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Abstract: The increasing popularity of cruise tourism has led to the need for effective planning
and management strategies to enhance the city tour experience for cruise passengers. This paper
presents a deep reinforcement learning (DRL)-based planner specifically designed to optimize city
tours for cruise passengers. By leveraging the power of DRL, the proposed planner aims to maximize
the number of visited attractions while considering constraints such as time availability, attraction
capacities, and travel distances. The planner offers an intelligent and personalized approach to city
tour planning, enhancing the overall satisfaction of cruise passengers and minimizing the negative
impacts on the city’s infrastructure. An experimental evaluation was conducted considering Naples’s
fourteen most attractive points of interest. Results show that, with 30 state variables and more than
19 ∗ 1012 possible states to be explored, the DRL-based planner converges to an optimal solution after
only 20,000 learning steps.

Keywords: intelligent transportation systems; smart cities; deep reinforcement learning; optimal
planning

1. Introduction

Over the course of several decades, numerous port cities throughout Europe have
made significant investments in the renovation of their waterfront areas and the revi-
talization of their historic centers. As a consequence of these efforts, these cities have
emerged as highly desirable tourist destinations and have established themselves as promi-
nent players within the global tourist industry rankings [1]. For instance, several cities,
such as Venice and Barcelona, serve as home ports for a plethora of shipping enterprises.
Several other cities, including Lisbon, Genoa, and Naples, have directed their attention
towards enhancing cultural offerings to establish themselves as prominent ports along key
cruise itineraries [2]. Cities are progressively implementing marketing strategies aimed at
attracting a greater volume of cruise passengers.

As a consequence, in recent years, European port cities have experienced an influx
of mass tourism driven by the emergence of increasingly larger cruise ships and low-cost
tourism. This phenomenon, commonly known as touristification, severely threatens these
destinations’ sustainability [3,4]. The World Tourism Organization UNWTO [5] defines
this tourist overcrowding or overtourism as “the impact of tourism on a destination, or parts
thereof, that excessively influences the perceived quality of life of citizens and/or quality of visitor
experiences in a negative way”.

The phenomenon of cruise tourism has been identified as a noteworthy source of
concern in urban centers such as Amsterdam, Barcelona, Naples, and Venice. The signif-
icant number of visitors that converge on the cities within prescribed schedules leads to
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congestion in transportation infrastructure and the preeminent attraction sites. Conse-
quently, the impact of cruise tourism on urban spaces and their associated facilities has
emerged as a critical issue [2]. Among several strategies, intelligent and adaptive planning
of touristic itineraries, which propose alternative itineraries considering the city’s dynamic
situation and unexpected events such as a public transportation strike, a protest, traffic, or
points-of-interest congestion, may help mitigate tourist overcrowding.

In this direction, this paper proposes an autonomous dynamic planner for touristic
itineraries in the smart city context designed to enhance the quality of the tourists’ expe-
rience following the prevailing conditions of the urban environment. We propose a new
autonomous dynamic planner that seeks to find the best route for a one-day cruise traveler.
From a tourist’s perspective, the objective is to maximize the number of points of interest
(PoIs) to be visited during both the outbound and return journey with the view.

The proposed autonomous dynamic planner aims to define the optimal path of a
one-day cruise tourist, maximizing as many points of interest as possible in the outer and
back routes. At the same time, the proposed planner considers the hard time constraints
of the cruise and the dynamic city conditions affecting the travel time from one PoI to
another and their current receptivity. In so doing, real-time information from the city, such
as traffic information, availability of public resources, and reception capacity of tourist
attraction sites, are included in the planner. Moreover, the planner is designed to adapt the
city itinerary to several unexpected events to improve the tourist-positive experience of
the city and mitigate the contemporary tourist overcrowding of congested city areas and
points of interest. The proposed dynamic planner is mainly based on a deep reinforcement
learning (DRL) algorithm that employs run-time information during the learning process.

An experimental evaluation was carried out to assess the proposed approach’s perfor-
mance in providing alternative itineraries under hard time constraints. A deeper analysis
and an evaluation of itinerary planning performance are also addressed, outlining new
experiments and more detailed results than the pilot experiment reported in [6]. A use-case
scenario of a cruise landing in Naples was examined by considering the most important
fourteen attractions of the city. The adaptation of the proposed approach was evaluated by
simulating unexpected events during the city itinerary.

