourage people to improve
the energy performance of buildings. In the EU, Finland uses EPC as a legally mandatory
rating scheme for buildings. In EPC, the value for E is calculated by evaluating factors
like outer walls, doors, windows, roofs, floors, heating systems, domestic water systems,
ventilation systems, lighting, cooling systems, additional electrical heating systems, and
other systems affecting building energy usage [26].

The second type of sustainability rating system is Life Cycle Analysis (LCA), which
has a focus on environmental factors like emissions only [27]. Total Quality Assessment
(TQA) is a multi-criteria system that focuses not only on the economic but also the environ-
mental and social factors [28]. A good example of TQA is Green Public Procurement (GPP),
which was introduced as a result of guidelines for TQA by the European Commission. GPP
is not necessarily a rating system; rather, it gives sustainable and environment-friendly
suggestions related to material procurement for buildings [29]. The GPP system is based
on two versions: one is the core, which offers a much easier implementation of the method-
ology. And the comprehensive one offers an extensive implementation of the methodology.
Another scheme under TQA is the Building Research Establishment Environmental As-
sessment Method (BREEAM), which was established in the UK. It is a certification scheme.
BREEAM is based on extensive life-cycle sustainability performance criteria for buildings
including land use, material use, and pollution [30]. The main objective of BREEAM is to
reduce life-cycle impact, recognize environmental benefits, and encourage the demand and
value of energy-efficient buildings.

Another example of a sustainable rating system is LCA, and the International Common
Carbon Metric by the United Nations Environment Program’s Sustainable Buildings and
Climate Initiative (UNEP-SBCI) is the most popular. It aims to assess emissions related
to buildings. Moving forward from sustainability rating systems, there are various rating
systems for buildings that do not just focus on one parameter and fall into multiple
categories. The Smart Readiness Indicator (SRI) is one such rating system. The SRI
primarily focuses on the technical aspects of a smart building. An SRI can be defined
as a parameter that simply provides information on the readiness of any given building
concerning the three aspects mentioned in the above definition of smartness: namely,
the technical operation of the building, the external environment (communication with
the grid), and the residents of the building. It was introduced in 2018 via the European
Parliament where the main objective for SRI was set as “an indicator which should be
able to measure a building’s capacity to use information and communication technologies
electronic systems to adjust to occupant needs and the grid to improve energy efficiency
and performance”. In the two years of its existence, there have been various studies
implementing the SRI framework [1], and some common issues relating to the subjective
nature of the framework have been pointed out.

The SRI was developed to create a framework that assesses a building’s technological
readiness to interact with the occupants, energy grids, and its ability to be energy efficient
in its operations through the use of ICT technologies. For this purpose, SRI focuses on
three key areas: namely, occupant needs, interaction with the grid, and energy-efficient
operation. To initiate the development of the SRI framework, a total of two technical studies
were organized. The first technical study [23] came up with the actual definition and draft
methodology for the framework. The SRI framework largely depends on an inventory of
smart-ready services that could be present in a building and an inspection of functionalities
these services can offer. There is a degree of ‘smartness’ to which these functionalities
operate. This means from manual control to an automated system with a feedback loop.

Some important terminologies related to the SRI framework are domains, impacts,
and functionalities. As previously stated, functionalities are the degrees of smartness. The
services in any given building operate in certain domains and have an impact on certain
areas. To include all the domains and the impact areas, a multi-criteria framework was
developed in the first technical study. The total domains and impact areas are presented in
Table 1.
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Table 1. Domains and impact areas in SRI framework.

Domain Impact Areas

Heating Energy savings
Cooling Maintenance and fault prediction

Domestic hot water Comfort
Ventilation Convenience

Lighting Information to occupant
Dynamic building envelope Health and well-being

Electricity generation Energy demand flexibility
Electric vehicles charging

Monitoring and controlling

The associated functionality levels vary for each domain. In some domains, there are
a maximum of four functionality levels starting from zero. In some other domains, there
are only three levels of functionality. The SRI assessment is flexible in a way in that its
assessment can either be completed by an individual with a checklist (a brief assessment)
or it can be completed by an expert (a detailed assessment).

