
Citation: Ho, K.J.; Özcan, E.; Siebers,

P.-O. Efficient Multi-Objective

Simulation Metamodeling for

Researchers. Algorithms 2024, 17, 41.

https://doi.org/10.3390/a17010041

Academic Editors: Nuno Fachada

and Nuno David

Received: 31 December 2023

Revised: 14 January 2024

Accepted: 15 January 2024

Published: 18 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Efficient Multi-Objective Simulation Metamodeling
for Researchers
Ken Jom Ho * , Ender Özcan and Peer-Olaf Siebers *

School of Computer Science, University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK;
ender.ozcan@nottingham.ac.uk
* Correspondence: psxkh1@nottingham.ac.uk (K.J.H.); peer-olaf.siebers@nottingham.ac.uk (P.-O.S.)

Abstract: Solving multiple objective optimization problems can be computationally intensive even
when experiments can be performed with the help of a simulation model. There are many method-
ologies that can achieve good tradeoffs between solution quality and resource use. One possibility is
using an intermediate “model of a model” (metamodel) built on experimental responses from the
underlying simulation model and an optimization heuristic that leverages the metamodel to explore
the input space more efficiently. However, determining the best metamodel and optimizer pairing for
a specific problem is not directly obvious from the problem itself, and not all domains have experi-
mental answers to this conundrum. This paper introduces a discrete multiple objective simulation
metamodeling and optimization methodology that allows algorithmic testing and evaluation of four
Metamodel-Optimizer (MO) pairs for different problems. For running our experiments, we have
implemented a test environment in R and tested four different MO pairs on four different problem
scenarios in the Operations Research domain. The results of our experiments suggest that patterns of
relative performance between the four MO pairs tested differ in terms of computational time costs
for the four problems studied. With additional integration of problems, metamodels and optimizers,
the opportunity to identify ex ante the best MO pair to employ for a general problem can lead to a
more profitable use of metamodel optimization.

Keywords: discrete multiple objective; simulation; metamodel; optimization; test environment

1. Introduction

A simulation model of a physical and/or social system of interest can unlock useful
experimental capabilities [1]. Not only are the costs of simulation experimentation in
general much lower than an equivalent series of real-world experiments, but there are also
scenarios where the latter are simply unfeasible—for example, if the system does not yet
exist. However, there always exists a frontier where computational costs limit viable use
cases [2].

An Agent-Based Simulation (ABS) usually features decision-making entities who
interact with their environment and, directly or indirectly, with one another. When the
decisions of many so-called “agents” are critical to system dynamics, utilizing an ABS ap-
proach for extending standard models would be a good option, but also a computationally
expensive one.

Complicating problem-solving further, many real-world problems, from designing
ships to chemical engineering or saving energy, cannot be neatly simplified into a single
objective to be maximized or minimized [3]. If one option performs worse in all objectives
compared to another option, the first one is “dominated” and would never be worth picking
even when both are feasible. At the same time, it is possible to have two options such that
neither dominates the other; in this scenario, the decision between them is external to the
optimization that produced the options. A collection of all the non-dominated options is
most commonly known as a Pareto front but also as Pareto frontier, and Pareto set [4], and as

Algorithms 2024, 17, 41. https://doi.org/10.3390/a17010041 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17010041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0002-6000-7653
https://orcid.org/0000-0003-0276-1391
https://orcid.org/0000-0002-0603-5904
https://doi.org/10.3390/a17010041
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17010041?type=check_update&version=2

Algorithms 2024, 17, 41 2 of 27

in the two-option case above, does not allow improvements in any objective(s) without
having to suffer a worsening of other objective(s). This presents distinctive challenges [5],
in particular, the need to thoroughly explore a greater proportion of the input space to
generate a Pareto front [6] compared to the single objective problem.