The rest of the paper is organized as follows. Section 2 discusses some related works.
Section 3 introduces some background on reinforcement learning and the deep Q-network
(DQN). Section 4 introduces the problem addressed in this paper. Section 5 reports the
planner, its training, and performance. Finally, experimental results and conclusions are
presented in Sections 6 and 7, respectively.

2. Literature Analysis

Most of the works in the literature focus on providing solutions to plan tours that
maximize the tourist travel experience [7]. The tourist tour planning problem is difficult
to address due to the diversity of involved objectives and preferences that cannot always
be expressed as linear combinations, making classic optimization approaches unfeasible.
These problems have been proven to be NP-hard [8], so heuristic techniques are adopted to
solve them.

Genetic algorithms are well-established heuristic approaches to solve such search and
optimization problems. When considering the time to visit and user preferences over the
points of interest, the itinerary planning can be formulated as a multi-objective optimization
problem, as in [9] where an adaptive genetic algorithm is proposed.

A genetic algorithm was also proposed in [10] to generate tourist itineraries that
include not only touristic attractions but also restaurants, with the additional constraint
that they should be visited at lunch or dinner time.

In [11], the authors propose a novel automatic planning method based on a genetic
algorithm to suggest multiple itineraries that satisfy the specific preferences of tourists
while spending the least time on roads, visiting highly-rated PoIs, and visiting diverse PoIs.
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The proposed algorithm provides multiple optimized itineraries for the tourists so that
they can choose their most preferred one.

Solutions proposed for the team orienteering problems are adopted for generating
itinerary plans as a path connecting a set of nodes with the constraint of not exceeding a
budget score expressed in terms of time and cost, as in [12].

In [13], an algorithm is proposed to recommend personalized tours taking into ac-
count user preferences, the popularity of PoIs derived from geotagged photographs, and
constraints on the duration and the starting and end point of the tour.

The dispatch of cruise passengers arriving on the same day in a destination city to
different city locations is addressed in [14], where a decision support system is proposed
to organize their transportation from the port. The system computes the itinerary for the
number of arriving passengers by taking into account their tourist needs and specific city
events that may prevent their access to specific city areas.

In [15], the itinerary planning problem is addressed with a deep variational Q-network
that includes a reward scheme of route score, similar to our approach, but it considers the
user’s preferences to compute a personalized tour.

A multi-objective reinforcement learning approach for trip recommendation is pro-
posed in [16] that considers dynamic user preferences and the trip diversity and popularity
that may enhance the user travel experience.

In [17], an interactive multi-objective framework is introduced to generate personal-
ized tourist walking itineraries, with the objective of minimizing the total distance and
maximizing user satisfaction when visiting the selected PoIs. The itinerary planning
problem is formulated according to the multi-objective prize-collecting vehicle routing
problem (MO-PCVRP), and the optimizations are performed by an algorithm that considers
preferences progressively introduced during the optimization process.

In [18], a framework named GRM-RTrip for personalized trip recommendation is
proposed, where the trip consists of an ordered sequence of PoIs that maximize user
satisfaction, considering time and geographical restrictions. It relies on a graph-based
representation model to learn PoI–PoI transition probability using graph networks. A
Q-based reinforcement learning algorithm is used to compute the personalized trip.

In [19], a deep neural network approach is proposed to compute travel route planning
as a prediction of a sequence of PoIs. The prediction relies on learning user preferences, PoI
attributes, and historical route data. The proposed approach can be applied to generate
three types of planning, i.e., next-point recommendation, general route planning, and
must-visit planning.

The reported approaches do not consider that planning a touristic tour for cruise
passengers requires considering not only user satisfaction but also aspects that involve the
destination city due to the massive number of passengers that disembark simultaneously.
The approach proposed in the present work differs from the reported works mainly because
it does not search for an optimal itinerary meeting the user’s preferences. Still, it computes
itineraries compliant with the dynamic nature of constraints. The considered constraints
are the capacity of PoIs and the maximization of the number of visited PoIs to avoid
overcrowding and to allow cruise passengers to visit as many PoIs as possible with the
available time before returning to the port. Both constraints vary because the capacity of
PoIs may depend on specific and unexpected circumstances occurring in the city, and the
number of PoIs to be visited depends on the time needed to transit from one PoI to another
variable for traffic conditions.

