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Abstract: In this paper an algorithm for approximate solving of a boundary value problem for a
nonlinear differential equation with a special type of fractional derivative is suggested. This derivative
is called a generalized proportional Caputo fractional derivative. The new algorithm is based on
the application of the monotone-iterative technique combined with the method of lower and upper
solutions. In connection with this, initially, the linear fractional differential equation with a boundary
condition is studied, and its explicit solution is obtained. An appropriate integral fractional operator
for the nonlinear problem is constructed and it is used to define the mild solutions, upper mild
solutions and lower mild solutions of the given problem. Based on this integral operator we suggest
a scheme for obtaining two monotone sequences of successive approximations. Both sequences
consist of lower mild solutions and lower upper solutions of the studied problem, respectively. The
monotonic uniform convergence of both sequences to mild solutions is proved. The algorithm is
computerized and applied to a particular example to illustrate the theoretical investigations.

Keywords: approximate solutions; boundary value problem; fractional differential equations; general-
ized proportional Caputo fractional derivative

MSC: 34A08; 34B99; 34E99

1. Introduction

Fractional derivatives of any type are adequate models of the dynamics of many
phenomena and process in engineering, population dynamics, ecology, etc. In the litera-
ture there are several types of fractional derivatives such as Caputo fractional derivative,
Riemann–Liouville fractional derivative [1,2], proportional fractional derivative with re-
spect to other functions [3], Caputo–Fabrizio fractional derivative [4] and ABC fractional
derivative [5]. Some of the basic types of fractional derivatives are applied to models
such as the fractional models of gas dynamics [6], the fractional model in the dynamics of
particles [7], the computer virus fractional-order model [8] and the fractional models in
geo-hydrology [9].

In the last decade the generalized proportional fractional derivative of Caputo type
(PFD) was introduced [10,11] and applied to differential equations. Several qualitative
properties of the solutions of differential equations with PFD are well studied. We could
mention the existence results [12], the existence and Ulam-type stability [13,14] results, some
numerical solutions [15] and explicit solutions in the cases with and without impulses [16].

Note that when PFD is applied to nonlinear differential equations it is very difficult to
obtain the solution in an explicit form. It leads to more complicated practical application
and investigation of the properties of the solutions. It requires the use of numerical and
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approximate methods for obtaining the solutions of the studied differential equations with
initial and boundary conditions. One of the approximate methods giving solutions as a
limit of a sequence of functions is the monotone iterative method. It is theoretically proved
and applied to initial value problems for various types of fractional differential equations
such as the Caputo fractional evolution problem [17], fractional-order neutral differential
equations [18] and Riemann–Liouville fractional differential equations [19]. These method
is also successfully applied to some boundary value problems for Riemann–Liouville
fractional differential equations [20–23] and for the ψ-Caputo fractional differential equa-
tion [24]. To the best of our knowledge, the monotone-iterative technique is not applied to
a nonlinear boundary value problem for differential equations with PFD.

The aim of this paper is to present a new algorithm for approximate solving of a
nonlinear boundary value problem (BVP) for a scalar nonlinear differential equation with
PFD of Caputo type. A new type of integral fractional operator is suggested and it is used
to define lower and upper mild solutions of the studied problem. Based on this integral
fractional operator two sequences of successive approximations are constructed and their
convergence to the mild solution of the studied problem is proved. The proposed scheme
is based on the monotone-iterative technique. Initially, the BVP for the linear differential
equation with PFD is studied and its explicit solution is given. The suggested scheme for
approximate solutions is computerized and applied to a particular example.

The paper is organized in the following manner. In Section 2 well-known literature
definitions, lemmas and propositions for PGDs of Caputo type are given. The main results
are presented in Section 3. In Section 3.1, the initial value problem for a linear differential
equation with PFD of Caputo type is considered and its explicit solution is provided.
Then mild solutions, mild lower and upper solutions of the studied nonlinear problem
are defined. In Section 3.2 the monotone-iterative technique is applied to the BVP for
nonlinear differential equations with PDE of Caputo type. Theoretically some claims about
the sequences of successive approximations are proved. In Section 4 the new algorithm is
briefly described. In Section 5 the suggested algorithm for successive approximations is
illustrated on an example by the application of the appropriate computer program which
ideas are presented in Section 6. Some concluding remarks are given in the Section 7.

2. Preliminary Notes

In this paper we apply the generalized proportional fractional derivative of Caputo
type to differential equations. For better understanding of the results we will give some
known-in-the-literature definitions and results about this type of derivative.

(0Iγ,ξ y)(σ) =
1

ξγΓ(γ)

∫ σ

0
e

ξ−1
ξ (σ−τ)

(σ− τ)γ−1y(τ) dτ, σ ∈ (0, a], γ ≥ 0, ξ ∈ (0, 1],

Suppose we have a point a ∈ R : a < ∞ and the function y : [0, a]→ R.
The generalized proportional fractional integral (GPFI) of the function y is defined

by [10,11].