For SRI assessment, the first step is to determine the building type and climate zone.
After selecting the appropriate smart service catalogue, domains present in the building
are identified, and their respective functionality levels are assessed. All the activities up
to this point are manual and require user interaction. In the next step, actual domain
scores are allotted as per services available in the building. These scores are expressed as a
percentage of the actual rating and the highest possible rating. A sum of all the domains
and impact areas is then taken. As per weightage, the average of the impact areas is taken
to calculate the scores for three main impact areas (occupant needs, interaction with the
grid, and energy-efficient operation). Lastly, a final average is taken to calculate the SRI
score. The detailed step-by-step SRI assessment is presented in [31]. Multiple studies have
been conducted ever since the introduction of the SRI framework in 2018.

The framework is still in the process of improvement, as the available literature
suggests that it might be too subjective [32]. Additionally, it encourages the utilization of
digital technologies and electronic systems in buildings, potentially leading to future fire
hazards that necessitate attention and resolution [33]. However, for this paper, the focus
will be on the type of data that can be taken from an SRI assessment file to develop the RS.

2.3. Building Information Modeling

BIM is a digital representation of the physical and functional characteristics of a
building. It involves the creation and management of a virtual model that encompasses
all aspects of a construction project, including design, construction, and operation. BIM
has gained significant attention in the construction industry due to its potential to improve
collaboration, efficiency, and decision-making throughout the project life cycle.

A systematic literature review on studies from 2004 to July 2019 was conducted to
allow for a thorough synthesis of the existing BIM literature, innovation management,
and information technology domains to identify BIM adoption and implementation en-
ablers [34]. The review found that BIM adoption is influenced by various factors such as
organizational culture, management support, and training. Another literature review was
conducted to define the scope and terms of the field of renovation. It demonstrates the
areas of interest for a BIM approach and highlights some gaps that should be filled with
future works [35].

These comprehensive literature reviews have shown how the implementation of BIM
has evolved over the years. The implementation of BIM with regard to the development
of the RS is that it provides the thermal envelope data which will be useful for the first
use case.

Overall, there are numerous ML algorithms available in the literature for the devel-
opment of an RS. The primary focus of this research article is the creation of an algorithm
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for an RS utilizing the SRI and BIM data. The unique aspect of this study lies in the data
processing and formatting procedures required for both sources, as to the best of authors’
knowledge, there is currently no available literature on this particular matter. Once the data
are pre-processed and are in the right format, multiple ML algorithms can be applied/tested
with some modifications for the development of the RS.

3. Methodology for Recommendation Systems

The methodology section of this paper is divided into two sections representing the
conceived algorithms for the first and second use cases. The first use case uses BIM as a
source of data to develop an RS for thermal envelope, while the second use case uses SRI
data to develop an RS for HVAC systems.

3.1. Thermal Envelope

The RS for the thermal envelope (first use case) uses data from BIM. To develop the
basic framework upon which the RS works, it needs to be determined what kind of data
can be taken from BIM, which will aid in giving suggestions related to energy efficiency
in buildings.

The main elements of the envelope to be considered for the RS are walls, roofs, and win-
dows. The properties associated with these elements will be the main output/suggestions
of the RS. Concerning these suggestions, some input variables need to be decided for the
RS. The thermal envelope design of a building largely depends on where it is located, the
type of building, and the geometry of the building. Based on this knowledge, the inputs for
the RS were decided, including the building area, the climate zone in which the building is
located, and the building type.

Therefore, as depicted in Figure 1, the basic working framework is that the RS takes in
information related to the building area, the climate zone in which the building is located,
and the building type. Based on this, employing a hybrid-model-based approach, it makes
predictions related to the characteristics of the thermal envelope of the building (specifically
U values of the walls, roof, windows, type of insulation to use for walls/roof, and thickness
for this insulation). These suggestions (wall, roof, and window U values) can help in
optimizing Key Performance Indicators (KPIs) such as energy consumption for heating and
cooling, indoor temperature stability, and environmental sustainability while also giving
some important parameters to building designers aiding in the designing process. Knowing
optimal U values and using the right insulation material will help prevent overheating by
reducing solar heat gain. The designer can derive benefits from these suggestions during
the design phase. The data collection, pre-processing, and algorithm selection details are
discussed in the following subsections.