This is why it is crucial to consider that the selection of each PoI heavily impacts the
selection of the successive PoIs since the time spent visiting the computed sequence of
PoIs drives the choice of the rest of the tour to meet the time constraints imposed by the
cruise departure. Approaches that rely on immediate rewards for selecting each PoI [20]
are not feasible in our case since long-term rewards should be considered. In order to take
into account long-term rewards, a reinforcement learning approach that considers these
variable constraints is proposed with the purpose of limiting the negative effects of tourist
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itineraries of cruise passengers in the destination city. In addition, since these kinds of
tours are devoted to large groups of tourists, personal user preferences are not taken into
account as in the mentioned approaches, only the popularity of the PoI as given by touristic
information available on the destination city.

3. Reinforcement Learning Background

Reinforcement learning (RL) is a powerful machine-learning technique to solve prob-
lems involving sequential decision-making. In RL, an artificial agent, a controller, interacts
with an uncertain environment to maximize long-term rewards. The agent learns an opti-
mal policy by selecting and executing actions that lead to state transitions and influence
the environment. Each state transition is associated with a numerical reward, which can be
positive or negative. RL provides a framework for training agents to achieve goals through
interactions with their environment. The concept of RL is extensively discussed in the book
“Reinforcement Learning” by [21].

The agent’s primary objective in reinforcement learning is maximizing the cumulative
rewards it receives. The agent achieves this by following a policy consisting of stimulus–
response rules, mapping each environment state to a set of possible actions. The policy
can be implemented using a lookup table or more complex computations such as search
processes. The policy guides the agent’s decision-making process and ensures the system’s
proper functioning. However, a major challenge in RL is that the agent often interacts with
an environment with considerable uncertainty. This uncertainty relates to the changes in
the state of the environment and the rewards associated with those state transitions. The
agent must navigate this uncertain environment to learn and make optimal decisions that
lead to the highest possible rewards.

In the context of reinforcement learning, an RL task is formally defined as a Markov
decision process (MDP). The MDP is represented as a tuple, 〈S, A, R, P, γ〉, where S is a
finite set of states, A is a finite set of actions, R is a reward function, P represents the
state transition probability, and γ is a discount factor, which ranges between 0 and 1. The
Markov property assumes that the future state depends solely on the current state and
is independent of previous states. The MDP describes the dynamics of the environment,
specifying the available actions, the possible states, and the transition probabilities.

For any given state–action pair (s, a), the probability of transitioning to a particular
next state and receiving a reward is denoted as p(s′, r|s, a). This probability captures the
stochastic nature of the environment. In the context of RL, the objective is to maximize the
cumulative sum of rewards from a given time step t to the final time step T, denoted as
Gt = Rt+1 + Rt+2 + . . . + RT . The goal is to find the optimal policy that maximizes this
cumulative reward.

Often, such a function is referred to as a discounted return:

Gt =
∞

∑
k=0

γkRt+k+1 (1)

where 0 ≤ γ ≤ 1 is the discount rate enabling a trade-off between two needs, the attempt to
achieve the maximum cumulative reward and the desire to gain a sufficient benefit within
a reasonable time. A policy π is a probability distribution over actions and states.

π(a|s) .
= P[At = a|St = s] (2)

Given the policy π and the return Gt, the action-value function qπ(s,a) of an MDP is
the expected return reward from state s, selecting action a, and following π.

qπ(s, a) .
= Eπ [Gt|St = s, At = a]

= Eπ [
∞

∑
k=0

γkRt+k+1|St = s, At = a]
(3)
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The optimal action-value function q∗(s,a) is defined as the maximum value function of
all policies, and it is the one that allows the highest return reward to be achieved:

q∗(s, a) = max
π

qπ(s, a), ∀s ∈ S (4)

Q-learning is a commonly used algorithm to determine the optimal action-value
function, denoted as q∗. It utilizes a two-dimensional array known as a Q-table, which
stores information about state–action pairs. Each cell (i, j) in the Q-table represents the
estimated value, denoted as q(i, j), that can be achieved by selecting action j in state i. During
the learning process, the Q-table is updated iteratively based on the agent’s interactions
with the environment. The agent explores different actions, observes the resulting rewards
and next states, and updates the corresponding Q-values in the table accordingly. Through
this process, the Q-table gradually converges towards the optimal action-value function, q∗,
which reflects the maximum expected rewards for each state–action pair.

