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Abstract: Simulation tools for photoacoustic wave propagation have played a key role in advancing
photoacoustic imaging by providing quantitative and qualitative insights into parameters affecting
image quality. Classical methods for numerically solving the photoacoustic wave equation rely on
a fine discretization of space and can become computationally expensive for large computational
grids. In this work, we applied Fourier Neural Operator (FNO) networks as a fast data-driven
deep learning method for solving the 2D photoacoustic wave equation in a homogeneous medium.
Comparisons between the FNO network and pseudo-spectral time domain approach were made
for the forward and adjoint simulations. Results demonstrate that the FNO network generated
comparable simulations with small errors and was orders of magnitude faster than the pseudo-
spectral time domain methods (~26× faster on a 64 × 64 computational grid and ~15× faster on
a 128 × 128 computational grid). Moreover, the FNO network was generalizable to the unseen
out-of-domain test set with a root-mean-square error of 9.5 × 10−3 in Shepp–Logan, 1.5 × 10−2

in synthetic vasculature, 1.1 × 10−2 in tumor and 1.9 × 10−2 in Mason-M phantoms on a 64 × 64
computational grid and a root mean squared of 6.9 ± 5.5 × 10−3 in the AWA2 dataset on a 128 × 128
computational grid.

Keywords: photoacoustic imaging; image processing; computer vision; simulation; reconstruction;
deep learning

1. Introduction

Photoacoustic imaging is a non-invasive hybrid imaging modality that combines
the advantages of optical (e.g., high contrast and molecular specificity) and ultrasound
(e.g., high penetration depth) imaging [1]. It has been applied for many preclinical and clin-
ical imaging applications, such as small-animal whole-body imaging, breast and prostate
cancer imaging and image-guided surgery [2–6]. Specifically, in breast cancer detection,
tumors have been successfully revealed by single-breath-hold photoacoustic computed
tomography (SBH-PACT) without the need of ionizing radiation and exogenous contrast
agents based on the higher blood vessel density characteristics associated with tumors [7].
Multispectral photoacoustic imaging can be used for functional imaging, such as mea-
suring blood oxygen saturation and metabolism in biological tissues [8]. In addition to
applying multispectral photoacoustic imaging to differentiate oxyhemoglobin from deoxy-
hemoglobin in breast cancer, ultrasound and photoacoustic tomography (US-OT) can reveal
differences in lipids and collagen in breast fibroglandular tissue, providing more clinically
meaningful insights for diagnosis [9]. Photoacoustic imaging provides both structural and
functional information that can potentially reveal novel insights into biological processes
and disease pathologies [10].

In photoacoustic tomography (PAT), a tissue medium is illuminated using a short-
pulsed laser. Optically absorbing molecules within the medium are excited and undergo
thermoelastic expansion, resulting in the generation of photoacoustic waves that are subse-
quently measured using an array of acoustic sensors [1]. An image representing the initial

Algorithms 2023, 16, 124. https://doi.org/10.3390/a16020124 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16020124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9677-7655
https://doi.org/10.3390/a16020124
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16020124?type=check_update&version=1


Algorithms 2023, 16, 124 2 of 18

pressure distribution can be reconstructed from the measured time-dependent signals
using analytical solutions, numerical methods and model-based iterative methods [11–15].
A detailed understanding of parameters describing the imaging medium (e.g., optical,
thermal and acoustic properties of the tissue) and the imaging system (e.g., arrangement
and characteristics of the laser source and acoustic sensors) is needed to reconstruct a
high-quality PAT image.

PAT simulation is a highly useful tool that provides quantitative and qualitative in-
sights into these parameters affecting image quality [16]. It is commonly used prior to
experimentation and imaging to optimize the system configuration. It also plays an integral
role in PAT image reconstruction and provides numerical phantom data for the develop-
ment of advanced algorithms, such as iterative methods and deep learning methods [17–22].
Simulating PAT image acquisition comprises two components: optical illumination and
photoacoustic propagation. For this work, we are primarily focused on the photoacoustic
propagation component. The equation for photoacoustic wave propagation can be solved
numerically using classical methods, such as the time domain finite element method [23,24].
These methods generally solve the equation via approximation on a mesh and can be
computationally expensive, such as for large three-dimensional (3D) simulations.

Recently, deep learning has been explored as an alternative method for solving par-
tial differential equations (PDE) [25,26]. It has the potential to greatly impact scientific
disciplines and research by providing fast PDE solvers that approximate or enhance con-
ventional ones. Applications requiring repeated evaluations of a PDE can greatly benefit
from the reduced computation times offered by deep learning. Here, we provide a brief
overview of three deep learning methods for solving PDEs—finite dimensional operators,
neural finite element models and Fourier Neural Operators (FNO).