3.1.1. Data Collection and Pre-Processing

One of the main sources of data in this paper is the BIM data of the nearly zero
Energy Building (nZEB) Smart Home of the Center for Research and Technology Hellas
(CERTH) [36] located in Thessaloniki, Greece. However, since ML algorithms will be used to
develop the RS, more data need to be collected for training the algorithm. For this purpose,
the Passive House database [37] was used to obtain thermal envelope data. The database
has an official website and has a search function that lets you search buildings according to
their location. Upon expanding on the building information, the variables used for training
the dataset in this study can be easily accessed. This database is selected for two reasons.
First, it contains all the necessary information related to the characteristics and properties
of the thermal envelope of buildings. Secondly, the Passive House database establishes
a standard for ensuring high energy efficiency in buildings by improving the thermal
envelope, which consequently reduces the energy requirements for heating and cooling.
Therefore, it would be beneficial to train the algorithm utilizing data from this source.
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Figure 1. Working concept of recommendation system (first use case).

The pre-processing consists of two main steps, which are discussed as follows:

• Extracting thermal envelope characteristics from the IFC BIM file of the smart home.
For this purpose, a separate code was utilized using the ‘IFCOPENSHELL’ library
in Python to extract the relevant thermal envelope characteristics. For extracting the
thermal transmittance values of the walls and roof, ‘IFCWALL’ and ‘IFCSLAB’ were
used, respectively. To obtain detailed information about the insulation layers and
respective thicknesses, ‘IFCMATERIALLAYERSETUSAGE’ was used.

• Collecting data from the Passive House database and formatting of data. For this
purpose, data were collected from the official database website. Data were collected
manually and then manually formatted in a CSV file.

3.1.2. Machine Learning Algorithms

To train the ML model, the number of variables in the input and the output need to
be considered as a first step. According to the literature, algorithms like KNN are very
popular. This RS, however, uses a hybrid algorithm-based approach. This is used because
of the complex nature of the data at hand. For both the input and output variables, there
are categorical and numerical variables included. Therefore, for predicting the numerical
variables, the scikit-learn [38] implementations of Random Forest (RF), Linear Regression,
and KNN were used.

The RF algorithm can be effective in capturing complex interactions between item
features and generating recommendations based on those features. It can handle both
numerical and categorical features, and it can handle missing data. By considering the item
features, it can recommend items that are similar in terms of their content or attributes to
the items that a user has shown interest in. Thus, for predicting the categorical variables, the
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scikit-learn [38] implementations of the Decision Tree (DT) classifier and Logistic Regression
were used (to draw a comparison between the two ML algorithms).

DTs are versatile algorithms commonly used for classification and regression tasks.
They are capable of handling both categorical and continuous variables as input features.
Further justifications for the usage of this hybrid algorithm approach are presented in the
results section (Section 4), which will present the use of other ML algorithms for the RS
(for 1st use case) as well as with the evaluation metrics. The user flow chart depicting the
working of the RS is presented in Figure 2.

Figure 2. User flow (first use case).

3.2. HVAC Systems

The conceived algorithm for the RS developed in the second use case utilizes the SRI
data and is meant to give suggestions related to the HVAC systems of a building. One
benefit of utilizing SRI data is that as the smart-ready services undergo enhancements, the
SRI assessment files will also be informed, consequently impacting the RS suggestions.
However, the main question to be answered when developing an RS utilizing SRI data is
‘how to use the SRI data’. This is because an SRI assessment is rich in information about
building systems. As mentioned in the literature review portion of the SRI, the assessment is
based on a smart service catalogue which contains a list of over 50 smart-ready services with
their corresponding functionality levels (level of smartness). It is important to understand
that while the final SRI score of a building depicts the level of smart readiness of a building,
it does not give much useful information for the development of an RS. The crucial piece of
information comes from the smart service catalogue, as it contains the list of all possible
services. This can be used to train ML algorithms.
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The main concept for the SRI-based algorithm for RS is depicted in Figure 3. The
RS takes the impact-domain matrix from the SRI assessment along with some building
information like building type and year of construction. The reason for using the impact-
domain matrix from the SRI information is that it tells us about the area in the systems of the
buildings that needs the most improvement. The lowest percentage in the impact-domain
matrix is identified, and then the services contributing to this low percentage are listed.

