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Abstract: In the field of logistics and transportation (L&T), this paper reviews the utilization of
simheuristic algorithms to address NP-hard optimization problems under stochastic uncertainty.
Then, the paper explores an extension of the simheuristics concept by introducing a fuzzy layer to
tackle complex optimization problems involving both stochastic and fuzzy uncertainties. The hybrid
approach combines simulation, metaheuristics, and fuzzy logic, offering a feasible methodology
to solve large-scale NP-hard problems under general uncertainty scenarios. These scenarios are
commonly encountered in L&T optimization challenges, such as the vehicle routing problem or the
team orienteering problem, among many others. The proposed methodology allows for modeling
various problem components—including travel times, service times, customers’ demands, or the
duration of electric batteries—as deterministic, stochastic, or fuzzy items. A cross-problem analysis of
several computational experiments is conducted to validate the effectiveness of the fuzzy simheuristic
methodology. Being a flexible methodology that allows us to tackle NP-hard challenges under general
uncertainty scenarios, fuzzy simheuristics can also be applied in fields other than L&T.

Keywords: logistics and transportation; metaheuristics; simulation; fuzzy logic

1. Introduction

Analytical methods are commonly used by L&T managers to make informed deci-
sions [1]. Optimization models are widely employed in various industries, including L&T,
because of their ability to provide optimal solutions for complex challenges. When the
inputs and constraints of an optimization problem are known, deterministic models can
be solved using exact methods as long as they satisfy some mathematical properties [2].
However, in real-life L&T activities, there are often many variables and constraints, leading
to NP-hard optimization problems, which might limit the effectiveness of exact methods,
especially in large-size instances [3]. As a result, heuristic and metaheuristic approaches
have been developed to provide near-optimal solutions to such problems in reasonable
computing times [4]. In addition, in the context of L&T operations, the inputs may be
subject to the uncertainty of parameters such as travel times, customer demands, service
times, or battery durability in the case of electric vehicles. When these inputs can be
modeled using random variables, simheuristic algorithms—which combine heuristics with
simulation—can be used to address the corresponding stochastic optimization problem [5].
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The term ‘simheuristics’ or ‘sim-heuristics’ was introduced in the last decade. Since
then, the number of published articles using it has been continuously increasing. Figure 1
depicts this evolution until 2023 (where values with the ‘*’ symbol represent estimates).
A noticeable increase has been encountered during the last years, when real-world problems
triggered considering uncertainty in the search for solutions [6,7]. Hence, simheuristics
has become a first-resource tool for dealing with NP-hard optimization problems under
stochastic uncertainty [8].

Figure 1. Google Scholar articles using the term ‘simheuristics’ for the period 2013 to 2023, where
values with the ‘*’ symbol represent estimates.

However, stochastic uncertainty is not the only type of uncertainty found in real-
world problems. For non-probabilistic uncertainty, fuzzy techniques can be used to model
uncertainty [9]. This non-probabilistic uncertainty might be due to a lack or scarcity
of data, which makes it difficult to model it using a theoretical probability distribution.
Non-probabilistic uncertainty might also be associated with scenarios in which qualitative
expert opinions must be considered. In order to illustrate the combination of two types of
uncertainty conditions, Tordecilla et al. [10] propose a fuzzy simheuristics method, which
hybridizes a metaheuristic with simulation and fuzzy logic. As explained by these authors,
some inputs can be modeled using random variables, while others follow a fuzzy pattern.
A fuzzy system based on fuzzy logic computes fuzzy outputs based on a set of rules
established by a human expert, allowing for non-binary logic scenarios, where outputs
have a partial degree of being ‘true’ or ‘false’.