(0Iγ,ξ y)(σ) =
1

ξγΓ(γ)

∫ σ

0
e

ξ−1
ξ (σ−τ)

(σ− τ)γ−1y(τ) dτ, σ ∈ (0, a], γ ≥ 0, ξ ∈ (0, 1],

and the generalized proportional Caputo fractional derivative (PFD) of function y is defined by
the equality [10,11].

(C
0Dγ,ξ y)(σ) =

1− ξ

ξ1−γΓ(1− γ)

∫ σ

0
e

ξ−1
ξ (σ−τ)

(σ− τ)−γy(τ) dτ

+
ξγ

Γ(1− γ)

∫ σ

0
e

ξ−1
ξ (σ−τ)

(σ− τ)−γy′(τ) dτ, σ ∈ (0, a], γ ∈ (0, 1), ξ ∈ (0, 1].
(1)
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The defined above PFD and GPFI are generalizations of the classical Caputo fractional
derivative of order γ ∈ (0, 1) and Riemann–Liouville fractional integral of order γ > 0,
respectively (for more information, see, for example, the classical book [25]).

Remark 1 (see [10] [Remark 3.2]). The relations (C
0Dγ,ξ K)(σ) 6= 0 with K 6= 0 being a constant

and (C
0Dγ,ξ e

ξ−1
ξ (.)

)(σ) = 0 for σ > 0 hold. Note that these properties of PFD are totally different
than the well known properties of ordinary derivatives of a constant. These properties, combined
with the memory properties of PFD, gives us additionally better opportunities in the application for
modeling real world phenomena.

Lemma 1 (Proposition 5.2 [10]). For ξ ∈ (0, 1] and γ ∈ (0, 1) we have the equality for PFD

C
0Dγ,ξ(e

ξ−1
ξ ttβ−1)(σ) =

ξγΓ(β)

Γ(β− γ)
e

ξ−1
ξ σ

σβ−1−γ, β > 0.

Lemma 2 (Lemma 5 [26]). If we have a function ϕ ∈ C([0, a],R), and there exists a number
η ∈ (0, a) : ϕ(η) = 0, and ϕ(σ) < 0 for 0 ≤ σ < η. Then if there exists ( c

0Dγ,ξ ϕ)(η), then the
inequality ( c

0Dγ,ξ ϕ)(η) > 0 holds.

Consider the classes of functions:

Cγ,ξ [0, a] = {ϕ : [0, a]→ R : (C
0Dγ,ξ ϕ)(σ) exists for all σ ∈ (0, a]},

Iγ,ξ [0, a] = {ϕ : [0, a]→ R : (0Iγ,ξ ϕ)(σ) exists for all σ ∈ (0, a]}.

For any function ϕ ∈ Cγ,ξ [0, a] and 0Dγ,ξ ϕ(.) ∈ Iγ,ξ [0, a] with ξ ∈ (0, 1], γ ∈ (0, 1) we
have the following result:

Proposition 1 (Theorem 5.3 [10]). Let ξ ∈ (0, 1] and γ ∈ (0, 1). Then the equality

(0Iγ,ξ(C
0Dγ,ξ ϕ))(σ) = ϕ(σ)− ϕ(0)e

ξ−1
ξ σ, σ ∈ (0, a]

holds.

For any function ϕ ∈ Iγ,ξ [0, a] and 0Iγ,ξ ϕ(.) ∈ Cγ,ξ [0, a] with ξ ∈ (0, 1], γ ∈ (0, 1) we
have the following result:

Proposition 2 ([10]). Let γ ∈ (0, 1)and γ ∈ (0, 1). Then

(C
0Dγ,ξ(0Iγ,ξ ϕ))(σ) = ϕ(σ), σ ∈ (0, a].

3. Main Theoretical Results
3.1. Mild Solutions of the Generalized Proportional Caputo Fractional Differential Equation

First, we will investigate the linear case and we will provide an explicit solution to the
corresponding initial value problem.

Consider the linear scalar fractional differential equation with the PFD and an initial
condition (IVPL)

(C
0Dγ,ξ ϕ)(σ) = −λϕ(t) + Φ(t), σ ∈ (0, a],

ϕ(0) = ϕ0
(2)

where ϕ0 ∈ R, ξ ∈ (0, 1], γ ∈ (0, 1), λ ∈ R is a constant, Φ ∈ C([0, a],R).
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Lemma 3 (see Example 5.7 [10]). Let the function Φ ∈ Iγ,ξ [0, a]. Then the IVPL (2) has a unique
solution ϕ ∈ Cγ,ξ [0, a] given by the equality

ϕ(σ) = ϕ0e(ξ−1) σ
ξ Eγ

(
− λ

(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)Φ(τ) dτ, σ ∈ (0, a],

(3)

where the notations Eγ(.) and Eγ,γ(.) are used for the Mittag-Leffler functions with one and two
parameters, respectively.