These services are then fed to an algorithm that looks for buildings with similar con-
struction years and types in the dataset. The services with their corresponding functionality
levels belonging to buildings with similar construction years and types are then suggested
to the user. The reason for selecting building construction year as an input variable to the
ML algorithms is because [39] indicates that there is a relationship between the year of
construction and the SRI score. The newer the building is, the higher the score.

The algorithm is designed to consider a possible link between buildings, specifically
prioritizing newer structures with similar construction years in its dataset. Consequently, it
may suggest smart-ready services implemented in these buildings to the user. The SRI data
currently come in an Excel file. Thus, the data require pre-processing before being used for
the ML algorithm. The data collection, pre-processing, and ML algorithms are discussed in
the following subsections.

Figure 3. Working concept of recommendation system (second use case).

3.2.1. Data Collection and Pre-Processing

Collecting data for developing the RS for the second use case required information
present in the SRI assessment file, which is usually distributed in an Excel format. SRI
assessment has already been performed on the CERTH’s smart home in Thessaloniki. This
was used for developing the RS. However, SRI data of more than one building are required
for training the ML algorithm. Acquiring these SRI data was challenging for the second use
case since the SRI is still a relatively new framework and there are no databases or online
repositories with SRI assessments of different buildings.
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Therefore, literature containing data for an SRI assessment of buildings was investi-
gated. The majority of the investigated SRI literature lacks usefulness in the development
of a robust RS since it reports just the final SRI score. The work presented in [39] provided
the complete list of smart-ready services and their corresponding functionality levels for 10
buildings. Table 2 indicatively shows a few columns of how the data from the literature
were formatted manually into a CSV file.

Table 2. Data format of the training dataset.

Building Type Construction Year Heat Emission Control (H-1a) Emission Control for TABS
(Heating Mode)(H-1b) . . .

Single-family house 2018 3 NA . . .
Educational building 2017 2 3 . . .
Educational building 2015 3 NA . . .
Educational building 1988 2 NA . . .
Educational building 1994 2 NA . . .
Educational building 2000 2 3 . . .
Educational building 2000 2 NA . . .
Educational building 2004 3 NA . . .
Educational building 2017 3 3 . . .
Educational building 1973 2 NA . . .
Educational building 1994 3 NA . . .

As shown in Table 2, the building types and construction years are in the vertical
orientation, whereas the 52 smart-ready services are mentioned in the horizontal orientation.
The numbers under the smart-ready services suggest their functionality level.

The pre-processing of SRI data requires understanding the information present in an
SRI assessment file. The SRI assessment file contains the following in separate sheets stored
in a single Excel workbook file.

From the above information, the last two contain the data required to develop the RS;
however, the data still need to be converted from Excel to a CSV file to make it easy to
extract the data from files and use it for training the ML algorithm. The impact domain
matrix was copied manually from the results sheet and made into a separate CSV file
to serve as an input to the RS. The separate sheets of each domain from the SRI file are
meant to help identify the smart services that contribute toward the low score in the impact
domain matrix. For this reason, each domain sheet in the SRI file needs to be converted
into a CSV file as well. This was completed manually along with some formatting to make
the CSV file easily readable using Python code.

3.2.2. Machine Learning Algorithms

After having worked on all the needed CSV files, the data need to be filtered out in
a way that can be fed to the ML algorithms. The scikit-learn [38] implementations of DT
and KNN were used (to compare the two ML algorithms). A dynamic code needs to be
developed for this which takes in the impact-domain matrix (Table 3), identifies the lowest
percentage in the matrix, accesses the identified domain, filters out the impact that has
a bearing on the identified domain, and then prints out the services. To achieve this, the
following steps were followed:
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Table 3. Impact-domain matrix.