Fortunately, for many optimization problems, a “model of a model”, commonly
referred to as a metamodel, can enable experimentation and thus optimization that is
less costly than directly using a simulation model. Metamodels are “a mathematical
approximation to the implicit input-output function of a simulation model” [7]. They
have been adopted in various domains, and depending on the context are referred to
as surrogate models, response surface models, or proxy models. Some domains have a
rich literature on the use of metamodels within their context [8], but such findings do not
necessarily apply to other domains in terms of the most effective use of a metamodel and
optimizer. A more general way to make comparisons is by using benchmark problems [9]
which may involve a mathematical function [10], domain-specific models [11] or data
sets [12]. However, the issue still remains when moving outside domains or problems
that are “similar” to these, which led to some siloing and duplication of effort in terms of
optimization research in general [13], although there have been efforts to compile this work
in a more practitioner-salient form [14].

1.1. Simulation Optimization

The use of simulation in optimization has a long history of development and deploy-
ment, and there are a variety of simulation-capable or focused platforms. AnyLogic [15,16]
is a popular choice in Operations Research (OR), and options are available for ABS-focused
applications [17]. Platforms with more general capabilities like R [18] can also be employed
in this role.

Simulation-optimizer methodologies (also known as simheuristics or metaheuris-
tics [19]) are the most direct way to employ a simulation model and optimizer to solve
problems, with packages integrating these components like OptQuest and Witness Op-
timizer being commercially available [20] and open-source options such as SimOpt [21]
enabling more user-driven development.

1.2. Metamodeling

When a good balance is struck between efficient exploration of the input space (“learn-
ing” the behavior of the system) and focusing on potential areas of optimization interest,
a metamodel allows to minimize the use of any costly simulation model evaluations,
as described in the work of [22]. Additionally, techniques reviewed by [23] such as vari-
able screening, dimensionality reduction, and use of multiple metamodels can further
extend the legs of metamodels, increasing the number of scenarios where they can be
profitably employed.

Similar to simulation optimization, methodologies employing metamodels and com-
parisons between them exist [24]. However, the points of comparison such as between
setups, problem types and domains, or specifics of the simulation models used differ
between the observed case studies, making it hard to draw fully generalizable conclusions
regarding performance or cost characteristics.

Of course, some domains have long-established and well-explored metamodels. For ex-
ample, the domain of energy prediction models [25] extends standard surrogate energy
prediction models by incorporating household preferences into the underlying simulation
model and using an artificial neural network metamodel. In engineering designs, kringing
regression is popular, as demonstrated in applications such as vacuum/pressure swing
adsorption systems [26]. Polynomial-based surrogates are also seeing advancements in
engineering applications [27]. These are not the only options, as metamodeling does not
have a “one size fits all” methodology. Technique selection comes with various trade-
offs. Ref. [28] compares a number of these trade-offs for the scenario of building design
optimization while [29,30] do the same for the water resources modeling case.

Algorithms 2024, 17, 41 3 of 27

There is a growing number of studies on deep learning to fully exploit the power of
neural networks. Deep learning has been applied to many real-world problems successfully,
however, two main issues, among others, raised by [31] are relevant to consider. First of
all, deep learning techniques require a large amount of data. As one of the goals of this
work is a methodology that minimizes the use of expensive simulation model evaluation,
gathering this data to train a deep learning system would not be ideal. Secondly, deep
learning models can have high memory and computational requirements. As a result,
while deep learning can provide a high level of flexibility, when simpler metamodels,
where the best is selected from a variety of options, can achieve good final Pareto front
performance, the approach that requires less data and incurs lower computational costs
might be more appropriate.

1.3. Optimizers

Implicit in the above discussion is the need for an optimizer heuristic to decide which
experiments to run and at which level of model; evolutionary methodologies [32] like
genetic algorithms are a popular choice. The ability to algorithmically test and evaluate
various Metamodel Optimizer (MO) pairs would also bring benefits for researchers and
practitioners in terms of reproducibility and avoiding reliance on excessive problem- or
domain-specific tuning; finely tailored heuristics can exhibit improved performance but
with less visible costs of requiring specific knowledge or reducing the generalizability of
the solution method, something pointed out by the review of [13].