Consider the nonlinear scalar differential equation with PFD and a nonlinear boundary
condition (GPDE):

(C
0Dγ,ξ y)(σ) = ϑ(σ, y(σ)), σ ∈ (0, a],

∆(y(0), y(a)) = 0,
(4)

where ξ ∈ (0, 1], γ ∈ (0, 1), ϑ : [0, a]×R→ R and ∆ : R×R→ R.

Remark 2. Any function y ∈ Cγ,ξ [0, a] satisfying both equalities (4) is called a solution of
GPDE (4).

Let λ, µ > 0 be constants (to be determined later). For any solution y ∈ Cγ,ξ [0, T]
of GPDE (4) we define ψy = y(0)− 1

µ ∆(y(0), y(a)). Then GPDE (4) can be equivalently
written in the form

(C
0Dγ,ξ y)(σ) = −λy(σ) + Υ(σ, y(σ)), σ ∈ [0, a],

y(0) = ψy,
(5)

where
Υ(σ, y) = ϑ(σ, y) + λy, y ∈ R, σ ∈ (0, a]. (6)

Note the problem (5) is an initial value problem for the nonlinear differential equation
with PFD. Based on the explicit solution (3) of the IVPL (2) we will define a mild solution
of (5) and its equivalent GPDE (4).

Define the integral fractional operator Ω : C[0, a]→ C[0, a] by

(Ωϕ)(σ) =
(

ϕ(0)− 1
µ

∆(ϕ(0), ϕ(a))
)

e(ξ−1) σ
ξ Eγ(−λ

(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)
(

ϑ(τ, ϕ(τ)) + λϕ(τ)
)

dτ,

σ ∈ [0, a],

(7)

where λ, µ are given positive constants (we will define them later).
The mild solutions of fractional differential equations play an important role in the

study of various qualitative properties of the solutions. Mild solutions are defined by
the application of an appropriate integral operator deeply connected with the studied
fractional differential equation (see, for example, Definition 3.1. Ref. [27] for fractional
neutral evolution equations, Ref. [28] for fractional evolution equation, Ref. [29] for Caputo–
Hadamard fractional differential equations).

Definition 1. Any fixed point ϕ ∈ C[0, a] (if any) of the operator Ω is called a mild solution of
GPDE (4).

Theorem 1. Let for any function ϕ ∈ Cγ,ξ [0, a] the function f (., ϕ(.)) ∈ Iγ,ξ [0, a]. Then any
solution x ∈ Cγ,ξ [0, a] of (4) is a mild solution of (4) and vice versa.
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Proof. Let y ∈ Cγ,ξ [0, a] be a mild solution of (4). According to Definition 1 and (7) the
equality

y(σ) =
(

y(0)− 1
µ

∆(y(0), y(T))
)

e(ξ−1) σ
ξ Eγ(−λ

(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)
(

ϑ(τ, y(τ)) + λy(τ)
)

dτ,

σ ∈ [0, a],

(8)

holds.
For σ = 0 from (8) we have y(0) = y(0)− 1

µ ∆(y(0), y(a)) or ∆(y(0), y(a)) = 0.

The equality (8) is of the form (3) with ϕ = y, ϕ0 = y(0) − 1
µ ∆(y(0), y(a)),

Φ(σ) = ϑ(σ, y(σ)) + λy(σ) and according to Lemma 3 the function y is satisfying (2),
i.e.,

(C
0Dγ,ξ ϕ)(σ) = −λϕ(σ) + Φ(σ) = −λϑ(σ, y(σ)) + λy(σ) = ϑ(σ, y(σ)).

Definition 2. The function y ∈ C[0, a] is a mild lower (a mild upper) solution of the GPDE (4) if
it satisfies the integral inequality y(t) ≤ (≥)(Ωy)(t), t ∈ [0, a].

3.2. Monotone-Iterative Technique

As is mentioned in Remark 1 the PFD gives wider opportunity for more adequate
modeling. At the same time, only a small part of differential equations with PFD could be
solved in explicit form and its causes some difficulties in the application. It requires some
approximate methods to be used for their solution. One of these methods is the main goal
of this paper.

We will recall the main idea of the monotone-iterative technique. Starting from a
given arbitrary lower solution of the studied problem we construct recursively in an
appropriate way, by the help of an integral operator, a sequence of lower solutions which
is increasing and convergent to a solution of the given problem. Similarly, starting from
a given upper solution we construct a monotone decreasing sequence of upper solution
which is decreasing and convergent to a solution of the studied problem.