Accordingly, the main contribution of this paper is to provide both conceptual and prac-
tical insights on how these ‘fuzzy simheuristics’ can be applied in the optimization of differ-
ent L&T systems, including the well-known vehicle routing problem (VRP) [11], the team
orienteering problem (TOP) [12], the permutation flow-shop problem (PFSP) [13,14],
the location routing problem (LRP) [15], and the time-capacitated arc routing problem
(TCARP) [16] under uncertainty conditions. This novel concept of fuzzy simheuristics has
not been widely addressed in the literature so far. In order to close this gap, this paper
reviews existing work on the topic, discusses the main concepts, and provides a novel
cross-problem analysis of computational results.

The remaining sections of this paper are organized as follows: Section 2 reviews the
impact of uncertainty in logistics and transportation activities, while Section 3 discusses
some related optimization problems. Section 4 provides a review of simheuristics. Section 5
explains how simheuristics can be naturally extended to fuzzy simheuristics. Section 6
provides an overview of recent applications of this novel fuzzy simheuristic methodology.
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Section 7 discusses the major trends and open research lines related to this emerging
concept. Finally, Section 8 highlights the main contributions of this paper.

2. Modeling Uncertainty in Logistics and Transportation

In the L&T arena, decision makers face various challenges due to the uncertainty that
exists in these systems [17]. Uncertainty can stem from several factors such as travel times,
customers’ demands, electric battery durability, vehicle reliability, etc. Thus, for instance,
the travel time of vehicles cannot be defined solely as a function of time, because external
factors such as heavy traffic, weather conditions, traffic accidents, and road conditions can
cause delays. These delays create uncertainty in travel times, and this uncertainty must
be taken into consideration when making decisions to ensure that the decisions reflect a
reasonable majority of real-world scenarios [18].

Uncertainty in L&T activities has to be differentiated into stochastic random or fuzzy
variables. On the one hand, a stochastic random variable follows a probability distribu-
tion, and the parameters of this distribution are estimated based on historical data using
fitting techniques like input analyzers [19]. For example, the delay in travel time between
node i and node j could be modeled as a lognormal or a Weibull probability distribution,
among others. Since many optimization challenges that arise in real-life L&T systems are
not just NP-hard and large-sized but also subject to uncertainty conditions, simulation-
optimization approaches are required to make informed decisions. Hence, simulation
methods are often integrated with optimization algorithms in simulation-optimization
approaches like simheuristics [8] to recommend the most promising solution to a given
stochastic optimization problem.

On the other hand, fuzzy uncertainty refers to a type of uncertainty where precise values
cannot be given, and instead terms like ‘short’, ‘medium’, and ‘long’ are used [20]. Fuzzy
sets are used to model fuzzy uncertainty, and these sets allow crisp values to have partial
memberships with more than one set (Figure 2). The degree of membership, µ(x), takes a
value between 0 and 1, where 1 assigns full membership and 0 refers to non-membership.
For example, the travel time between two nodes in a network could be affected by a delay
of ten minutes. This delay could be interpreted as ‘short’ or ‘medium’. Thus, it has a
membership with more than one set. Fuzzy logic employs ‘if-then’ inference rules to consider
different variables and draw conclusions. Qualitative variables can also be represented
through linguistic variables using fuzzy rules. For instance, if both the road condition and the
weather are bad, it can be inferred that travel and delivery times will be long.

Several researchers have considered fuzzy attributes in their study of L&T problems.
For example, Li et al. [21] defined a fuzzy-based assessment model of sustainable trans-
portation, and Kovač et al. [22] considered a spherical fuzzy environment in the assessment
of city logistics concepts.

Figure 2. Fuzzy sets for a crisp variable x.
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3. Modeling Optimization Problems with General Uncertainty