Deep Reinforcement Learning

In the case of high-dimensional problems, it is intractable to manage Q-tables. So, deep
reinforcement learning (DRL) [22] is used since deep neural networks can automatically
find compact low-dimensional representations (features) of high-dimensional data (e.g.,
images, text, and audio). In DRL, deep neural networks are employed to approximate the
value function or policy function used in reinforcement learning algorithms. The deep
network can process high-dimensional input, such as raw sensory data, and learn complex
mappings from states to actions or state values. This enables the agent to make decisions
based on raw sensory input without requiring explicit feature engineering. In DRL, one of
the most used approaches is based on deep Q-networks (DQNs) [23] relying on Q-learning
methods where Q-tables are replaced with neural networks for approximating Q-values
for each action-state pair. DRL has achieved remarkable successes in various domains,
including game playing, robotic control, autonomous driving, and resource management.
By leveraging the power of deep neural networks and reinforcement learning, DRL enables
agents to learn directly from raw sensory input and acquire sophisticated decision-making
capabilities in complex and dynamic environments.

4. Adaptive Cruise Tourist Itinerary Planning Problem

The adaptive cruise tourist itinerary planning problem is similar to the more general
tourist trip design problem (TTDP) [24]. This generic class of problems comprises a set
of candidate points of interest (PoIs) together with their associated attributes (e.g., type,
location, timetable), travel time between PoIs, user-dependent functions relative to PoIs
(e.g., satisfaction, expected duration), the trip time span, and the daily time limit. A
daily schedule that meets the constraints imposed by POI properties and maximizes user
satisfaction is expected to be proposed in a quality TTDP solution. The problem addressed
in this paper is more challenging since the specific constraints to be considered for cruise
passengers and city needs may change during the itinerary. An exemplification of the
posed problem is illustrated in Figure 1. It shows a scenario in which the planned itinerary
can not be fulfilled or is no longer deemed the optimal choice. This may happen for many
unexpected reasons, such as a public transportation strike, a protest and/or unplanned
building works preventing the transit in specific areas of the city, or overcrowding of a
tourist attraction at a specific time. In this situation, a static planner is useless, and a human
expert should re-plan a novel itinerary based on their experience, with no certainty that it
will be the best.

This paper proposes a DRL-based planner able to plan itineraries automatically
through different points of interest that may dynamically change according to city con-
ditions. The DRL agent can generalize the planning process to optimize and plan novel
itineraries from any partial ones. Mainly, an itinerary is defined as a sequence of PoIs under
temporal and physical constraints, where temporal means that the duration time of an
itinerary must not exceed a fixed duration time depending on the cruise departure, and
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physical means that each PoI has a specified capacity and visiting time which must be taken
into account at the time of choosing the PoIs.

Figure 1. Dynamically planning a novel sub-optional route.

During the itinerary, changes in the city conditions may occur, affecting both the
current receptivity of a PoI in correlation with its capacity and the time to travel from one
PoI to another in relation to the city traffic conditions. This dynamic information on the city
is assumed to be gathered through a sensor layer and notifications services (e.g., Google
TrafficTM), which collect and process raw sensor data and signals from the environment.

This paper refers to the city of Naples as a use-case scenario. The itineraries are built
considering a set of Naples tourist attractions for fourteen points of interest. A touristic
itinerary in Naples entails sequentially visiting various attractions, ultimately returning
to the cruise. Each point of interest has a maximum number of people it can hold and a
specific amount of time it takes to finish a visit. According to the problem, the greater the
number of places tourists visit during a tour, the more enjoyable it is. However, the planner
must consider overcrowding of attractions and ensure that the tourists have time to return
to the port before departure.

5. Methods and Methodology
The Intelligent Planner

The planner was implemented as a self-learning agent utilizing the deep Q-network
(DQN) algorithm. To train this agent, an environment was created that simulates the
dynamics of the city. This environment considers essential parameters for evaluating the
reward and planning touristic itineraries.