Finite dimensional operators use a deep convolutional neural network (CNN) to solve
the PDE on a finite Euclidean Space [27,28]. This approach is mesh-dependent, meaning
the CNN needs to be retrained for solving the PDE at different spatial resolutions and
discretization. Neural finite element models are mesh-independent and closely resemble
traditional finite element methods [25,29]. It replaces the set of local basis functions in the
finite element models with a fully connected neural network. It requires prior knowledge
of the underlying PDE and is designed to solve for one specific instance of the PDE. The
neural network needs to be retrained for new instances where the underlying PDE is
parameterized with a different set of functional coefficients. FNO is a mesh-free approach
that approximates the mapping between two infinite dimensional spaces from a finite
collection of input–output paired observations [30,31]. The neural operator is learned
directly in the Fourier and image space using a CNN. The same learned operator can be
used without retraining to solve PDEs with different discretization and parameterization.
Fourier Neural Operators have been demonstrated to achieve state-of-the-art results for a
variety of PDEs (e.g., Burgers’ equation, Darcy Flow and Navier–Stokes) and outperform
other existing deep learning methods [31].

To the best of our knowledge, this is the first paper to apply deep learning for solving
the photoacoustic wave equation for simulating PAT. FNOs were chosen for this task
given their flexibility in discretization and superior performance compared to other deep
learning methods. Prior work with FNOs demonstrated solutions to the Navier–Stokes and
Burgers’ equations, which have relatively smooth spatio-temporal solutions [31]. Unlike
these works, photoacoustic signals have high broadband frequencies and contain sharp
transitions. Specifically, this paper highlights the following innovative contributions:

• Adapting the FNO neural network and applying it as a fast PDE solver for simulating
the forward and adjoint 2D photoacoustic operator.

• Simulations from the FNO network and the widely used k-Wave toolbox for time
domain acoustic wave propagation [16] were compared in terms of accuracy and
computation times.
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• Further experiments were also conducted to evaluate the generalizability of the FNO
network beyond the training data and the impact of key hyperparameters on network
performance and complexity.

The remainder of the article is organized as follows. The forward problem and the
inverse problem of PAT are described in Section 2. Acoustic wave simulation techniques for
the PAT based on conventional methods and FNO networks are presented in Section 2. The
data generation and training process of the FNO network and its detailed implementation
are also given in Section 2. Simulation results of the FNO network on the different test
set with different spatial grid sizes and hyperparameter optimizations are provided in
Section 3. Furthermore, the simulation results of zero-shot super-resolution with the
FNO network are also given in Section 3. The conclusion and discussion are presented in
Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Photoacoustic Signal Generation and Imaging

The photoacoustic signal is generated by irradiating the medium with a nanosecond
laser pulse (Figure 1). Chromophores within the image medium are excited by the laser and
undergo thermoelastic expansion to generate acoustic pressure waves. Assuming negligible
thermal diffusion and volume expansion during illumination, the initial photoacoustic
pressure x can be defined as

x(r) = Γ(r)A(r), (1)

where A(r) is the spatial absorption function, and Γ(r) is the Grüneisen coefficient describ-
ing the conversion efficiency from heat to pressure [32]. The photoacoustic pressure wave
p(r, t) at position r and time t can be modeled as an initial value problem, where c is the
speed of sound [33].(

∂tt − c2
0∆

)
p(r, t) = 0, p(r, t = 0) = x, ∂t p(r, t = 0) = 0 (2)
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Figure 1. Diagram illustrating the process of photoacoustic signal generation and detection. Chro-
mophores absorb the incident pulsed laser light and undergo thermoelastic expansion to generate
acoustic waves. Acoustic detectors along the measurement boundary So are used to measure the
acoustic waves.

In photoacoustic imaging, sensors located along a measurement surface So, surround-
ing the medium, are used to measure a time series signal. The linear operator M acts
on p(r, t) restricted to the boundary of the computational domain Ω over a finite time T
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and provides a linear mapping to the measured time-dependent signal y. The forward
photoacoustic operator W maps the initial acoustic pressure to the measured signal.

y =Mp|∂Ω×(0,T) = Wx (3)

The measured sensor data are then used to form an image representing the initial
acoustic pressure distribution. Photoacoustic image reconstruction is a well-studied inverse
problem that can be solved using analytical solutions, numerical methods and model-based
iterative methods [11–13,15,34]. The adjoint photoacoustic operator W∗ maps the measured
signal to the initial acoustic pressure.

x = W∗y (4)

Time reversal is a robust reconstruction method that works well for homogenous
and heterogeneous mediums and also for any arbitrary detection geometry [15,34]. The
acoustic waves that are generated are measured along the measurement surface So. After
a long period of time T, the acoustic field within the medium becomes zero, which is
guaranteed by Huygens’ principle in homogeneous mediums [35]. A PAT image is formed
by running a numerical model of the forward problem and transmitting the measured
sensor data in a time-reversed order into the medium, where the detectors along So are
time-varying pressure sources. Thus, time reversal is modeled as a time-varying boundary
value problem, and the resulting acoustic field at t = 0 is the initial acoustic pressure
distribution to be recovered.