Real-world optimization problems encounter various sources of uncertainty, leading
to the importance of including the uncertainty terms in the problem formulation. Thus,
the travel time or demand in transportation problems usually become random or fuzzy
variables, instead of being fixed values. This leads to a change in the problem formulation
to include these variables. A generic problem formulation including stochastic and fuzzy
uncertainty is shown in Equations (1)–(6). The problem formulation represents a solution
s, belonging to a set of solutions S, that optimizes the objective function Z. This objective
function has stochastic, X, and fuzzy, Y, variables, as depicted in Equation (1). Both
stochastic and fuzzy variables are defined in the problem context. The stochastic and fuzzy
variables have defined probability distributions and fuzzy sets, respectively. The set of
constraints in the problem formulation could have |I| deterministic constraints, as indicated
in Equation (2). An example of such a constraint would be the transported freight not
exceeding vehicle capacity, which is a typical restriction found in many vehicle routing
problems. In addition to these constraints, non-deterministic constraints are defined, such
as in Equations (3)–(5). These constraints include stochastic or fuzzy variables, resulting
in |J| stochastic constraints, |K| fuzzy constraints, and |M| constraints with fuzzy and
stochastic variables. Thus, the constraints become probabilistic. For example, the travel
time lm(X, Y) is required to be within a pre-defined threshold tm, as depicted in Equation (5).
The limit and the travel time are affected by the X and Y variables. In the context of the
model, sets I, J, K, and M are just sets of natural numbers.

optimize f (s) = Z(s, X, Y) (1)

subject to:
gi(s) ≤ ti ∀i ∈ I (2)

Pr
(

gj(s, X) ≤ lj(X)
)
≤ tj ∀j ∈ J (3)

Pr
(

gk(s, Y) ≤ lk(Y)
)
≤ tk ∀k ∈ K (4)

Pr
(

gm(s, X, Y) > lm(X, Y)
)
≥ tm ∀m ∈ M (5)

s ∈ S (6)

4. A Review of the Simheuristics Concept and Recent Applications

Simheuristics is a simulation-optimization approach that combines the strengths of
simulation and metaheuristic optimization algorithms to address complex real-world
problems [23]. Several simulation-optimization approaches have been defined in the
literature [24]. This approach is especially efficient in handling problems that have random
elements. Simulation is adept at analyzing systems under stochastic uncertainty, but it has
no intrinsic mechanisms to optimize the system and limitations for considering a broad
range of scenarios. Optimization methods can search for efficient or optimal solutions,
but they require a valid objective function for their operation. The term ‘simheuristics’
refers to the integration of simulation in metaheuristic algorithms. By combining both
techniques, simheuristics provides a robust approach that can tackle a range of diverse
problems. It has gained significant attention in recent years due to its capability to solve
complex problems across various domains such as transportation, logistics and urban
delivery, supply chains, and other combinatorial problems [8]. The approach is based
on the idea that the solution of a deterministic optimization problem can serve as the
foundation for the original stochastic problem. A typical simheuristic algorithm employs a
simulation component in a metaheuristic framework, which allows the metaheuristic to
drive the search process in the solution space, while the simulation component manages
the random elements of the stochastic optimization problem.
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The L&T sector was the initial area where the simheuristic methodology was developed.
Rabe and Goldsman [25] presented an efficient combination of optimization-simulation
techniques using metaheuristics as a core element for decision support systems to solve
many L&T problems. Also, Rabe et al. [23] used simheuristics for the optimization of re-
configurable production systems. Regarding sustainable mobility, simheuristics has made
contributions to the prompt resolution of routing problems for electric vehicles with limited
driving ranges and stochastic travel times. Yazdani et al. [26] extended the use of simheuristics
to resolve evacuation problems during extreme weather disasters, demonstrating a useful
application of optimization-simulation techniques to people evacuation policies. In addition,
simheuristics has been used to improve waste collection services in smart cities, as shown in
the work by Yazdani et al. [27], who implemented a simheuristic procedure to solve waste
collection problems in Sydney (Australia). Likewise, Peng et al. [28] analyzed the management
of multimodal transportation networks for long-haul merchandise delivery, considering
uncertainties in transportation costs and time. These applications can be supplemented with
agile optimization of unmanned aerial vehicle routes for various logistic purposes, which
reveals a promising future for simheuristics in modeling and optimizing urban and interurban
mobility. Recently, Gök et al. [29] combined simheuristics with constraint programming to
optimize airport apron operations under uncertain conditions. Similarly, Bayliss and Panadero
[30] combined simheuristics with machine learning models to address the facility location and
queuing problem in emergency scenarios where a large number of citizens require medical
treatment. Simheuristics has also been combined with evolutionary algorithms to solve
manufacturing problems [31,32]. Likewise, it has been used to solve stochastic versions of
well-known optimization problems [28,33].