1.4. Aim

The aim of this paper is to introduce a comprehensive methodology designed to
facilitate the systematic application and evaluation of metamodeling and optimization
heuristics. While platforms exist to handle setups utilizing metamodels, such as OPTI-
MIZE [33], these focus more on enabling users without specialist optimization knowledge
to employ metamodeling to solve optimization problems. In contrast, our methodology
enables researchers to compare setups experimentally, determining which MO pair is the
best performer at each tested time limit for a given problem, in a way that allows drawing
specific and in some cases general conclusions about the optimal MO pairs.

2. Test Environment and Methods

The primary feature of the test environment is to enable researchers to run exper-
iments on discrete multiple objective optimization problems using a simulation model
and metamodel. These experiments evaluate the relative performance of MO pairs on a
time and solution quality basis. As many such experiments may need to be conducted
and the main goal of employing a metamodel is to economize on simulation model costs,
the test environment utilizes a specific method for generating and storing simulation model
Full Evaluations (FEs), or FE, for all future users. For each problem, corresponding to a
simulation model, an exhaustive list of input–output data (including evaluation times)
allows for faster-than-FE lookup, and reproducible FEs. In addition, this mechanism takes
a stochastic simulation model and provides all future users with a deterministic response
to any set of inputs, namely the mean of the simulation repetitions for that specific set
of inputs.

The components of the test environment interact as illustrated in Figure 1. Notably,
while the external simulation models are evaluated on another platform (AnyLogic or
SimOpt), users will use the FE record, meaning that only R needs to be actively executed for
experiments. This record is separate from what the optimizer has in “memory” for each ex-
periment run, which only consists of FEs it has already requested and “paid for” in terms of
time costs and any Quick Evaluations (QEs) it has made via the latest updated metamodel.

Algorithms 2024, 17, 41 4 of 27

Figure 1. MO test environment components.

The overall sequence followed to complete an experiment run is as follows:

1. Optimizer requests FEs;
2. Requested FEs are delivered to memory;
3. All FEs in memory are used to update the metamodel;
4. Optimizer updates its current Pareto front, using all FEs in memory;
5. Optimizer requests QEs from metamodel (this is an exploration step);
6. Metamodel delivers QEs to the optimizer;
7. If any of the QEs would be part of the Pareto front, they will be listed and requested

by returning to step 1.

For each experiment run, the first time step 1 occurs, the FEs requested correspond to
the initial sample. Step 4 can be considered the exploitation step each time it occurs except
the first time, as this is when the Pareto front actually improves. Although QEs are used
to identify potential additions to the Pareto front, the objective values from a QE must be
“confirmed” with FEs for those inputs.

If an experiment run reaches the time limit while going through a list of requested FEs,
only the FEs that would have been done before the time limit can be part of the final Pareto
front. Otherwise, reaching the time limit means that the most recent Pareto front is the one
that is stored and evaluated.

For each problem investigated, a set of experiments is run on the simulation model,
using different combinations of metamodel, optimizer and time limits. Each experiment run
produces a Pareto front as output, which will be stored for later use. Once the experiment
is completed, all Pareto fronts can be evaluated using the metrics detailed below. This
allows the user to compare the evolution of solution quality against the time limit for each
MO pair.

2.1. Metamodels

Two different popular metamodeling methodologies are integrated into the test en-
vironment. The first is based on Gaussian regressions, and the second is using a neural

Algorithms 2024, 17, 41 5 of 27

network approach. It should be noted that the solution Pareto fronts will only contain
points that have been obtained through FE.

2.1.1. Gaussian Regression (GR) Metamodel

This metamodel employs the “GPFDA” package (https://github.com/gpfda/GPFDA-
dev, accessed on 23 May 2023) for R [34] and treats outputs as independent, though this is
not a restriction on all Gaussian regressions.