2.2. Conventional Solvers for the Wave Equation

Numerical approaches, such as the finite difference and finite element methods, are
commonly used to solve PDEs by discretizing the space into a grid [36]. However, these
methods are often slow for time domain modeling broadband or high-frequency waves
due to the need for a fine grid with small time steps [16]. Computational efficiency can be
improved using pseudo-spectral and k-space methods. The pseudo-spectral method fits a
Fourier series to the data and reduces the number of grid points per wavelength required for
an accurate solution [37]. The k-space method incorporates a priori information regarding
the governing wave equation into the solution [38]. This allows for larger time steps and
improves numerical stability in the case of acoustically heterogeneous media. The k-Wave
toolbox, a widely used MATLAB tool for photoacoustic simulations, uses the pseudo-
spectral k-space approach for solving time domain photoacoustic wave simulations [39].

Conventional numerical approaches are typically used to solve a single instance of
PDEs and require the PDEs’ explicit form. Because these approaches solve the PDE via
approximation on a mesh, there is a trade-off between accuracy and computation time.
In comparison, the FNO network is a data-driven and black-box approach that learns a
solution for a family of PDEs from the training data and does not require the PDEs’ explicit
form. It is also resolution- and mesh-invariant, meaning that the trained network can be
used for solving PDEs at varying levels of resolution and discretization. However, the
FNO network is dependent on the quality of the data and is slow to train. Although
modifications to the functional form of the PDE can be easily accounted for in conventional
approaches to solve a single instance, the FNO network would need to be retrained with a
new training dataset.

2.3. Fourier Neural Operator Networks

The FNO network [31] was adapted for solving the 2D photoacoustic wave equation.
In the original implementation, the input a to the FNO was the first several time steps
of the solution acquired using a conventional solver. Using insights from the physics of
photoacoustic imaging, we determined that only the initial pressure distribution (time
= 0) was needed as the input a to the FNO for solving the wave equation because the
generated acoustic pulses propagate in an omni-directional manner. This removed the need
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for conventional solvers, and the full spatio-temporal solution could be obtained using only
the FNO. To avoid instabilities and keep our solution bounded, we replaced previously
used element-wise Gaussian normalizers with a peak-normalization scheme, where the
initial source distribution map was normalized by its maximum value. We empirically
found that the Gaussian normalizer was not appropriate for simulating wave propagation
because the distribution of pressures over time at any given element in the computational
grid was not normally distributed.

The network begins by projecting the input a (initial pressure distribution) onto a
higher dimensional latent representation using the fully connected layer FC1 with a single
shallow layer (Figure 2). The dimensionality of this latent representation is defined by
the hyperparameter termed channels. Four Fourier layers are then used to iteratively
update the projected features. In each Fourier layer, the features initially undergo a Fourier
transform, which plays a key role in enabling the network to efficiently learn mesh- and
resolution-invariant features for solving the PDE. Features learned in the Fourier space
are global by nature and represent patterns spanning the whole computational grid. In
contrast, features learned in a standard CNN are local by nature and represent patterns
spanning over a local region (e.g., edges and shapes).

Algorithms 2023, 16, x FOR PEER REVIEW 5 of 19 
 

2.3. Fourier Neural Operator Networks 
The FNO network [31] was adapted for solving the 2D photoacoustic wave equation. 

In the original implementation, the input a to the FNO was the first several time steps of 
the solution acquired using a conventional solver. Using insights from the physics of pho-
toacoustic imaging, we determined that only the initial pressure distribution (time = 0) 
was needed as the input a to the FNO for solving the wave equation because the generated 
acoustic pulses propagate in an omni-directional manner. This removed the need for con-
ventional solvers, and the full spatio-temporal solution could be obtained using only the 
FNO. To avoid instabilities and keep our solution bounded, we replaced previously used 
element-wise Gaussian normalizers with a peak-normalization scheme, where the initial 
source distribution map was normalized by its maximum value. We empirically found 
that the Gaussian normalizer was not appropriate for simulating wave propagation be-
cause the distribution of pressures over time at any given element in the computational 
grid was not normally distributed. 

The network begins by projecting the input a (initial pressure distribution) onto a 
higher dimensional latent representation using the fully connected layer FC1 with a single 
shallow layer (Figure 2). The dimensionality of this latent representation is defined by the 
hyperparameter termed channels. Four Fourier layers are then used to iteratively update 
the projected features. In each Fourier layer, the features initially undergo a Fourier trans-
form, which plays a key role in enabling the network to efficiently learn mesh- and reso-
lution-invariant features for solving the PDE. Features learned in the Fourier space are 
global by nature and represent patterns spanning the whole computational grid. In con-
trast, features learned in a standard CNN are local by nature and represent patterns span-
ning over a local region (e.g., edges and shapes). 