Technical
Domains

Energy
Efficiency

Energy
Flexibility Comfort Convenience Health and

Well-Being Maintenance Information
to Occupants

Heating 80 17 75 63 67 50 67
Domestic hot

water 0 0 0 0 0 0 0

Cooling 85 17 25 63 67 50 67
Ventilation 0 0 26 0 43 50 67

Lighting 1 0 20 13 0 0 0
Dynamic
building
envelope

20 0 20 17 0 0 0

Electricity 80 56 0 25 0 0 67
Electric
vehicle

charging
0 25 0 25 0 0 67

Monitoring
and control 50 67 67 59 50 64 78

1. Once the lowest percentage is identified, the domain and the impact are noted (Light-
ing and energy efficiency in case of Table 3).

2. Next, for the domain ‘lighting’, the separate CSV file named lighting (extracted from
the SRI Excel file in the data collection phase) is used to filter out all instances where
‘energy efficiency’ has an impact value of above zero. All such instances are then
traced back to the service name under which they happen. For example, in the
lighting domain, there are only two services (Occupancy control of indoor lighting,
L-1a, and Control artificial lighting based on outdoor daylight levels, L-2) and in both
these services, for at least one functionality level, the impact of energy efficiency is
above zero.

3. Since the RS must be capable of accepting any kind of impact-domain matrix, the code
developed for performing the steps described above must be dynamic. This requires,
for the identified domain, making a separate code file that contains a function that
performs the filtering of smart-ready services based on non-zero values under the
identified impact area.

4. Once the separate code files containing the smart service filter function are in place,
they can be called based on the lowest percentage in the impact domain matrix. The
output will be identified smart services, which will then be fed to the ML algorithms.

5. After acquiring the smart-ready services, along with the building type and the con-
struction year, the KNN algorithm using scikit-learn’s K Neighbors Regressor with a
single neighbor as parameter (n_neighbors = 1) and the DT algorithm (with the param-
eters criterion = ‘mse’, splitter = ‘best’, min_samples_split = 2, min_samples_leaf = 1,
min_impurity_decrease = 0.0, min_impurity_split = None and presort = ‘deprecated’)
was employed to suggest the functionality level for the smart-ready service identified
earlier. This is completed based on the similarity of the building information (type
and construction year) entered by the user compared to those present in the data used
to train the algorithms.

A user flow chart is depicted in Figure 4 to better explain the above-mentioned steps.
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Figure 4. User flow (second use case).

4. Results and Evaluation

To verify the accuracy and reliability of the proposed approach, a systematic approach
was employed to validate the results of each component of the proposed RS. The first use
case comprises two distinct components: the numerical and the categorical. To assess the
numerical component, the validation process utilizes the MAE and the RMSE metrics. Both
metrics were employed based on the criterion that their values should not exceed 10% of
the expected values derived from the standard principles of Passive House construction.
The criterion for evaluating these values is that they should be equal to or lower than 10%
of the anticipated range of values for these variables. The establishment of these ranges is
as follows in Table 4.

Table 4. Acceptable ranges for selected building envelope elements.

Building Envelope Elements Acceptable Range

Wall U value 0.1–0.25
Roof U value 0.07–0.2

Wall insulation thickness 0.2–0.3
Roof insulation thickness 0.025–0.035

Window U value 0.5–0.6

In the categorical component, the validation process involved assessing the accuracy
of the proposed RS by utilizing a confusion matrix to calculate the number of correct
predictions. The accuracy of the proposed RS was determined by examining the frequency
of accurate predictions made. To discuss the results of RSs from both use cases, this section
is divided into two major portions for the two use cases. In this section, results along
with evaluation metrics are discussed, and also, justifications for the selection of the ML
algorithms were made.
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4.1. Recommendation System for Thermal Envelope

For the RS HVAC systems use case, the evaluation of results was completed in two
parts, as the outcome from the RS included categorical and numerical variables. The evalua-
tion and algorithm selection for these two parts are presented in the following subsections.

4.1.1. Numerical Evaluation

The evaluation metrics used for the numerical variables are Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE).

The calculation of MAE is a simple process, as described by Equation (1). It involves
summing the absolute values of the errors, which represent the differences between the
actual and predicted values, and then dividing this sum by the total number of instances.
In contrast to alternative statistical methodologies, MAE assigns equal weight to all errors
when evaluating performance.