For an objective x, the FEs in memory relate values of the objective to values of the in-
puts, so if there are n FEs in memory, we can express Memory = {(x1, t1), (x2, t2), . . . (xn, tn)}
where tj is a vector of input values corresponding to xj.

The Gaussian regression model for x is then:

xi = f (ti) + ϵi, i = 1, . . . , n

ei ∼ i.i.d.N(0, σ2
ϵ)

f (.) ∼ GP(µ(.), k(., .)) where k(ti, tj) = COV(f (ti), f (tj))

(1)

The mean function used is µ(.) = 0, which means the covariance function of a
Gaussian process is the only item that has to be estimated in order to characterize that
Gaussian process.

The Matern covariance function is used here, so:

k(ti, tj) = v0
(d
√

2ν)ν

Γ(ν)2ν−1 Kν(d
√

2ν)

d = |ti − tj|2
(2)

where Kν is the modified Bessel function of order ν, and ν = 1.5 is used.

2.1.2. Neural Network (NN) Metamodel

This metamodel employs the “neuralnet” package (https://github.com/bips-hb/neuralnet,
accessed on 23 May 2023) for R [35] and uses a back propagation algorithm. Specifically, the neu-
ral network used here consists of input neurons xIN,1, xIN,2, . . . , xIN,nIN corresponding to the
inputs, output neurons xOUT,1, xOUT,2, . . . , xOUT,nOUT corresponding to the number of ob-
jectives, and nH layers of hidden neurons, where xi,j correspond to the jth neuron on
the ith hidden layer. Input neurons interact only with neurons on the first hidden layer,
and neurons on each hidden layer interact only with neurons on the following hidden layer,
with neurons on the final hidden layer interacting with the output neurons.

As a result, in a system with NH hidden layers, where the ith hidden layer has ni
neurons, the value of the first output neuron (dropping the OUT, 1 notation for clarity)
might be expressed as:

x = f (w0 +

nNH

∑
j=1

wj ∗ xNH). (3)

Every neuron has a weight for each neuron on the previous layer, and a constant
neuron. The weighted sum of neuron values on the previous layer (for output neurons,
the previous layer is the NHth hidden layer) is the input to f (), the activation function.
In this case, the activation function is the logistic function: f (u) = 1

1+e−u as it gives final
outputs in the interval [0, 1] and the metamodel works on inputs and objectives scaled to
this interval.

In keeping with the design intent to minimally adjust component settings, the main
default options are used for training the model. In particular, the algorithm used is the
resilient backpropagation with weight backtracking by [36] on two layers of hidden neurons
(five in the first layer and three in the second).

https://github.com/gpfda/GPFDA-dev
https://github.com/gpfda/GPFDA-dev
https://github.com/bips-hb/neuralnet

Algorithms 2024, 17, 41 6 of 27

2.2. Optimizers

The two implemented optimizers make use of a metamodel to explore potential solu-
tions before deciding which ones to request FEs for. At the start of each run, the optimizer
starts off with no FEs and thus cannot train a metamodel. This is why the first step for
all optimizers is to draw an initial sample of FEs from the input space in proportion to its
size. For our experiments, the initial sample size is always fixed at 5% of the input space.
Other than this initial sample, optimizers only request FEs for solutions that are expected
to improve their Pareto front. When the time limit is reached, optimizers will stop and
record the Pareto front from all the obtained FEs.

2.2.1. Basic (B) Optimizer

The algorithm is as follows:

1. Perform initial sampling;
2. Using the list of all prior FEs, train metamodel;
3. Populate the full list of candidate solutions by requesting QEs;
4. Remove all Pareto-dominated solutions to generate a potential Pareto front;
5. If any solutions of the Pareto front are from a QE, request FEs, store the results and

return to step 2, else;
6. If all solutions on the Pareto front are from FEs, the optimizer terminates successfully.

If step 6 is reached, the optimizer has no FEs to request. This means there is no new
data to update the metamodel, and as it already in step 3 used the metamodel exhaustively
for QEs, the input space is fully explored. As a result, it will terminate even if the time limit
has not yet been reached.