 

 
Figure 2. Neural network architecture for the FNO network. The input a (initial pressure distribu-
tion a) is mapped to a higher dimensional space using a fully connected layer (FC0). The transformed 
feature is passed through four Fourier Layers (FLs). Finally, a fully connected layer (FC2) is used to 
obtain the final output u (solution to the wave equation u) with the desired dimensions. The input 
goes through two paths in each Fourier layer. In the top path, the input undergoes a Fourier 

Figure 2. Neural network architecture for the FNO network. The input a (initial pressure distribution
a) is mapped to a higher dimensional space using a fully connected layer (FC0). The transformed
feature is passed through four Fourier Layers (FLs). Finally, a fully connected layer (FC2) is used
to obtain the final output u (solution to the wave equation u) with the desired dimensions. The
input goes through two paths in each Fourier layer. In the top path, the input undergoes a Fourier
Transform FFT, linear transform R and inverse Fourier Transform iFFT. In the bottom path, the input
undergoes a linear transform. Outputs from each path are summed together and undergo GeLU
activation. The dimension of the feature representation for each operation is given in the parentheses.
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After the Fourier transform, the resulting Fourier modes can be truncated to optimize
computational efficiency. This is useful as a regularization technique and for PDEs with
smooth solutions that can be accurately represented with fewer Fourier modes, as previ-
ously demonstrated for the 2D Navier–Stokes equation [31]. Following the Fourier layers,
the updated features are projected in FC2 to a higher dimensional representation with
128 channels in the hidden layer and finally to the desired dimensions in the final shallow
layer to obtain the output u (solution to the wave equation). Through a combination of
Fourier, linear and non-linear transformations, the FNO network can approximate highly
complex and non-linear operators in PDEs.

Channels and modes are the two main hyperparameters for the FNO network. Chan-
nels represent the dimensionality of the latent representation in the FNO network, and
modes define the number of Fourier modes retained in each Fourier layer. Increasing the
channel parameter generally increases the representational power of the model to learn
more complex operators but can lead to issues of overfitting. There is no upper limit to
the number of channels that can be used. Choosing the number of Fourier modes to retain
largely depends on the smoothness of the PDE’s solution. The maximum number of modes
is defined by the size of the computational grid.

PDE solvers using Fourier methods assume a periodic boundary condition. Although
the FNO network heavily uses the Fourier transform, it is not limited by this assumption
and can be applied to solve PDEs with non-periodic boundary conditions, such as Burgers’
equation and the Navier–Stokes equation [31]. This is important because the photoacoustic
wave equation also has non-periodic boundary conditions.

The photoacoustic wave equation can be solved using either a 2D or 3D FNO architec-
tural implementation. In the 2D architecture, the FNO network performs 2D convolutions
in space and finds a solution for some fixed interval length ∆t. The solution is then re-
currently propagated in time and used to solve for the next interval length. In the 3D
architecture, the FNO network performs 3D convolutions in space-time and can directly
output the full time series solution with any time discretization. Both implementations
were demonstrated to have similar performance. In this work, the 3D FNO network was
used because it was found to be more expressive and easier to train [31].

2.4. Data Generation

The MATLAB toolbox k-Wave was used for photoacoustic wave simulation and to
generate data for training and testing the FNO network [16]. The simulation medium
was defined as a 64 × 64 computational grid, non-absorbing and homogenous with a
speed of sound of 1480 m/s and density of 1000 kg/m3. Forward simulations were
performed with a time step of 20 ns for T = 151 steps. The initial photoacoustic pressure was
initialized using anatomically realistic breast vasculature phantoms that were numerically
generated [40]. The training dataset (n = 500) and testing dataset (n = 100) comprised
images representing the initial photoacoustic pressure (the input to the FNO network) and
the corresponding simulation of the photoacoustic wave propagation (output of the FNO
network). Simulations for the Shepp–Logan, synthetic vasculature, tumor and Mason-M
phantoms were also generated to evaluate the generalizability of the FNO network [16,41].

A second dataset was generated based on images from the Animals with Attributes 2
(AWA2) dataset originally developed for zero-shot image classification [42]. The AWA2
dataset has over 32,000 images categorized into 50 animal classes. This highly diverse
dataset with many varied animals and backgrounds provides a more challenging task to
train and evaluate the FNO. Forward simulations were performed with a similar medium
as described previously, except with a 128 × 128 computational grid for T = 302 steps.
With the same medium, the adjoint simulations were also performed using a 128-sensor
linear array at the top of the computational grid. Images from 10 animal classes were used
to create a training dataset (n = 1500). Images from 5 different animal classes were used
to create a testing dataset (n = 500). The forward and adjoint simulations had their own
respective datasets.
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2.5. Model Training and Evaluation

The FNO network was implemented in PyTorch v1.7.1, a popular open-source deep
learning library for Python [43]. The Adam optimizer with a mean squared error loss
function was used to train the FNO network for 2000 epochs over approximately two days
on an NVIDIA Tesla K80 GPU. The trained model was used to solve the wave equation for
all time steps in a single forward pass.