1. Stay time (T) represents the time passing from the disembarkation of the tourists from
the ship up to the boarding after the tour. In our scenario, it was assumed that the
tourists have up to 480 min (8 h) for their city tour;

2. Current residual capacity—CRCi, i ∈ (0, N)—is the residual reception capacity of the
ith touristic attraction is determined by subtracting the current occupancy from the
maximum nominal capacity. In our case, Naples has 14 suggested tourist attraction
locations, denoted as N. We collected data on the average occupancy of each location,
representing the mean number of museum visitors at each hour. These mean values
are varied on an episode-by-episode basis using a uniform distribution with a variance
of σ2 = 0.1.

3. Traveling time—D(i, j), i, j ∈ (0, N)—is the time needed by a bus to move from
the ith to the jth location. Starting from a fixed baseline, for modeling the distances
between each PoI, these values are varied according to a casual distribution with
scale = 2 to emulate different traffic conditions (Figure 2);

4. Visiting time—TVi, i ∈ (0, N)—is the mean time required for a tourist to visit the
ith touristic attraction. In our case, these values are kept constant during the agent’s
training.

5. Current position (Bpos) is the current position of the bus;
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6. Cruise status (Cstatus) is the cruise ship status that may be on time or delayed if tourists
are brought back to the port on time for boarding or not;

7. Bus tourists (NTourists) are tourists that will take the cruise bus for the city tour.
8. Time to visit (Time) is the available time after a PoI is chosen.
9. City PoIs (C_PoIs) is a list of relevant points of interest of the city to be visited.
10. PoIs visited (PoI_Visited) is a list that takes into account the current visited PoIs.

Figure 2. Overview of distance modeling between two PoIs.

The main characteristics underlying the behavior of the proposed adaptive planner
are founded on the pseudo-code shown in Algorithm 1 and encompass the following ones:

- A set of states s ∈ S where s is a vector containing the following information:

s = [Time, NTourists, Bpos, PoI_Visited, Cstatus] (5)

- A set of actions a ∈ A consisting of selecting a PoI from a list of PoIs:

a = pick a PoI from C_PoIs

- A reward r the agent receives for its choice evaluated according to the following rule:

rt =


w ∈ R+ if a new PoI is chosen
−10 if an overcrowded PoI is chosen
−100 if the itinerary chosen causes a boarding delay

(6)

where w ∈ R+ represents the importance of a given city’s tourist attraction. This
reward function allows the agent to obtain a positive cumulative reward if and only if
it avoids overcrowded places and composes an itinerary that brings the tourists back
to the port before the ship’s departure. Conversely, the agent is subjected to a penalty
commensurate with the adverse effects generated by its decision.

As the penalty’s severity increases, the agent’s motivation to engage in specific actions
is diminished.

- Experience replay memory (RM) allows the agent to store its experiences, for performing
Q-learning and updating its neural network.

- Target Network Q∗: As is common in the DQN algorithm, the agent uses two DNNs to
stabilize its learning process. The first one is the main neural network, represented by
the weight vector θ, and it is used to estimate the Q-values for the current state s and
action a: Q(st, a; θ). The second one is the target neural network, parameterized by
the weight vector θ′, and it will have the exact same architecture as the main network
but will be used to estimate the Q-values of the next state st+1 and action at+1.

Hence, the agent chooses an appropriate itinerary according to Algorithm 1. After the
first initialization phase for the replay buffer RM, Q-network, and target Q-network, the
algorithm works in accordance with the following steps:

- For each learning process step, the agent collects dynamic information from the
environment, then the agent selects an action according to an ε-greedy policy. Namely,
it chooses a random PoI with probability ε; otherwise, it picks the PoI with the highest
expected future reward according to Q(s, a, θ).

- According to this choice, episode-by-episode, the agent collects rewards rt+1 and
observations φt+1 from the environment. Then, it stores the transition φt, at, rt+1, φt+1
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in its experience replay memory (RM) and collects a random batch of transitions from
the RM.

- For each transition k, the agent sets the future rewards and performs gradient descent
concerning the loss function to update Q. The loss function is defined as the squared
error between the Q-value and the target Q-value.

- Every C step, the weights of the main network are copied into the target network,
thus transferring the learned knowledge from one to the other.

To introduce a variability factor in the training of the planner, a few of the variables
states are randomly initiated each round.