2.2.2. Genetic Algorithm (GA) Optimizer

The algorithm is as follows:

1. Perform initial sampling;
2. Using the list of all prior FEs, train metamodel;
3. Remove all Pareto-dominated solutions to generate a Pareto front—this is the “parent

population”;
4. Generate new “children” solutions;
5. Request QEs for all children solutions;
6. Generate a new Pareto front from the combined parents and children population;
7. If any solutions of the Pareto front are from a QE, request FEs, store the results and

return to step 2, else;
8. If all solutions on the Pareto front are from FEs, return to step 4.

The population for the genetic algorithm consists of all solutions on the Pareto front.
These always consist of FEs. Children are generated by randomly selecting two parent
individuals at random. Each time step 4 occurs, up to twice the number of the parent
population or the number of the initial sample size (whichever is greater) of children will
be generated.

There is a 10% chance for each input to undergo crossover, and a 10% chance for each
input to mutate by 1, subject to input constraints. In step 8, all “children” from the previous
step 4 become part of the next “parent” generation. This optimizer always utilizes the
full allowed time limit, even if it constantly generates new “children” that do not meet
expected improvements.

2.2.3. Normalized Hypervolume

The hypervolume measure is calculated by defining a section of the problem’s output
space bounded by each objective’s minimum and maximum as observed from the optimal
Pareto front, the set A ⊂ Rd (d is the number of objectives). Any Pareto front is a set

Algorithms 2024, 17, 41 7 of 27

of points, B, with each point b ∈ B dominating a portion of A, the set D(b, A) ⊂ A.
The hypervolume of the Pareto front B is thus:

HVB = Λ(∪b∈B D(b, A)) (4)

where Λ is the Lebesgue measure.
The hypervolume measure is normalized by dividing the hypervolume of a Pareto

front by the hypervolume of the optimal Pareto front. The maximum is 1. Thus, a higher
normalized hypervolume indicates a better-quality solution.

2.2.4. Normalized Hausdorff Distance

The Hausdorff distance [37] measures how close two sets are to each other. For finite
sets (which the Pareto fronts here all are due to the discrete problem construction) the
Hausdorff distance between sets X and Y can be expressed as:

distH = max[max
x∈X

d(x, Y), max
y∈Y

d(y, X)] (5)

where d(a, B) is the minimum Euclidean distance between a point a and any member of set
B. The Hausdorff distance is normalized by dividing the Hausdorff distance between a
Pareto front and the optimal Pareto front by the maximum Hausdorff distance between
any Pareto front from the experiment set and the optimal Pareto front. The minimum
(between a set and itself) is 0. Thus a lower normalized Hausdorff distance indicates a
better-quality solution.

2.2.5. Normalized Crowding Distance

The crowding distance [38] measures how close points on a Pareto front are to each
other. In the case where there are No objectives and Np Points on the Pareto front, every
point on the Pareto front will have a series of rankings (x1, x2, . . . xj, . . . xNo) where each xj
is its ranking in objective j (xj ∈ [1, 2 . . . Np]). Let I[a].b, b ∈ [1, 2 . . . No] denote the objective
value of element a in the ranking corresponding to objective b.

For every non-boundary point (not at the maximum or minimum for any one objective
as observed on the Pareto front) with the per-objective rankings as above, we can define its
crowding distance as:

CDpoint =
No

∑
j=1

I[xj + 1]· j − I[xj − 1]· j
maxj − minj

(6)

where maxj and minj are the maximum and minimum values for objective j.
The crowding distance for the whole Pareto front is then calculated as the average

of the crowding distances across all non-boundary points. The crowding distance is
normalized by dividing the crowding distance of a Pareto front by the crowding distance
of the optimal Pareto front. A lower normalized crowding distance implies points on the
Pareto front are closer to one another, which indicates a better-quality solution.