The simulations from k-Wave served as the ground truth and were used to evaluate
the quality of the FNO simulations. The root-mean-square error (RMSE) was used to
quantitatively measure FNO simulation quality. Prior to calculating the RMSE, the k-Wave
and FNO simulations were normalized to have values between 0 and 1 based on the peak
value in the entire time series data. Normalization was applied to the entire time series and
not to each individual time step. The RMSE was calculated at each time step and for the
whole simulation.

For further validation, an in silico experiment of PAT imaging with a 64-sensor linear
array was conducted. In general, any sensor array geometry could be used because the
photoacoustic simulation and data sampling were independent events. A linear geometry
was chosen because it is a widely available sensor array that is often used in experimental
and clinical settings. Sensor data for the image reconstruction experiment were generated
from the k-Wave and FNO network simulations by sampling the photoacoustic pressures
at the top of the computational grid. The sampled time series sensor data were then used
to reconstruct an image with the time reversal method [16].

The execution times to run the k-Wave and FNO simulations were measured on the
same machine with an NVIDIA GeForce GTX 1080 Ti GPU and an Intel i7-12700K CPU.
Simulations were repeated for 200 iterations, and the mean execution time was recorded.
Torchinfo v1.6.5 was used to estimate the model size and GPU memory requirements.

3. Results
3.1. Breast Vasculature Simulation

An FNO network with the hyperparameters of 5 channels and 64 Fourier modes was
trained using the breast vasculature dataset. The trained FNO network was used to predict
and simulate photoacoustic wave propagation for n = 100 initial photoacoustic sources
in the breast vasculature testing dataset. The photoacoustic wave simulations produced
by the FNO network and k-Wave were remarkably similar and essentially identical to the
naked eye (Figure 3). The FNO simulations successfully maintained the sharp edges and
fine image details of the acoustic waves as they propagated throughout the medium. This
demonstrated that the FNO network can model the broadband and high-frequency waves
required for photoacoustic simulations.

Errors in the FNO network were quantitatively measured using the RMSE. The dis-
tribution of normalized photoacoustic pressures decreased as the simulation continued
forward because energy dissipated within the medium as the acoustic waves propagated
and exited the medium (Figure 4). For the testing dataset, the RMSE was several orders
of magnitude smaller than the distribution of photoacoustic pressures in the simulations.
This indicated that the errors in the FNO network simulations were small compared to
the actual acoustic pressures, and the FNO network simulations were highly accurate
approximations of the k-Wave simulations for photoacoustic wave propagation. Here, the
RMSE was orders of magnitude smaller than the photoacoustic pressure distribution in the
simulations, which can be attributed to the inherent model properties of globally learning
frequency domain features and using the entire Fourier mode without any truncation.
Therefore, the broadband frequency components originally distributed in the photoacoustic
time series data can be described by sufficient frequency components.
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A key advantage of data-driven PDE solvers over traditional ones is the vast reduction
in computation time. In general, the time required to solve the photoacoustic wave equation
largely depends on the discretization of the computational grid. For a computational grid
of 64 × 64, k-Wave on average required 1.63 s to complete the simulation on a GPU. The
FNO network on average required 0.061 s to complete it on the same GPU. This was
approximately a 26× reduction in computation time.
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3.2. Image Reconstruction

The reconstructed PAT images from the FNO network and k-Wave simulations were
almost visually identical (Figure 5). Vasculature structures and artifacts arising from the
limited-view nature of the linear array can be seen in both the k-Wave and FNO network
images. The reconstructed images were quantitatively compared using the RMSE and
the structural similarity index metric (SSIM), a metric ranging from 0 to 1 that measures
the similarity between two images based on factors relevant to human visual perception
(e.g., structure, contrast and luminance) [44]. For the testing dataset (n = 100), the sim-
ilarity between the FNO network and k-Wave images were measured with the RMSE
(7.1 ± 1.5 × 10−3), SSIM (0.98 ± 0.01) and maximum error pixelwise (0.05 ± 0.01). These
small errors and high similarity scores demonstrated that the time series sensor data
produced using the FNO network and k-Wave simulations were highly similar.
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3.3. Generalizability of Trained FNO Network

The FNO network was trained on photoacoustic simulations of breast vasculature. To
evaluate its generalizability, the trained FNO network was used to simulate photoacous-
tic wave propagation with initial photoacoustic sources for the Shepp–Logan, synthetic
vasculature, breast tumor and Mason-M logo phantoms. These phantoms contain many
features not observed in the training dataset. For example, the breast vasculature phantoms
typically occupy a majority of the space in the computational grid and have a mixture of
large and small vessels, whereas the other phantoms occupy a fraction of the space and
have small vessels or non-vasculature structures.