Note that this method is applied to various types of differential equations as well as to
some types of fractional differential equations. In the case of fractional differential equations
it is necessary that there be defined mild solutions, mild lower and mild upper solutions
which can be used in the application of the monotone-iterative technique. Specially for the
generalized proportional fractional differential equations this method is applied in [16].
However, the used fractional derivative is the Riemann–Liouville type of generalized
proportional fractional derivative. This derivative, unlike the Caputo type derivative,
requires a special type of initial conditions and this leads to the necessity of a definition of a
particular integral operator and particular types of lower and upper solutions. Neither the
integral operator nor the mild solutions and mild lower/ upper solutions could be applied
to the Caputo-type generalized proportional fractional derivative studied in this paper.
Additionally, in [16] the initial condition is studied, which is different to the nonlinear
boundary condition in this paper and it has a huge influence on the construction of the
algorithm for the successive approximations. It determines the necessity of independent
essential study of the application of the monotone-iterative method to the GPDE (4). To
the best of our knowledge, it is the first paper suggesting an approximate method for the
generalized proportional Caputo fractional differential equation.

Theorem 2. Let the following conditions be fulfilled:

1. The functions ς(0), v(0) ∈ C([0, a]) are a mild lower solution and a mild upper solution of
the GPDE (4), respectively, and ς(0)(t) ≤ v(0)(t) for t ∈ (0, a].
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2. The function ϑ ∈ C([0, a]×R,R) and

ϑ(σ, x)− ϑ(σ, y) ≤ λ(y− x), σ ∈ [0, a], x, y ∈ R : ς(t) ≤ x ≤ y ≤ v(t),

holds, where λ > 0.
3. The function ∆ ∈ C(R×R,R), and

∆(x2, y2)− ∆(x1, y1) ≤ µ(x2 − x1) + δ(y1 − y2),

for x1, x2, y1, y2 ∈ R : ς(0) ≤ x1 ≤ x2 ≤ w(0), ς(a) ≤ y1 ≤ y2 ≤ v(a)

holds, where µ, δ > 0.

Then there exist sequences {ς(n)(·)}∞
n=0 and {v(n)(·)}∞

n=0, such that:

[a] The sequence {ς(k)(σ)}∞
k=0 : ς(n+1)(σ) = Ω(ς(n))(σ) for σ ∈ [0, a], n = 0, 1, 2, . . . ,

consists of mild lower solutions of the GPDE (4) on [0, a], it is increasing and it approaches
uniformly on [0, a] to χ ∈ C([0, a]) and the limit function χ is a mild solution of the GPDE
(4) on [0, a], where the operator Ω is defined by (7).

[b] The sequence {v(k)(σ)}∞
k=0 : v(n+1)(σ) = Ω(v(n))(σ) for σ ∈ [0, a], n = 0, 1, 2, . . . ,

consists of mild upper solutions of the GPDE (4) on [0, a], it is decreasing and it approaches
uniformly on [0, a] toW ∈ C([0, a]) and the limit functionW is a mild solution of the GPDE
(4) on [0, a], where the operator Ω is defined by (7).

[c] The inequalities ς(k)(σ) ≤ v(k)(σ) and χ(σ) ≤ W(σ) are satisfied for t ∈ [0, a],
k = 1, 2, . . . , i.e., the inequalities

ς(0)(σ) ≤ ς(1)(σ) ≤ ς(2)(σ) ≤ · · · ≤ χ(σ) ≤ W(σ) ≤ . . . v(2)(σ) ≤ v(1)(σ) ≤ v(0)(σ)

hold.

Proof. We will use the operator Ω given by Equation (7) with constants λ, µ defined in
conditions 2 and 3 of Theorem 2.

By induction we will prove the monotonicity of the sequence {ς(k)(σ)}∞
k=0.

Let n = 1. The function ς(0)(·) is a mild lower solution of GPDE (4). Thus, we have

ς(0)(σ) ≤
(

ς(0)(0)− 1
µ

∆(ς(0)(0), ς(0)(T))
)

e(ξ−1) σ
ξ Eγ(−λ

(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)
(

ϑ(τ, ς(0)(τ)) + λς(0)(τ)
)

dτ

= ς(1)(σ), σ ∈ [0, a].

Then, from condition 2, we obtain∫ σ

0
(σ− τ)γ−1e(ξ−1)

(
σ−τ

ξ

)
Eγ,γ

(
−λ

(
σ− τ

ξ

)γ)(
ϑ
(

τ, ς(0)(τ)
)
+ µς(0)(τ)

)
dτ

=
∫ σ

0
(σ− τ)γ−1e(ξ−1)

(
σ−τ

ξ

)
Eγ,γ

(
−λ

(
σ− τ

ξ

)γ)(
ϑ
(

τ, ς(1)(τ)
)
+ λς(1)(τ)

)
dτ

+
∫ σ

0
(σ− τ)γ−1e(ξ−1)

(
σ−τ

ξ

)
Eγ,γ

(
−λ

(
σ− τ

ξ

)γ)
×
(

ϑ(τ, ς(0)(τ))− ϑ(τ, ς(1)(τ)) + λ(ς(0)(τ)− ς(1)(τ))
)

dτ

≤
∫ σ

0
(σ− τ)γ−1e(ξ−1)

(
σ−τ

ξ

)
Eγ,γ

(
−λ

(
σ− τ

ξ

)γ)(
ϑ(τ, ς(1)(τ)) + λς(1)(τ)

)
dτ.