All in all, simheuristic algorithms offer various benefits, such as the capacity to resolve
a diverse range of problems with minimal customization [34–36]. This property arises
from the usage of a general-purpose simulation schema that can be adjusted to suit any
problem domain [37–39]. Additionally, the heuristic algorithms used in simheuristics can be
customized to fulfill the unique requirements of each problem by choosing from a collection
of suitable techniques [40,41]. Despite the many advantages offered by simheuristics,
the field is still considered relatively new and requires further research to fully unlock
its potential. One of the current areas of investigation is the integration of fuzzy logic to
incorporate fuzzy variables into the models to be optimized, which will be discussed next.

5. Extending Simheuristics with Fuzzy Logic

This section introduces an extension of the simheuristic framework, which is called the
fuzzy simheuristic framework [42]. As depicted in Figure 3, this framework combines heuristic-
based and simulation components with fuzzy elements to solve combinatorial optimization
problems with both stochastic and fuzzy uncertainties. The approach begins by replacing both
stochastic and fuzzy elements with their expected or estimated values to obtain a deterministic
version of the original problem. The deterministic problem is solved using a metaheuristic
algorithm that generates high-quality solutions while discarding low-quality or infeasible
solutions. The framework in Figure 3 assesses the performance of these high-quality solutions
under uncertainty by conducting a relatively small number of simulation runs with different
values assigned to the random variables or fuzzy elements in each run, according to their
probability distribution or fuzzy rules. Descriptive statistics are computed for all solutions to
obtain detailed information about them. To handle fuzzy elements, the proposed approach
employs type-2 fuzzy sets (T2FS) [43], which are fuzzy sets whose membership degrees are
themselves type-1 fuzzy sets (T1FS). By incorporating T2FS into the analysis, the approach can
more effectively handle complex and uncertain models, improving the results’ accuracy and
robustness. The evaluation of solutions not only allows for the assessment of solutions under
uncertainty but also provides guidance to the metaheuristic during the generation of new
solutions. The best found solutions are stored in a pool of ‘elite’ solutions, which is limited
in size. The generation of new solutions finishes when the metaheuristic satisfies a stopping
criterion, which usually refers to a computational time budget. Next, the elite solutions are
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subjected to a more thorough examination under uncertainty by obtaining more observations
of their stochastic and fuzzy behavior (e.g., by performing more runs during the simulation
procedure and the fuzzy analysis procedure). Based on these observations, the solutions
are ranked based on central statistics (e.g., average) and dispersion statistics (e.g., standard
deviation or quantiles). The solutions with the best performance are then recommended to the
decision maker. Notice that in a scenario under uncertainty, the selection of the ‘best’ solution
may consider more criteria than just the expected value, such as the variance (risk) or the
reliability of each solution (i.e., the probability that the solution can be implemented in practice
without any failures that force us to apply a repairing operation, which is usually costly).

Figure 3. Schema of the fuzzy simheuristic approach.
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6. Recent Applications of Fuzzy Simheuristics