MAE =
1
N

N

∑
i=1
|yi − fi| (1)

where yi is the real, fi is the predicted value, and N is the amount of observations.
RMSE (Equation (3)) is defined as the square root of the mean squared distance

between the actual and predicted values, which is equivalent to the square root of the Mean
Squared Error (MSE) (Equation (2)). While the computations for these two metrics are quite
similar (Equations (2) and (3)), the RMSE is commonly preferred due to its ability to be
represented in the same units as the goal parameter in the given scenario. RMSE, as per its
technical definition, assigns higher significance to larger errors, since the impact of each
error on the overall sum is determined by its square rather than its magnitude.

MSE =
1
N

N

∑
i=1

(yi − fi)
2 (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − fi)2 (3)

where yi is the real, fi is the predicted value, and N is the number of observations.
After executing the code, the following evaluation metric values were obtained (Table 5).

Table 5. Random Forest model results.

Building Envelope Component MAE RMSE

Wall U value 0.0326 0.0423
Roof U value 0.0349 0.0430

Wall insulation thickness 0.0263 0.0329
Roof insulation thickness 0.0238 0.0316

Window U value 0.0471 0.0647

The accuracy of the algorithm is acceptable in terms of MAE values; however, there
are some values of RMSE that are outside the ranges stated in Table 4.

To make a clear decision, other algorithms were also used to see how they perform in
terms of these statistical measures. Table 6 presents these results.
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Table 6. Numeral evaluation results for different algorithms.

Algorithm Wall U Value Roof U Value Wall Insulation
Thickness

Roof Insulation
Thickness Window U Value

Random Forest MAE = 0.0326 MAE = 0.0349 MAE = 0.0263 MAE = 0.0238 MAE = 0.0471
RMSE = 0.0423 RMSE = 0.0430 RMSE = 0.0329 RMSE = 0.0316 RMSE = 0.0647

Linear Regression MAE = 0.0370 MAE = 0.0331 MAE = 0.0251 MAE = 0.0305 MAE = 0.0459
RMSE = 0.0449 RMSE = 0.0387 RMSE = 0.0300 RMSE = 0.0455 RMSE = 0.0554

K-Nearest
Neighbor MAE = 0.0374 MAE = 0.0349 MAE= 0.0234 MAE = 0.0291 MAE = 0.0512

RMSE = 0.0464 RMSE = 0.0436 RMSE = 0.0294 RMSE = 0.0393 RMSE = 0.0723

Based on Table 6, the RF algorithm generally performs better with lower MAE and
RMSE values compared to the other algorithms for most of the target variables.

4.1.2. Categorical Evaluation

The evaluation of the metric used for the categorical variables is the confusion matrix
reporting accuracy values. The accuracy of the produced model was measured to check
how many times it predicted the categorical variable correctly. After executing the code,
the following results were obtained:

• Accuracy for Wall insulation 60%.
• Accuracy for roof insulation 57%.

It is to be noted here that the percentage accuracy is not very high, so other algorithms
were used to compare. Results from other algorithms are presented in Table 7.

Table 7. Categorical evaluation results for different algorithms.

Algorithm Wall Insulation Roof Insulation

Linear Regression 30.3 40.4
Logistic Regression 16.67 13.3

Decision Tree Classifier 60 57
K-Nearest Neighbor 11 0

4.2. Recommendation System for HVAC Systems

For the second use case, the evaluation was much simpler compared to the first use
case, as the target variable of this RS is a numerical value (functionality level of a smart-
ready service). After running the code, the following results were obtained, which are
presented in Table 8.

Table 8. KNN algorithm performance.

Actual Functionality Level Predicted Functionality Level

2 2
3 2
2 2

The resulting MAE is 0.33 and the RMSE is 0.57. In this case, it is important to note
that the MAE and RMSE values do not fully depict the accuracy of the produced model,
since there are three instances in the test set and the algorithm predicts correctly two times
for the instances in the test set. To make a sound decision on this, and to find out if the
above-mentioned results are acceptable or not, a DT algorithm was also used, yielding the
results presented in Table 9.
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Table 9. Decision tree algorithm performance.