(9)
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From condition 3 we obtain the inequality

ς(0)(0)− 1
µ

∆(ς(0)(0), ς(0)(a))− ς(1)(0) +
1
µ

∆(ς(1)(0), ς(1)(a))

≤ ς(0)(0)− ς(1)(0) + (ς(1)(0)− ς(0)(0)) +
δ

µ
(ς(0)(a)− ς(1)(a)) ≤ 0.

(10)

Applying the inequalities (9) and (10) we obtain ς(1)(σ) ≤ ς(2)(σ), σ ∈ [0, a].
Inductively we prove the inequalities

ς(n)(σ) ≤ ς(n+1)(σ), σ ∈ [0, a], n = 0, 1, 2, . . . .

Similarly, by induction we prove the monotonicity of the sequence {v(k)(t)}∞
k=0, i.e.,

v(n)(σ) ≥ v(n+1)(σ), σ ∈ [0, a], n = 0, 1, 2, . . . .

We use condition 1 and obtain ς(0)(σ) ≤ v(0)(σ), for σ ∈ [0, a]. Therefore, from
conditions 1, 2 we obtain inequalities

ς(1)(σ)−v(1)(σ)

=
(

ς(0)(0)−v(0)(0)− 1
µ

(
∆(ς(0)(0), ς(0)(a)) + g(v(0)(0), v(0)(a))

))
× e(ξ−1) σ

ξ Eγ(−λ
(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)
(

ϑ(τ, ς(0)(τ))− ϑ(τ, v(0)(τ))

+ λ
(
ς(0)(τ)−v(0)(τ)

))
ds

≤
(

ς(0)(0)−v(0)(0) +
1
µ

(
µ(v(0)(0)− ς(0)(0)) + δ(ς(0)(a)−v(0)(a))

))
× e(ξ−1) σ

ξ Eγ(−λ
(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)
(

λ(v(0)(τ))− ς(0)(τ))

+ λ
(
ς(0)(τ)−v(0)(τ)

))
dτ ≤ 0, σ ∈ [0, a].

(11)

Inductively we prove the inequalities

ς(n)(σ) ≤ v(n)(σ), σ ∈ [0, a], n = 0, 1, 2, . . . .

Therefore, the sequence {ς(k)(·)}∞
k=0 is increasing, bounded by ς(0)(·) and v(0)(·) and

equicontinuous on [0, a]. Thus, it is convergent uniformly on [0, a]. Denote
χ(t) = limn→∞ ς(n)(t), t ∈ [0, a]. According to what was proved above, the inequalities

ς(m)(σ) ≤ χ(σ), σ ∈ [0, a], m = 0, 1, 2, . . . , (12)

hold. We take the limit as m→ ∞ in the definition of functions ς(m)(.), use the continuity
of the functions ϑ, ∆ and we obtain the fractional integral equation



Algorithms 2023, 16, 272 8 of 14

χ(σ) = lim
m→∞

ς(m)(σ)

= lim
m→∞

{(
ς(m−1)(0)− 1

µ
∆(ς(m−1)(0), ς(m−1)(a))

)
e(ξ−1) σ

ξ Eγ(−λ
(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)

×
(

ϑ(τ, ς(m−1)(τ)) + λς(m−1)(τ)
)

dτ
}

=
(

χ(0)− 1
µ

∆(χ(0), χ(T))
)

e(ξ−1) σ
ξ Eγ(−λ

(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)
(

ϑ(τ, χ(τ)) + λχ(τ)
)

dτ

for σ ∈ (0, a].

(13)

Thus, the function χ ∈ C([0, a]) is a mild solution of the GPDE (4) on [0, a].
Similarly, the sequence {v(k)(·)}∞

k=0 is monotone, bounded and equicontinuous on
[0, a]. Thefore, it is convergent uniformly toW(σ) = limn→∞ v(n)(σ) andW(σ) is a mild
solution of the GPDE (4) on [0, a] and χ(σ) ≤ W(σ), σ ∈ [0, a].

Remark 3. In Theorem 2 the existence of mild solutions of GPDE (4) is indirectly proved.

Corollary 1. Let the conditions 1 and 2 of Theorem 2 be fulfilled and the function
∆ ∈ C(R×R,R), be non-increasing with respect to both of its arguments. Then the claims
of Theorem 2 are satisfied with µ = 1 in Equation (7) of the operator Ω.

Remark 4. If additionally in Theorem 2 we assume that any mild solution of GPDE (4)
y ∈ Cγ,ξ [0, a] then according to Theorem 1 any mild solution of GPDE (4) is a solution of
the same problem and the sequences of mild lower solutions and mild upper solution in Theorem 2
will converge to a solution of GPDE (4).