The FNO network and k-Wave simulations for each phantom tested were highly
similar, but small visual differences could be observed (Figure 6). For example, the Mason-
M logo has a mostly uniform grayscale background in the k-Wave simulation at t = 1, but a
small gradient or shading could be seen in the FNO network simulation (average RMSEs
across all time steps in the FNO network simulations: Shepp–Logan (9.5 × 10−3), synthetic
vasculature (1.5 × 10−2), tumor (1.1 × 10−2) and Mason-M (1.9 × 10−2) phantoms). The
Mason-M FNO simulation likely had the highest RMSE because it was a non-biological
phantom unlike the other phantoms and the training dataset.

These results were promising and provided evidence that the trained FNO network is
generalizable to other initial photoacoustic sources not in the training data. However, the
FNO network did overfit the training data, as shown by the larger RMSE of the additional
phantoms. Having a more diverse and larger training dataset can further improve the
generalizability of the FNO network.



Algorithms 2023, 16, 124 10 of 18Algorithms 2023, 16, x FOR PEER REVIEW 11 of 19 
 

 
Figure 6. Comparison between FNO Network and k-Wave simulations for initial pressure sources 
using the (a) Shepp–Logan, (b) synthetic vasculature, (c) tumor and (d) Mason-M phantoms at t = 
[1, 10, 20] time steps. 

These results were promising and provided evidence that the trained FNO network 
is generalizable to other initial photoacoustic sources not in the training data. However, 
the FNO network did overfit the training data, as shown by the larger RMSE of the addi-
tional phantoms. Having a more diverse and larger training dataset can further improve 
the generalizability of the FNO network. 

3.4. Hyperparameter Optimization 
A study was conducted to investigate the impact of hyperparameter selection on the 

FNO network’s accuracy. All FNO networks were trained on the breast vasculature da-
taset for 200 epochs, which was sufficient for all networks to converge to a minimum loss. 
The number of Fourier modes had the largest impact on the FNO network because it di-
rectly affected the truncation error in the Fourier layers. FNO networks with fewer modes 
typically produced simulations with a blurred appearance (Figure 7). This was due to the 
loss of high-frequency information necessary for accurately simulating the sharp transi-
tions of the acoustic wavefront. For a computational grid of 64 × 64, the FNO network with 
a maximum number of 64 modes produced the highest quality photoacoustic simulations. 

Figure 6. Comparison between FNO Network and k-Wave simulations for initial pressure sources
using the (a) Shepp–Logan, (b) synthetic vasculature, (c) tumor and (d) Mason-M phantoms at
t = [1, 10, 20] time steps.

3.4. Hyperparameter Optimization

A study was conducted to investigate the impact of hyperparameter selection on
the FNO network’s accuracy. All FNO networks were trained on the breast vasculature
dataset for 200 epochs, which was sufficient for all networks to converge to a minimum
loss. The number of Fourier modes had the largest impact on the FNO network because it
directly affected the truncation error in the Fourier layers. FNO networks with fewer modes
typically produced simulations with a blurred appearance (Figure 7). This was due to the
loss of high-frequency information necessary for accurately simulating the sharp transitions
of the acoustic wavefront. For a computational grid of 64 × 64, the FNO network with a
maximum number of 64 modes produced the highest quality photoacoustic simulations.

Increasing the number of channels improved the FNO network’s accuracy with di-
minishing returns (Table 1). Results show that there was little benefit in having an FNO
network with more than five channels. Parameterizing the FNO network with a higher
number of modes or channels results in a more complex model that requires more GPU
memory. Interestingly, the time for a trained network to complete a simulation remained
approximately the same. There was a small increase in computation time for the larger
FNO networks with 64 modes and a higher number of channels.
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Table 1. Comparison of FNO network hyperparameters.

Grid Size M C RMSE Std. Dev. Time (s) GPU Mem. (GB)

64 × 64 × 151 16 5 2.4 × 10−2 2.7 × 10−2 0.016 0.85
64 × 64 × 151 32 5 8.5 × 10−3 7.9 × 10−3 0.021 0.94
64 × 64 × 151 64 5 4.7 × 10−3 4.6 × 10−3 0.061 1.68
64 × 64 × 151 64 2 1.3 × 10−2 1.2 × 10−2 0.048 0.84
64 × 64 × 151 64 3 8.5 × 10−3 8.2 × 10−3 0.051 1.05
64 × 64 × 151 64 4 5.4 × 10−3 5.4 × 10−3 0.055 1.33
64 × 64 × 151 64 5 4.7 × 10−3 4.6 × 10−3 0.061 1.68
64 × 64 × 151 64 6 5.1 × 10−3 4.9 × 10−3 0.066 2.09
64 × 64 × 151 64 7 4.4 × 10−3 4.3 × 10−3 0.074 2.57
64 × 64 × 151 64 8 5.1 × 10−3 6.2 × 10−3 0.082 3.12

128 × 128 × 302 64 5 6.9 × 10−3 5.5 × 10−3 0.110 6.45
Comparison between FNO networks with varying grid sizes, Fourier modes (M) and channels (C).