Actual Functionality Level Predicted Functionality Level

1 0
0 1.5
1 1

Based on the presented results, it becomes apparent that the DT algorithm exhibits
limitations in providing accurate predictions. Furthermore, it appears to predict values
dynamically. Something like that may not be desirable, as the target variable represents the
functional level of a smart service and cannot take on decimal values. Therefore, it is much
more suitable to use the KNN algorithm, as it predicts values based on similarity rather
than dynamically calculating them.

5. Discussion

The findings derived from the result analysis of the two use cases can be interpreted
in the following manner.

• First use case

– The results of the numerical variable in the first use case are deemed acceptable.
The predicted U value for roofs was 0.1. The thickness value for wall insulation
was found to be 0.25. The predicted value for roof insulation was 0.3. Lastly,
the U value for windows was measured to be 0.55. These values are within the
acceptable ranges mentioned in Table 4. However, the results for the categorical
variables are inferior, since the obtained accuracy values range between 50%
and 60%. This can be attributed to the limited quantity of building data that
were taken into account. To train the ML algorithms, data were taken from
the Passive House database in addition to the IFC BIM file of CERTH’s smart
home. Since the data were collected manually from the database, data of only
30 buildings were considered in the database. It is also noted that when data
were generated artificially, accuracy decreased even further. The utilization of
larger datasets has the potential to result in increased accuracy when dealing with
categorical variables.

– In addition to conducting a quantitative evaluation of the outcomes of the pro-
posed RS, a qualitative evaluation was also implemented to assess the coherence
and validity of the results. For that purpose, different sets of input variables were
tested to observe the thickness of insulation and the corresponding U values of
the wall and roof. It was observed that when there is an increase in the thickness
of the wall and roof insulation, the U values tend to drop. This is in line with
the concepts of thermal resistance. An increase in insulation thickness would
increase thermal resistance and therefore decrease the U values because the two
are inversely proportional. Thus, it was determined that the results obtained from
the proposed RS make sense from a domain-knowledge point of view.

• Second use case

– The challenging part about developing an algorithm for an RS using SRI data was
the difficulty in finding complete data. As mentioned in previous sections, the
SRI data for training the ML algorithm were taken from the available published
literature. However, this was only data for 11 buildings, and the results as such
would not be very good for a wide range of buildings when using such a small
dataset. As a result, out of every three input instances in the RS, two values were
predicted correctly.

– From a qualitative perspective, there is a favorable relationship between the year
of construction and the SRI score. This means that for a given smart-ready service,
the functionality level should be higher if the construction year input by the



Algorithms 2023, 16, 482 17 of 21

user is more recent. If the building is old, then it should be lower. This test
was performed, and the RS produced the expected results, suggesting a higher
functionality level for the same smart-ready service if the building is new; but if
it is old, lower functionality levels are suggested.

5.1. Challenges

The methodology employed in this study for developing the proposed RS yielded
satisfactory outcomes at a small scale. However, some challenges necessitate attention
and resolution.

• The utilization of datasets for training ML algorithms is characterized by a notable
limitation in terms of size. In contrast, RSs usually rely on larger datasets, typically
consisting of no less than one thousand data points. As a result, the scalability of the
proposed RS has not been adequately tested.

• The utilization of the Passive House database was necessary due to the limited avail-
ability of BIM data for buildings. Hence, the accessibility of BIM data has the potential
to enhance automation and reduce the reliance on manual efforts in the data prepara-
tion process.

• The dataset was manually prepared for the first use case due to the absence of a feature
in the Passive House database that allows for data retrieval in a tabular format. From
a practical point of view, this could potentially present a challenge for developers who
intend to create this kind of RS.

• The Passive House database encompasses a comprehensive range of climatic condi-
tions across Europe. Yet, it is less widely adopted outside Europe, resulting in limited
availability of climate-specific construction details for regions beyond Europe. This
database constraint directly influences the proposed RS.

• Using the Passive House database for training ML algorithms yields recommendations
for constructing energy-efficient building envelopes. Moreover, it is important to note
that passive house constructions tend to incur higher costs, which may pose a potential
challenge despite their high energy efficiency.

• The current SRI framework is characterized by subjectivity, which consequently im-
pacts the recommendations provided by the proposed or any RS. Nevertheless, it is
imperative to acknowledge that this issue cannot be ignored unless certain modifica-
tions are made to the official SRI framework.