Remark 5. If GPDE (4) has a unique solution, then operator Ω has a unique fixed point and GPDE
(4) has a unique mild solution.

Corollary 2. Let the conditions of Theorem 2 be fulfilled and GPDE (4) have unique solution
y ∈ Cγ,ξ [0, a]. Then additionally to the claims of Theorem 2 both sequences {ς(k)(σ)}∞

k=0 and
{v(k)(σ)}∞

k=0 aproach this solution of GPDE (4).

4. Algorithm For Successive Approximations

Shortly we will describe the above-presented algorithm for obtaining approximate
mild solutions of the GPDE (4). Assume all conditions of Corollary 2 are satisfied.

Step 1. Find a lower mild solution ς(0)(t), t ∈ [0, a] and an upper mild solution
v(0)(t), t ∈ [0, a] of the GPDE (4), i.e., find functions, satisfying the inequalities (see
Definition 1):
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ς(0)σ ≤
(

ς(0)(0)− 1
µ

∆(ς(0)(0), ς(0)(a))
)

e(ξ−1) σ
ξ Eγ(−λ

(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)
(

ϑ(τ, ς(0)(τ)) + λς(0)(τ)
)

dτ,

v(0)σ ≥
(

v(0)(0)− 1
µ

∆(v(0)(0), v(0)(a))
)

e(ξ−1) σ
ξ Eγ(−λ

(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)
(

ϑ(τ, v(0)(τ)) + λv(0)(τ)
)

dτ,

σ ∈ [0, a],

where λ, µ are Lipschitz constants defined in Conditions 2 and 3 of Theorem 2.
Step 2. For n = 0 obtain ς(n+1)(t) and v(n+1)(t), t ∈ [0, a] by the equalities

ς(n+1)(t) = Ω(ς(n)(t)) and v(n+1)(t) = Ω(v(n)(t)) for t ∈ [0, a], i.e., use the equalities

ς(n+1)σ =
(

ς(n)(0)− 1
µ

∆(ς(n)(0), ς(n)(a))
)

e(ξ−1) σ
ξ Eγ(−λ

(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)
(

ϑ(τ, ς(n)(τ)) + λς(n)(τ)
)

dτ,
(14)

and

v(n+1)σ =
(

v(n)(0)− 1
µ

∆(v(n)(0), v(n)(a))
)

e(ξ−1) σ
ξ Eγ(−λ

(σ

ξ

)γ
)

+
1

ξγΓ(γ)

∫ σ

0
(σ− τ)γ−1e(ξ−1)( σ−τ

ξ )Eγ,γ(−λ
(σ− τ

ξ

)γ
)
(

ϑ(τ, v(n)(τ)) + λv(n)(τ)
)

dτ,

σ ∈ [0, a].

(15)

Step 3. For the current value n = k, k = 0, 1, 2, . . . , if the inequality

max{ max
σ∈[0,a]

ς(n+1)(σ)− ς(n)(σ)|, max
σ∈[0,a]

v(n+1)(σ)−v(n)(σ)|} < ε

holds with the initially given small-enough number ε > 0, then go to Step 4. If the
inequality is not satisfied, then we go to Step 2 with n = k instead of n = 0.

Step 4. Stop. The mild solution of the GPDE (4) is x(σ) = 0.5
(

ς(k+1)(σ)−v(k+1)(σ)
)

for σ ∈ [0, a].

5. Example

We will illustrate the application of the suggested above algorithm for successive
approximations on a particular example. Consider the GPDE

(C
0D0.3,0.5u)(t) =

sin(u(t))
t + 1

for t ∈ (0, 4],

u(0)− u(4) = 0,
(16)

with ϑ(t, x) = sin(x)
t+1 , ∆(x, y) = x− y, γ = 0.3, ξ = 0.5.

Note that GPDE (16) is a periodic boundary value problem.
The function ϑ(σ, x) satisfies condition 2 of Theorem 2 with λ = 1.
The function ∆(x, y) satisfies condition 3 with µ = δ = 1.
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The fractional operator Ω, defined by (7), in this case is given by the following integral
equation

(Ωu)(σ) = u(4)e−tE0.3(−
(
2σ
)0.3

)

+
1

0.50.3Γ(0.3)

∫ σ

0
(σ− τ)−0.7eτ−σE0.3,0.3(−

(
2(σ− τ)

)0.3
)
( sin(u(τ))

τ + 1
+ u(τ)

)
dτ,

σ ∈ [0, 4].

(17)

The function u(t) ≡ 0 is a mild solution of GPDE (16). According to Theorem 1 zero is
a solution of GPDE (16).