3. Experimentation
3.1. Simulation Models

For our experimentation, we have chosen four OR simulation models as part of the
test environment, which are deployed together with the FE records in the Supplementary
Material: A student services model and a telecom model [39] models—which were run in
AnyLogic as well as a Continuous News Vendor model and a dual sourcing model [21],
which run in the Python-based SimOpt package (https://pypi.org/project/simoptlib/,
accessed on 23 May 2023).

https://pypi.org/project/simoptlib/

Algorithms 2024, 17, 41 8 of 27

3.1.1. Student Services Simulation

This model represents a trio of student service centers that face a stochastic distribution
of incoming students in each location. These students require different types of service:
one general service and two specific services. The two objectives being examined are the
total labor costs of hiring three different classes of employees corresponding to service
types (specialists can handle their specific specialist enquiries as well as general enquiries,
while non-specialists can only handle general enquiries) and the total time cost , faced by
students on average.

The student traveling, queuing and service processes correspond to a classic discrete
event simulation with stochastic elements, while the simulation model’s main agent-based
features are the students, using a “smart app” that gives students information about queue
length and average waiting times, allowing them the decision to select between different
centers. A student using the smart app will select the service center with the lowest
expected time cost to them, considering not only the expected queuing times but also travel
time, which depends on the distance of the student from a service center as well as the
student’s travel speed.

Students start in one of three locations, with each location being close to one service
center (5 distance units away) and far from the other two service centers (15 distance units
away). The distribution of student starting locations is not uniform each day, but instead
one service center will see half of the students starting near it, and the other two service
centers will see one quarter of the students starting near each of them. Students have
stochastic travel speeds, with a mean of one distance unit per minute. Even with the smart
app, students do not know the exact time they will be queuing at the time they start, but this
is estimated by multiplying a moving average of waiting times for their enquiry type by
the queue length for their enquiry type at the time they make their decision. The expected
service time after traveling and queuing is the same across all centers for any given student
enquiry type (which they are aware of).

3.1.2. Telecom Simulation

This model is a publicly available AnyLogic example model [39] of a telecom company
operating in a market with competitors. The inputs of interest are call price per minute
and aggressiveness (referring to marketing effectiveness). The objectives of interest are as
follows: voice revenue (which is specific to people paying to make calls), “value added”
service revenue (which covers other items besides calls), as well as aggressiveness itself,
as the cost of the required marketing strategy to reach a certain level of effectiveness is
not represented within the model. In this model, aggressiveness affects the addressable
market share, but users decide which company to support based on the prices they observe.
This behavior is implemented in the model by referencing tables that presumably represent
statistical market research on the probabilities involved.

The Telecom simulation allows for dynamic adjustment of the inputs, which will result
in a transition to a new market equilibrium. For the case study, selected inputs were applied
at the start of the simulation. The experimental inputs do not correspond to the initial
market state. This requires the simulation to be run until it reaches the new equilibrium,
at which time the objectives can be measured.

3.1.3. Continuous News Vendor Simulation

This model is included in the SimOpt distribution and represents a newsvendor who
orders a quantity of stock, and decides on a price to sell it to customers. However, the day’s
demand is randomly drawn from a Burr Type XII distribution, where the cumulative
distribution is given by:

F(x) = 1 − (1 + xα)−β (7)

with α = 2 and β = 20.

Algorithms 2024, 17, 41 9 of 27

The two inputs of interest relate to stock quantity and selling price decisions, while
the two objectives of interest are the news vendor’s profits and the quantity of stock
actually sold.

3.1.4. Dual Sourcing Simulation

This model is included in the SimOpt distribution and represents a manufacturing
location purchasing its input via regular or expedited suppliers with different ordering
costs and delays while facing stochastic demand. Regular deliveries cost 100 per unit and
take 2 days to arrive, while expedited deliveries cost 110 per unit but take 0 days to arrive.
One simulation run will simulate 1000 days of operation.