Algorithm 1: Deep Q-network algorithm

Initialize experience replay memory (RM);
Initialize Q(s,a) with random weights θ;
Initialize target Q∗ with Q− = Q;
repeat

Initialize sequence s1 = x1 and pre-processed sequence θ1 = θ(s1)
repeat

Collect environment information;
Either choose randomly ai with probability ε or choose

ai = argmaxa(Q(φ(st), a; θ))
Get rt+1 and xt+1
st+1 = (st, at, xt+1)
φt+1 = φ(st+1)
Store transition (φt, at, rt+1, φt+1) in the RM
Sample random mini-batch of transitions (φt, at, rt+1, φt+1) from the RM
if episode ends at step k+1 then

yk = rk
else

yk = rk + γ maxa′ Q(φk+1, a
′
, θ−)

end
Have a gradient descent step on ( yk - Q(φk, ak, θ ))
Every C steps set Q∗ = Q

until t = 1, T;
until Episode = 1, M;

6. Experimental Results and Discussions

The DQN agent for the experimentation is based on a multi-layer perception composed
of an input layer (512 neurons), four hidden layers (256, 128, 64, and 32 neurons), and an
output layer that allows the agent to select the following location to visit among fifteen
possible destinations (1 to 14 for an attraction location, 0 for the port). As stated before,
this paper refers to the city of Naples as a use-case scenario. The itineraries were built
considering a set of fourteen points of interest.

Figure 3 shows an example of the planning process. Initially, the agent starts from
the initial state providing the first PoI. Next, the state, and all the parameters (e.g., time to
visit, current position of the bus, the current status of the cruise) are updated following the
selected PoI. The process continues until the agent completes the recent trials, which means
that the agent finds a correct itinerary or fails due to exceeding the temporal constraints (i.e.,
stay time). When the trial ends, the agent restarts the process starting from the initial state to
find other news itineraries. In each trial, the trade-off between exploration and exploitation
changes according to the treading of the values of the epsilon decay, and, consequently, the
agents look for novel itineraries.
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Figure 3. Learning the best route.

It is worth recalling that since the aim of the agent is to maximize the total reward, it
is important to find an itinerary that maximizes the number of the PoIs and, at the same
time, minimizes the value of time-to-visit. Figure 4 shows a trial that produces a good
itinerary, counting six PoIs by providing a view of the values of the parameters during the
several planning steps and the resulting output plan. It is worth noting that the parameter
time takes into account the total time currently spent, and the parameter visit is a list that
considers the current visited PoIs. At the end of the learning process, the agent aims to
define the most extended sequence of PoIs, minimizing the value of time-to-visit.

Figure 4. Step-by-step planning definition process.
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To evaluate the proposed approach, several experiments were conducted. Table 1
reports an overview of reward performance in different experiments in which the number of
training episodes was changed. The results demonstrate how the agent planned itineraries
in several tests. The first and second column of Table 1 report the maximum reward values
achieved during the training and testing. The two values are comparable, demonstrating
the effectiveness of training. The last column reports the residual time of a planned itinerary
resulting in the testing step. It is possible to reduce this value as the number of training
episodes increases. Since the planner’s objective is to provide the longest path saving as
much time as possible, these results confirm the quality of the training.

Table 1. Overview of planner performance with testing data.

#Episode Training Max Reward Testing Max Reward Mean Residual Time
(Min)

5000 1.0 0.9 131.78
10,000 1.1 0.8 99.87
20,000 1.3 1.0 70
30,000 1.1 1.0 70

To provide a deeper analysis of this point, Figure 5 shows an example of the reward-
epsilon trend during training. As proof of the effectiveness of the learning process, at the
top of Figure 5, it can be seen that the reward’s mean values increase as the number of
episodes increases.

The orange line represents the values of the epsilon decay which estimates the trade-off
between exploration and exploitation. At the beginning of the training process, the value
of the epsilon is 1, meaning that the agent learns to maximize the exploration. In this stage,
the agents choose the PoIs to include in the itinerary with greedy behavior to produce the
most extended itineraries. As the number of epochs increases, the epsilon value decreases,
and consequently, the agent emphasizes exploitation. Since the mean values of the reward
increase, it proves that the agent is learning to achieve a complete itinerary without making
errors. At the end of the training process, the epsilon value is close to zero.

Figure 5. Trend of reward during training.

Table 2 and Figure 6 provide a view of the achieved result, focusing on the plan’s
length. At the end of the training, results show that the planner could provide a path
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ranging from two PoIs to four PoIs because of the setting provided to model both the
environments and the agent.