Consider the function v(0)(σ) = e−σ. Applying the inequality 1
0.50.3Γ(0.3) (σ− τ)−0.7eτ

E0.3,0.3(−
(
2(σ− τ)

)0.3
)
(

sin(e−τ)
τ+1 + e−τ

)
≤ 0.012 for τ ∈ [0, 4] (see Figure 1) we obtain

e−σ ≥ e−σ−4E0.3(−
(
2σ
)0.3

)

+
1

0.50.3Γ(0.3)

∫ σ

0
(σ− τ)−0.7eτ−σE0.3,0.3(−

(
2(σ− τ)

)0.3
)
( sin(e−τ)

τ + 1
+ e−τ

)
dτ,

σ ∈ [0, 4].

(18)

or (see Figure 2)

1 ≥ e−4E0.3(−
(
2σ
)0.3

) + 0.012

≥ e−4E0.3(−
(
2σ
)0.3

)

+
1

0.50.3Γ(0.3)

∫ σ

0
(σ− τ)−0.7eτE0.3,0.3(−

(
2(σ− τ)

)0.3
)
( sin(e−τ)

τ + 1
+ e−τ

)
dτ,

σ ∈ [0, 4].

(19)

Furthermore, v(0)(0)−v(0)(4) = 1− e−4 > 0 and therefore, the function v(0)(σ) is a
mild upper solution of GPDE (16).

1 2 3

0.002

0.004

0.006

0.008

0.010

0.012

Limit=0.012

Expression

Figure 1. Graphs of the limit 0.012 and 1
0.50.3Γ(0.3) (σ− τ)−0.7eτ E0.3,0.3(−

(
2(σ− τ)

)0.3
)
(

sin(e−τ)
τ+1 + e−τ

)
for σ ∈ [0, 4].
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1 2 3 4

0.2

0.4

0.6

0.8

1.0

1

^(-4)E0.3((-(2t)
0.3)+0.012

Figure 2. Graphs of the limit 1 and e−4E0.3(−
(
2t
)0.3

) + 0.012 for t ∈ [0, 4].

For n ≥ 0 the approximation v(n+1)(t) is obtained on [0, 4] by

v(n+1)(σ) = v(n)(4)e−σE0.3(−
(
2σ
)0.3

)

+
1

0.50.3Γ(0.3)

∫ σ

0
(σ− τ)−0.7e(τ−σ)E0.3,0.3(−

(
2(σ− τ)

)0.3
)
( sin(v(n)(τ))

τ + 1
+ v(n)(τ)

)
dτ.

(20)

Then the inequalities v(0)(σ) = e−σ ≥ v(1)(σ) ≥ v(2)(σ) ≥ v(3)(σ) ≥ v(4)(σ) ≥
· · · ≥ 0 hold (see Table 1 and Figure 3). The sequence of successive approximations
{w(n)(σ)} is a decreasing sequence and, according to Theorem 2 and Corollary 2, it is
convergent and its limit is 0, i.e., the sequence is approaching the solution of GPDE (16).

Consider the function ς(0)(σ) = −e−σ, σ ∈ [0, 4]. From inequality (19) it follows

− e−σ ≤ −e−σ−4E0.3(−
(
2σ
)0.3

)

+
1

0.50.3Γ(0.3)

∫ σ

0
(σ− τ)−0.7eτ−σE0.3,0.3(−

(
2(σ− τ)

)0.3
)
( sin(−e−τ)

τ + 1
− e−τ

)
dτ,

σ ∈ [0, 4],

(21)

and ς(0)(0)− ς(0)(4) = −1 + e−4 < 0.
Therefore the function ς(0)(σ) = −e−σ is a mild lower solution of (16).
We construct an increasing sequence {ς(n)(t)} which, according to Theorem 2 and

Corollary 2, is approaching 0, i.e., the sequence is approaching the solution of GPDE (16).

Table 1. Values of upper mild solutions v(i)(σ), i = 0, 1, 2, 3, 4 for σ ∈ [0, 4].

σ v(0)(σ) v(1)(σ) v(2)(σ) v(3)(σ) v(4)(σ)

0.0 1.0000 0.0183 0.0048 0.0013 0.0003
0.1 0.9048 0.2009 0.0451 0.0099 0.0021
0.2 0.8187 0.2027 0.0505 0.0122 0.0029
0.3 0.7408 0.1928 0.0503 0.0128 0.0032
0.4 0.6703 0.1793 0.0480 0.0125 0.0032
0.5 0.6065 0.1649 0.0448 0.0119 0.0031
0.6 0.5488 0.1506 0.0413 0.0111 0.0029
0.7 0.4966 0.1371 0.0377 0.0102 0.0027
0.8 0.4493 0.1245 0.0344 0.0094 0.0025
0.9 0.4066 0.1128 0.0312 0.0085 0.0023
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Table 1. Cont.