In this section, some recent applications of fuzzy simheuristics in L&T are reviewed.
Oliva et al. [42] were the first to propose the combination of fuzzy techniques, simulation,
and metaheuristic optimization algorithms to solve large-scale optimization problems that
have both probabilistic and non-probabilistic uncertainty elements. They used a fuzzy
inference system (FIS) to compute the collected reward by taking the electric vehicle battery
levels and weather conditions as input variables. The authors established nine fuzzy rules
to calculate the reward and transformed it to a crisp value using the center-of-gravity
method. Their methodology was applied to solve the team orienteering problem with
fuzzy and stochastic elements. The results obtained by these researchers when solving
a set of classical instances are summarized in the box-plots displayed in Figure 4. In the
TOP, the goal is to maximize the total reward collected by the fleet of vehicles during
their trips. Notice that the highest rewards (both the individual ones for each instance
as well as the average ones across instances) are achieved for the deterministic scenario.
Here, a standard metaheuristic algorithm can provide efficient solutions, OBD-D (best
deterministic solutions in a deterministic scenario) with an average reward of 358.1. When
the former routing plans generated by the metaheuristic are applied in a stochastic scenario,
OBD-S, their performance is worse (average reward of 313.6) than the best solutions
provided by a simheuristic algorithm (OB-S, with an average reward of 331.5). Of course,
the average and individual rewards decrease as the level of uncertainty increases. This
can be observed when considering a stochastic-fuzzy scenario, where a fuzzy simheuristic
provides solutions OB-SF with an average value of 263.7, and also when considering a pure
fuzzy scenario, where a fuzzy approach generates solutions OB-F with an average value
of 217.2.

Figure 4. Results for the TOP using a fuzzy simheuristic.

Tordecilla et al. [44] presented a fuzzy simheuristic approach for the vehicle routing
problem. The FIS considers fuzzy variables, such as customer demand and remaining
vehicle capacity, represented by triangular fuzzy numbers, to calculate the preference
strength to travel to a customer. The fuzzy output is an index that determines if the next
node will be visited or if the vehicle should return to the depot. The results obtained by
these researchers when solving a set of classical instances are summarized in the box-plots
displayed in Figure 5. In the VRP, the goal is to minimize the total cost incurred by the fleet
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of vehicles during their trips. Notice that the lowest costs (both the individual ones for each
instance as well as the average ones across instances) are achieved for the deterministic
scenario. Here, a standard metaheuristic algorithm can provide efficient solutions, OBD-D,
with an average cost of 945.8. When the former routing plans generated by the metaheuristic
are applied in a stochastic scenario, solutions OBD-S, their performance is worse (average
reward of 1049.3) than the best solutions provided by a simheuristic algorithm (OB-S,
with an average cost of 978.6). As expected, the average and individual costs increase
with the level of uncertainty. This can be observed when considering a stochastic-fuzzy
scenario, where a fuzzy simheuristic provides solutions OB-SF with an average value of
1266.3, and also when considering a pure fuzzy scenario, where a fuzzy approach generates
solutions OB-F with an average value of 1549.2.

Figure 5. Results for the VRP using a fuzzy simheuristic.

Moreover, Tordecilla et al. [10] used a similar fuzzy simheuristics methodology to
address the location routing problem. The results obtained when solving a set of classical
instances are summarized in the box-plots displayed in Figure 6. In the LRP, the goal is
to minimize the total cost due to the opening of facilities plus the routing of the vehicles.
Notice that the lowest costs (both the individual ones for each instance as well as the
average ones across instances) are achieved for the deterministic scenario. Here, a standard
metaheuristic algorithm can provide efficient solutions, OBD-D, with an average cost of
862.7. As usual, the average and individual costs increase with the level of uncertainty.
Hence, when a simheuristic is used in the stochastic scenario, the best solutions (OB-S)
show an average cost of 870.8). Likewise, when considering a stochastic-fuzzy scenario,
a fuzzy simheuristic provides solutions OB-SF with an average value of 872.6. Then, when
considering a pure fuzzy scenario, a fuzzy approach generates solutions OB-F with an
average value of 874.6.