The significance of this study lies in the development of a novel algorithm for the
proposed RS as well as its demonstration of the potential benefits of integrating SRI and
BIM data. The combination of BIM data with data from the Passive House database allows
for covering a wide variety of building types and climates within the EU. This integration
can provide highly individualized and comprehensive recommendations for improving the
energy efficiency of buildings. The use of SRI data in this study can assist researchers with
devising innovative algorithms and investigating the potential for creating more valuable
solutions targeted at enhancing building energy efficiency. Moreover, this study highlights
the necessary steps for leveraging the SRI framework to relevant stakeholders through the
creation of a valuable tool that may be upgraded by increasing the SRI data accessibility.

5.2. Future Work

The area for future work for both use cases is discussed in the following points:

• The algorithmic results for the RSs in both use cases can be enhanced with the incor-
poration of a cost feature. In the first use case (thermal envelope RS), it is possible
to incorporate the cost of insulating materials as a factor. This would enable users
to specify their budgetary constraints, hence allowing for personalized suggestions
that align with their financial preferences. Similarly, the second use case (HVAC
Systems RS) involves including the expenses associated with each building service.
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This enables the user to make informed decisions on their desired level of automation
for a certain building service based on their allocated budget.

• For the first use case, a safety element can be added. Insulation materials are not just
selected for the lower U value but also for their resistance to fire in certain climates.
This is not considered in this work. Adding this feature would make the RS more
practical.

• For the first use case, the EU building stock observatory [40] can also be used as a
source of data, as it contains most of the variables included in the dataset prepared
for this work, and it does not require any manual form of data entry, as the data are
available in CSV files.

• For the first use case, external factors like local regulations with regard to the insulation
can also be added to the existing RS.

• The SRI data are quite difficult to collect. Therefore, a central database at the national
level would be very helpful for future researchers in the SRI domain.

• With larger datasets for both SRI and BIM, the scalability of the RS can be better tested.
• The subjectivity of the SRI framework needs to be addressed by adding quantitative

elements to it.

Finally, given the collective potential of the algorithms developed in both use cases,
by using larger datasets, it is possible to integrate this tool with existing BIM software
packages. BIM software packages like Revit [41] offer certain options and suggestions for
the improvement of energy efficiency in the building model developed by the user; however,
the level of personalization of these suggestions is still not very high. By integrating the
tool proposed in this paper, this can be significantly improved.

6. Conclusions

This work introduces a novel algorithmic approach for an RS that leverages BIM and
SRI data. To optimize the utilization of these data, the methodology was segmented into
two algorithms, which were each related to one of two use cases.

In the first use case, BIM data were employed to offer recommendations for improving
the thermal envelope. A hybrid ML algorithm, following a mixed Random Forest–Decision
Tree approach, was trained using the BIM model of CERTH’S nZEB Smart Home in Greece,
which is based on the IFC standard, along with data from the Passive House database.
The second use case involved the utilization of SRI data to develop an RS for suggesting
improvements for HVAC systems. This process incorporates a filtering function and
the KNN algorithm to propose appropriate levels of automation for improving building
services. Therefore, to achieve optimal outcomes, a range of algorithms was employed and
tested, including KNN, RF, DT, Linear Regression, and Logistic Regression, to assess and
determine the optimal outcomes.

It is noteworthy that the inputs to the proposed RS exhibit a predominantly static na-
ture over extended periods. These inputs include variables, such as building type, climate,
area, SRI impact domain matrix, and construction year. Thus, real-world modifications to
buildings would have no impact on the suggestions provided by the RS.

Statistical analysis of the findings indicated that although the numerical values exhibit
higher levels of predictive accuracy, the categorical variables are significantly influenced by
the quality of the obtained data. Furthermore, the qualitative assessment indicated that the
results obtained from the RS are aligned with the concepts of building physics and the SRI.

Finally, this paper presented an RS that investigates the potential synergies between
SRI and BIM data as evidenced by the results obtained from both use cases. It introduced
an innovative algorithmic approach that leverages the available data to support the creation
of an RS aimed at enhancing building energy efficiency.
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