Table 2. Overview of reward performance by number of PoIs.

5000
Episodes

10,000
Episodes

PoI #2 #3 #4 #2 #3 #4
Mean 0.4 0.63 0.75 0.48 0.63 0.81

Variance 0.03 0.034 0.08 0.03 0.0.34 0.0097
Max 1 1 1 1 1.1 1

20,000
Episodes

30,000
Episodes

PoI #2 #3 #4 #2 #3 #4
Mean 0.21 0.71 0.77 0.51 0.66 0.79

Variance 0.017 0.029 0.008 0.01 0.02 0.02
Max 0.99 1.3 0.8 1 1.3 1.1

Table 2 reports the mean, variance, and maximum reward value for each setting.
Notably, that these values increase as long as the number of episodes increases. Figure 6
reports a box chart graphically demonstrating the different settings in terms of minimum
reward value, first (lower) quartile, median, third (upper) quartile, and maximum reward
value. The most uniform distribution appears to be achieved by the 20,000-episode setting,
and the reward distribution with a path length of 3 PoIs appears to expose the fairness
rewards distribution.

Figure 6. Overview of reward performance with reference to the number of PoIs in the itinerary.

Finally, Figure 7 reports one example of applying the dynamic re-planning of the
agent’s output when an unexpected event happens. We simulated the occurrence of a
public transportation strike as a uniform probability distribution. When the probability
overcomes a fixed threshold in this study, set to 0.3, the events are triggered. The first PoI
is the National Museum of Naples, and the next PoI is the Riviera di Chiaia, but a strike
is taking place, so the agents have to re-plan a new itinerary and forward the tourist to
Posilipo and then to the port.
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In the simulation, each PoI is scheduled individually, and each time the agent pro-
vides the best PoIs to maximize the time to visit. However, a strike is taking place, and
consequently, the agent has to provide a novel PoI that produces a sub-optional itinerary.

With the aim of providing an honest discussion, the following reports a few limitations
of the achieved results: The main issue concerns the fixed number of PoIs adopted for the
planner’s training. We designed only fourteen PoIs for experimental reasons, a number
which could be higher in a real use-case scenario.

Another issue is training the agent with a high number of episodes; Table 1 reports
that the performance does not increase with the number of episodes. Indeed, moving from
20,000 episodes to 30,000 means an increased rate equal to 33%; the testing reward does
not improve.

This aspect suggests that the training process should be optimized to improve perfor-
mance as the number of episodes increases, or the learning process should be stopped early
to save time.

Figure 7. Planning an itinerary with unexpected events.

7. Conclusions

This paper addresses the problem of planning onshore touristic itineraries for cruise
passengers in the context of a smart city. Planning touristic itineraries for cruise passengers
presents specific challenges due to the arrival of a high number of people visiting a city for
a limited time that may cause overcrowding of tourist attractions and, at the same time, the
necessity to consider unforeseen events occurring in the city that may prevent a planned
tour from taking place. This is a complex problem considering the high number of variables
to be taken into account. This paper proposes a planner of onshore touristic itineraries
for cruise passengers. The planner is based on a deep reinforcement learning approach,
allowing one to compute a city tour composed of PoIs spread in the destination city by
considering more than 230 state variables and more than 19 ∗ 1012 possible states with
14 PoIs. The proposed approach provides encouraging results since it computes tours by
maximizing the number of PoIs to be visited in the available time window and at the same
time by avoiding regrettable situations for cruise passengers, such as visiting overcrowded
locations or not returning to the port in time for cruise departure. Results show that after
around 20,000 episodes, the average number of visited PoIs stabilizes.

In addition, the adoption of deep reinforcement learning allows our solution to learn
to dynamically define alternative itineraries in case events happen in the city that interfere
with the original plan. This point is another contribution brought by our solution with
respect to state-of-the-art methods. Most works for itinerary planning provide a solution
to statically plan the optimal route/itinerary at the designated time. Therefore, in case of
unexpected events, the planning must be repeated. However, our solution can adapt to
unexpected events and provide a novel itinerary without repeating the training process.

Future works will extend the proposed approach to plan itineraries for multiple cruises
arriving at the same time in a destination city so as to distribute passengers in different
locations to further limit overcrowding conditions.
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