σ v(0)(σ) v(1)(σ) v(2)(σ) v(3)(σ) v(4)(σ)

1.0 0.3679 0.1021 0.0282 0.0077 0.0021
1.1 0.3329 0.0923 0.0255 0.0070 0.0019
1.2 0.3012 0.0834 0.0231 0.0063 0.0017
1.3 0.2725 0.0754 0.0208 0.0057 0.0016
1.4 0.2466 0.0681 0.0188 0.0051 0.0014
1.5 0.2231 0.0615 0.0169 0.0046 0.0013
1.6 0.2019 0.0555 0.0153 0.0042 0.0011
1.7 0.1827 0.0501 0.0138 0.0038 0.0010
1.8 0.1653 0.0453 0.0124 0.0034 0.0009
1.9 0.1496 0.0409 0.0112 0.0031 0.0008
2.0 0.1353 0.0369 0.0101 0.0027 0.0007
2.1 0.1225 0.0333 0.0091 0.0025 0.0007
2.2 0.1108 0.0301 0.0082 0.0022 0.0006
2.3 0.1003 0.0272 0.0074 0.0020 0.0005
2.4 0.0907 0.0245 0.0067 0.0018 0.0005
2.5 0.0821 0.0222 0.0060 0.0016 0.0004
2.6 0.0743 0.0200 0.0054 0.0015 0.0004
2.7 0.0672 0.0181 0.0049 0.0013 0.0004
2.8 0.0608 0.0163 0.0044 0.0012 0.0003
2.9 0.0550 0.0147 0.0040 0.0011 0.0003
3.0 0.0498 0.0133 0.0036 0.0010 0.0003
3.1 0.0450 0.0120 0.0032 0.0009 0.0002
3.2 0.0408 0.0109 0.0029 0.0008 0.0002
3.3 0.0369 0.0098 0.0026 0.0007 0.0002
3.4 0.0334 0.0089 0.0024 0.0006 0.0002
3.5 0.0302 0.0080 0.0021 0.0006 0.0002
3.6 0.0273 0.0073 0.0019 0.0005 0.0001
3.7 0.0247 0.0066 0.0017 0.0005 0.0001
3.8 0.0224 0.0059 0.0016 0.0004 0.0001
3.9 0.0202 0.0054 0.0014 0.0004 0.0001
4.0 0.0183 0.0048 0.0013 0.0003 0.0001

Figure 3. Graphs of upper mild solutions wi(t), i = 0, 1, 2, 3 for t ∈ [0, 4].
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6. Discussions about Computer Realization of the Algorithm

In the computer realization we use series for calculation Mittag-Leffler functions with
an initially given error.

Before starting the calculation of the sequence of functions wn(t) defined by
Equation (15), we obtain the values of the functions Eγ(−( hk

ξ )γ) and Eγ,γ(−( hk
ξ )γ) for all

hk ∈ [0, 4] where k ≥ 0 is an integer, h is the step of the trapezoid method, γ = 0.3, ξ = 0.5.
The results are written in two arrays Ea[ ] and Eaa[ ], where Ea[t] = Eγ(−( t

ξ )
γ) and

Eaa[t] = Eγ,γ(−( t
ξ )

γ). In computer realization we use a one-to-one relation between the
real numbers t = hk and the integer array indexes.

For the obtained values of wn(t) two dimensional array w[ ][ ] is used.
Initially, we could calculate t1−γe−t into expr[t], t = hk ∈ [0, 4].
Then, Equation (20) is reduced to:

w[0][t] = e−t,

w[n+1][t] = w[n][4] Ea[t] +

+ const
∫ t

0
expr[t−s] Eaa[t−s]

( sin(w[n][s])
s + 1

+ w[n][s]
)

ds,

where const = 1
0.50.3Γ(0.3) and t = hk ∈ [0, 4].

We obtain the values of wn(t) for n = 0, 1, 2, 3, 4 and for all t = hk ∈ [0, 4]. We apply
the trapezoid method for integral calculation.

Some of the values of the upper mild solutions, obtained by computer application
of the above described algorithm, are given in Table 1, and the upper mild solutions are
graphed on Figure 1. It could be seen the inequalities w0(t) ≥ w1(t) ≥ w2(t) ≥ w3(t) ≥ 0
hold.

7. Conclusions

The main aim is to present an algorithm for approximate obtaining of a solution of a
nonlinear BVP for a scalar nonlinear differential equation with PFD on a finite interval. This
algorithm is based on monotone-iterative technique combined by appropriately defined
mild lower solutions and mild upper solutions. A new integral fractional operator is defined
and applied to construct two sequences of successive approximations. Both sequences are
monotone and they consist of lower and upper mild solutions of the studied nonlinear
problem, respectively. It is proved that both sequences are convergent to the mild solution
of the problem. Theoretical study is combined with a computer realization of the newly
suggested algorithm and it is applied to an example to illustrate the convergence to the
solution of the studied nonlinear problem.

The suggested scheme for approximate solving of the studied problem could be
generalized to a system of differential equations with PFD and it could be applied to solve
some particular fractional models.
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