3.5. AWA2 Simulations

FNO networks with 5 channels and 64 Fourier modes were trained using the AWA2
datasets to perform the forward and adjoint simulations on a 128 × 128 computational
grid. The simulations by the FNO network and k-Wave were visually almost identical
(Figure 8). The RMSE in the forward simulation was consistently several orders of mag-
nitude smaller than the normalized pressure across all time steps (Figure 9). The RMSE
in the adjoint simulation increased over time but remained smaller than the normalized
pressure (Figure 10). An increasing error was expected because the adjoint simulations
began with a zero computational grid, and the pressure waves entered the grid from the
top over time. The RMSE over the entire testing dataset (n = 500) was similarly small for
the forward (6.9 ± 5.5 × 10−3) and adjoint (5.2 ± 5.5 × 10−3) simulations.
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3.6. Zero-shot Super Resolution

The FNO was trained on simulations with a 128 × 128 × 302 computational grid and
was then used for zero-shot super resolution to simulate wave propagation on larger-sized
grids. This was completed on an animal image from the testing dataset and a vasculature
image to evaluate generalizability. The FNO simulations for both images strongly resembled
their respective higher-resolution simulations using k-Wave (Figure 11). Errors could be
seen in the background. The FNO simulations also had a more blurred appearance, as seen
in the zoomed regions. This was likely due to the truncation of Fourier modes leading
to the loss of high-frequency information that is useful for retaining sharper details in an
image. Truncation errors became more prevalent for larger grid sizes using the FNO’s
super resolution feature (Table 2).

For a computational grid of 128 × 128 × 302, k-Wave required on average 1.66 s to
complete a simulation on a GPU. The FNO network on average required 0.11 s on the same
GPU. This was approximately a 15× reduction in computation time.

Table 2. FNO super resolution RMSE.

Grid Size Animal Vasculature

128 × 128 × 302 9.8 × 10−3 2.7 × 10−3

152 × 152 × 302 5.2 × 10−2 3.4 × 10−2

176 × 176 × 302 7.1 × 10−2 4.5 × 10−2

200 × 200 × 302 8.6 × 10−2 5.5 × 10−2

224 × 224 × 302 1.0 × 10−1 6.3 × 10−2

RMSE errors between k-Wave simulations and FNO zero-shot super resolution simulations for varying computa-
tional grid sizes.
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4. Discussion

A key motivation for an FNO network is that a trained network can quickly produce
accurate solutions for both forward and adjoint simulations. For a comparable simulation,
the FNO network was ~26× faster on a 64 × 64 grid and ~15× faster on a 128 × 128 grid
than k-Wave. This reduction in computation time with minimal loss in accuracy is ideal for
applications requiring repeated evaluations of the photoacoustic operator. For example,
advanced image reconstruction techniques, such as iterative methods, yield state-of-the-art
results but are computationally expensive due to the repeated evaluation of the forward
and adjoint operators. Therefore, the FNO network can greatly accelerate these methods by
replacing traditional solvers for those operators.

The FNO network is parameterized by the number of Fourier modes and channels.
Increasing either parameter typically improves model performance but at the cost of
increased memory and computation requirements. PDEs with generally smoother solutions
require fewer modes to achieve a satisfactory solution. However, the photoacoustic operator
contains broadband frequency information, which means that a higher number of modes is
needed for an accurate solution. The optimal number of Fourier modes retained is related
to the spatial resolution of the initial photoacoustic source and not necessarily the size
of the computational grid, meaning that not all simulations with a computational grid
of 64 × 64 require the maximum 64 Fourier modes for the FNO network to produce an
accurate solution. Hyperparameter optimization is especially important for simulations
with large computational grids where limited GPU memory can become a problem.

Optimizing the FNO for larger computational grids can be partially addressed via
hyperparameter selection. There are other approaches that can be employed to further
reduce GPU memory limitations. In this work, a 3D CNN architecture was used, but there
are other CNN architectures, such as the recurrent 2D network, that are more memory-
efficient [31]. Instead of solving for the full temporal solution in a single step, the FNO
can be used iteratively to solve the wave equation for n time steps in each forward pass
over the full time interval. Conventional solvers typically require sufficiently small time
steps for solution stability, but the FNO is likely not limited by this requirement. Thus,
it is possible that the FNO can use larger time steps and obtain an accurate solution for
downstream image reconstruction and processing tasks.
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In this work, we chose to simulate the full spatio-temporal wave field to decouple
the tasks of simulation from sampling. This allowed the same trained FNO to be used for
any sensor configuration. The FNO could be configured and trained to directly output the
sampled sensor data. This would reduce memory requirements but would also need to be
retrained for each sensor geometry and configuration.