In addition, Castaneda et al. [45] proposed an extended simheuristic algorithm with
a fuzzy component to solve the permutation flow shop problem under both stochastic
and fuzzy uncertainty. The proposed approach modeled fuzzy processing times based
on job and machine type and used an FIS with triangular fuzzy membership functions to
determine the processing time. The paper also highlighted the importance of considering
statistical metrics beyond the expected makespan and showed how reliability concepts
can provide probabilistic information about the proposed solutions. The results obtained
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when solving a set of classical instances are summarized in the box-plots displayed in
Figure 7. In the PFSP, the goal is to minimize the makespan. Notice that the lowest
makespans (both the individual ones for each instance as well as the average ones across
instances) are achieved for the deterministic scenario. Here, a standard metaheuristic
algorithm can provide efficient solutions, OBD-D, with an average makespan of 6317.7.
When the former scheduling plans generated by the metaheuristic are applied in a stochastic
scenario, solutions OBD-S, their performance is worse (average reward of 6379.7) than the
best solutions provided by a simheuristic algorithm (OB-S, with an average makespan of
6371.1). As expected, the average and individual makespans increase with the level of
uncertainty. This can be observed when considering a stochastic-fuzzy scenario, where
a fuzzy simheuristic provides solutions OB-SF with an average value of 7325.2, which is
slightly better than the average makespan provided by the deterministic solution when
it is applied to a fuzzy-stochastic environment (OBD-FS, with a value of 7400.01). Also,
a similar effect can be observed when considering a pure fuzzy scenario, where a fuzzy
approach generates solutions OB-F with an average value of 7991.6, which again is slightly
better than the average makespan provided by the deterministic solutions when employed
in the fuzzy scenario (OBD-F, with a value of 8057.0).

Figure 6. Results for the LRP using a fuzzy simheuristic.

Finally, Martin Solano et al. [46] introduced a fuzzy simheuristic for solving the
time-capacitated arc routing problem under both stochastic and fuzzy uncertainty. In
the proposed approach, the results obtained when solving a set of classical instances
are summarized in the box-plots displayed in Figure 8. In the TCARP, the goal is to
minimize the total cost incurred by the fleet of vehicles during their trips. As always,
the lowest costs (both the individual ones for each instance as well as the average ones
across instances) are achieved for the deterministic scenario—this scenario constitutes an
ideal one in which we have perfect information and no uncertainty. Here, a standard
metaheuristic algorithm can provide efficient solutions, OBD-D, with an average cost of
144.8. When the former routing plans generated by the metaheuristic are applied in a
stochastic scenario, solutions OBD-S, their performance is slightly worse (average reward
of 153.9) than the best solutions provided by a simheuristic algorithm (OB-S, with an
average cost of 153.0). As expected, the average and individual costs increase with the
level of uncertainty. This can be observed when considering a stochastic-fuzzy scenario,
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where a fuzzy simheuristic provides solutions OB-SF with an average value of 169.8, which
is slightly better than the average cost provided by the deterministic solution when it is
applied to the fuzzy-stochastic environment (OBD-FS, with a value of 176.0). Also, a similar
effect can be observed when considering a pure fuzzy scenario, where a fuzzy approach
generates solutions OB-F with an average value of 193.0, which again is slightly better
than the average cost provided by the deterministic solutions when employed in the fuzzy
scenario (OBD-F, with a value of 200.0).

Figure 7. Results for the PFSP using a fuzzy simheuristic.

Figure 8. Results for the TCARP using a fuzzy simheuristic.
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All in all, this section has shown that the fuzzy simheuristic framework can be a
flexible yet powerful methodology for solving a wide range of L&T challenges, including
both stochastic and fuzzy uncertainty.

7. Trends and Open Research Lines

The need for agile and effective solutions to real-world transportation problems
is becoming increasingly urgent, particularly in the face of uncertainty and dynamic
conditions. To address this challenge, richer versions of vehicle routing problems can
be developed, incorporating inventory management decisions, multiple depots, facility
location, time windows, and external dynamic conditions. One promising approach is to
use a fuzzy simheuristic algorithm that can adapt to changing conditions and provide robust
solutions. Another important trend is to investigate a higher level of integration between
the fuzzy component, the simulation component, and the metaheuristic component, also
including a reinforcement learning component in order to increase the capacity of the
resulting approach to deal with both uncertainty and dynamic environments.

The application of fuzzy simheuristics is also likely to expand to more complex
systems, such as integrated L&T networks, which require advanced simulation approaches
like discrete event or agent-based models. In order to speed up the computation and
improve the solution quality, enhanced strategies to identify promising solutions can be
employed, such as surrogate models that quickly estimate the statistics that the simulation
provides or models based on reinforcement learning that can be used to adjust different
parameters, such as the number of runs required to obtain precise estimates [23]. Fuzzy
simheuristics can be applied to a wide range of fields beyond transportation and logistics,
such as telecommunications, finance, healthcare systems, and smart cities. Furthermore,
this approach can be integrated with machine learning and learnheuristics to address
optimization problems with dynamic inputs. Multipopulation and agent-oriented fuzzy
simheuristics are other promising areas of research that can enhance the efficiency of
these algorithms in solving complex and stochastic combinatorial optimization problems.
Overall, these trends and research directions provide exciting opportunities for future
developments in fuzzy simheuristics.

8. Conclusions

In the context of T&L systems, the intersection of fuzzy systems, simulation, and meta-
heuristics has been explored. This combination provides powerful tools for solving complex
optimization problems that involve both stochastic uncertainty and non-probabilistic un-
certainty. The approach, known as ‘fuzzy simheuristics’, has shown great promise in
addressing T&L-related problems such as the vehicle routing problem and the team orien-
teering problem. In particular, our numerical experiments have illustrated that traditional
methods designed for deterministic versions of these problems provide sub-optimal solu-
tions when both stochastic and fuzzy components are considered. Likewise, although it
is logical to assume that solutions will decrease in quality (average values) as uncertainty
levels increase, our methodology is able not only to show that effect for the different prob-
lems being considered but also to measure the impact on uncertainty in these solutions.
As illustrated in the numerical analysis, the proposed approach can also provide lower and
upper bounds to the optimal solution under uncertainty by simply considering the value
of the best deterministic solution when it is evaluated in a deterministic (ideal) scenario as
well as in a real scenario under uncertainty conditions.

The advantages of fuzzy simheuristics lie in its ability to benefit from the strengths
of each approach. The metaheuristics component provides the efficiency necessary to
explore the solution space quickly and find near-optimal solutions in short computational
times. The stochastic and fuzzy simulation components provide tools to cope with different
types of uncertainty, providing high-quality solutions in terms of expected costs, expected
profits, or risk and reliability indicators. Although fuzzy simheuristics is a relatively
new approach, the results so far are promising. This paper has discussed a number of
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potential applications for different domains, including transportation planning and logistics
optimization. However, there are many further areas where fuzzy simheuristics could
be beneficially applied, such as mobility in smart cities, financial portfolio optimization,
or energy system management.

Of course, the proposed approach also has limitations that need to be considered.
In particular, modeling real-life uncertainty with the proper random and fuzzy variables is
not always an easy endeavor, or at least one that can be performed with perfect accuracy.
These modeling errors can affect the quality of the final results. Also, depending on
the specific problem being addressed, the computational times associated with a hybrid
algorithm that combines metaheuristics, simulation, and fuzzy logic can be relatively
high, specially for large-sized instances of complex problems. Special attention has to
be paid to the simulation component, which could jeopardize the computational time
of the metaheuristic one. Finally, one has to remember that the proposed methodology
is an approximate algorithm. Hence, the optimality of the solutions is not guaranteed.
Still, for these NP-hard and large-scale optimization problems under stochastic and fuzzy
uncertainty, there is no methodology that can guarantee optimal solutions.

Looking to the future, there are several lines for further research that could help
to advance the field of fuzzy simheuristics. One promising direction is to explore the
use of reinforcement learning techniques to improve the efficiency of the approach by
employing surrogate models and considering dynamic environments. Another option is to
investigate the use of other types of simulation, such as Monte Carlo simulation or time-
discrete simulation based on agent-oriented modeling, to better analyze complex systems
and their interactions. Finally, there is great potential for applying fuzzy simheuristics to
real-world problems.
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