A practical limitation in data-driven PDE solvers, such as the FNO network, is the
need for high-quality training data. Traditional solvers are often used to create arbitrarily
large datasets to train the network. Depending on the size of the computational grid,
this can be computationally formidable, such as the case of 3D photoacoustic simulations.
To create a large dataset in these scenarios, a high-performance computing environment
would be needed to generate the training data in a reasonable timeframe. Transfer learning
could also be employed to partially address this challenge after training the initial FNO
model. Rather than training from scratch, a pre-trained model can be fine-tuned with
smaller datasets for specific tasks or simulation environments. This would make the model
more accessible for other downstream users.

Zero-shot super resolution is a unique feature to the FNO and has been previously
demonstrated to work well for the Navier–Stokes equation. Given the difficulty of zero-
shot tasks, it is highly encouraging that the FNO could generate larger-sized simulations
resembling the k-Wave simulations. However, the truncation of Fourier modes led to
blurring and errors for larger computation grids. For example, the computational grid of
224 × 224 produced 224 Fourier modes, but only 64 were retained. The information loss in
that scenario was greater than that in the case of 128 × 128 computational grid.

5. Conclusions

Solving the 2D photoacoustic wave equation with traditional methods typically re-
quires a fine discretization of the computational grid and can be time-consuming to com-
plete. Deep learning methods directly learn from data to solve PDEs and can be orders
of magnitude faster with minimal losses in accuracy. In this work, we applied the FNO
network as a fast data-driven PDE solver for the 2D photoacoustic wave equation in a
homogeneous medium. The photoacoustic simulations generated by a traditional solver
with the k-Wave toolbox and the FNO network for the breast vasculature testing dataset
were remarkably similar, both visually and quantitatively. The RMSE between the k-Wave
and FNO simulations was several orders of magnitude smaller than the pressure intensities.

Model generalizability is a highly desirable property for an FNO network. If the
trained FNO network is to be a reliable alternative to traditional PDE solvers, then it
needs to be capable of solving the photoacoustic operator for any arbitrary initial pressure
source within an acceptable degree of error. Having a generalizable network minimizes
the need to retrain the network for instances not observed in the training dataset. The
generalizability of the trained FNO network was evaluated using phantoms not in the
training data. Shepp–Logan, synthetic vasculature, tumor and Mason-M phantoms were
used for 64 × 64 simulations, and the vasculature phantom was used for the 128 × 128
simulation. In general, the FNO network and k-Wave simulations were visually similar.
The RMSE was relatively small for these phantoms but was larger than those in the testing
dataset. This indicated that the FNO was overfitting the training data. These results
provide evidence for the FNO network being generalizable and can be used for simulations
with any arbitrary initial pressure source. Moreover, the FNO network was learning the
photoacoustic operator and not memorizing specific solutions related to the training data.

In this work, the FNO network was trained for solving the 2D acoustic wave equation
in a homogeneous medium. Simulations with homogeneous media are widely used in
many applications because the spatial distribution of heterogeneities is often unknown.
Nevertheless, an FNO network can be used for simulations with heterogeneous media by
providing the spatial distribution of medium properties as additional inputs to the FNO
network. During the training process, the FNO network can leverage these inputs and
learn from training examples generated with varying heterogeneous media to perform
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simulations with heterogeneous media. The operator for a heterogeneous medium is more
complex than that of the homogeneous case. Thus, a larger and more diverse dataset is
likely needed to adequately train the FNO network.

The significance of our work is that it provides a comprehensive study on solving the
2D photoacoustic wave equation with an FNO, demonstrating its application potential
in downstream reconstruction and image-processing tasks. The FNO performs orders
of magnitude faster than traditional solvers and can generalize to unseen out-of-domain
datasets. However, for simulations in a larger computational grid, a higher Fourier mode is
necessarily required to learn the broadband frequency residing in the whole time series
data. Consequently, it increases GPU memory and can be an intractable problem while
simulating in a larger domain, which usually requires the output of more time steps.
Furthermore, the current framework is limited to simulating the 2D photoacoustic wave
equation. Simulating the 3D photoacoustic source to output entire 4D time series data is
impossible to handle with modern GPUs. In addition, zero-shot super resolution using an
FNO tends to output blurry images due to the insufficient number of Fourier modes used
to train the network to support broadband frequency components in a larger computational
grid. In the future, research addressing these issues will benefit the use of FNOs in more
complex settings.
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