There are storage costs when the location carries stock from one day to the next day,
and a penalty “cost” per unit of shortage whenever there is a lack of stock to meet demand.
Satisfied demand has no benefit other than zero penalty, which implies that location is a
substitute for a cost center that aims to minimize costs and penalties.

The strategy followed by the location can be summarized as follows: It consists of
having two inventory target levels, one for the regular supplier and one for the expedited
supplier. The location will place an order with a specific supplier whenever the stock
level falls below its associated threshold value. Although the goods being ordered are
homogeneous when in stock, goods that are yet to arrive are not considered against the
target level for the expedited supplier as they will only arrive after the expedited delivery.

The two inputs of interest are these two threshold levels. The three objectives of
interest are the three main types of costs to be considered: ordering costs, holding costs
and penalties for running out of stock.

3.2. Procedural Steps

We compare the performance of MO pairs on each simulation model separately,
as each such case study corresponds to a different scenario. There are four scenarios in
total. Each case study used four time limits, so from an optimization standpoint, there
are four problem instances per case study, for sixteen total across all case studies. Each
individual experiment specification is run fifty times with the same setup, as is required for
stochastic experimentation.

More specifically, each case study covers all possible combinations of the following:

• Two metamodel options (Gaussian regression, Neural network);
• Two optimizer options (Basic, Genetic algorithm);
• Four time limits (as determined for each simulation problem).

The selection of time limits is different for each simulation model. The lowest time
limit corresponds to the time required to carry out the FEs corresponding to the initial
sample. For all experiments, initial sample sizes are 5% of the simulation model’s input
space, although this can be user-defined. The initial sample is uniformly and randomly
distributed via Latin hypercube sampling.

The experiments are run sequentially, from the initial sampling until the time limit is
reached or, for the Basic optimizer only, if the stopping condition is reached before the time
limit. As the test environment uses FE records instead of obtaining objective values from
running the simulation model directly for each required set of inputs, the real-world time
taken for an experiment will be shorter than the time limit, as the time limit accounts for
the full FE time costs. For each completed experiment, the final Pareto front is stored. All
Pareto fronts for a given case study are evaluated as a set, as the metrics used to evaluate
MO pair performance are all normalized.

Three metrics, normalized hypervolume, normalized Hausdorff distance and normal-
ized crowding distance, are used to evaluate the obtained Pareto fronts, which, for consis-
tency, use as a reference the Pareto front generated from the exhaustive FE record. This
optimal Pareto front, corresponding to the specific simulation model problem, remains
the same whenever the simulation model is referenced, ensuring that all metrics have a
common benchmark across different sets of experiments.

Algorithms 2024, 17, 41 10 of 27

3.3. System Configuration and General Experimental Setup

All experiments were run on a laptop with a dual-core 11th Gen Intel(R) Core(TM)
i5-1135G7 (2.40 GHz, 2.42 GHz) CPU and 20 GB of RAM (Intel, Santa Clara, CA, USA). This
same system was used to generate the FE records.

4. Results

When identifying specific MO pairs, the acronyms for metamodels (Gaussian Regres-
sion: GR, Neural Network: NN) and optimizers (Basic: B, Genetic Algorithm: GA) are used
to identify MO pairs in that order (metamodel optimizer). For example, GR-B corresponds
to experiments using the Gaussian regression metamodel and Basic optimizer.

For each of the four time limits, we identified the best-performing MO pair with
respect to the mean normalized hypervolume, denoted as µnorm, considering each case
study. We applied a paired Wilcoxon signed-rank test to determine if the best-performing
and each of the other MO pairs have a statistically significant performance difference within
a confidence interval of 95%. Tables 1–4 summarize the results obtained by repeating each
experiment for fifty trials, providing µnorm associated with the standard deviation, indicated
as σ- and p-values for each pair-wise statistical performance comparison of the best and
associated MO pairs.

Before we come to presenting the individual results, there is one more point to clarify.
While one would expect the mean quality of Pareto fronts for a given MO pair to always
stagnate or increase with higher time limits, we found that the mean quality in this case
sometimes decreases. The explanation for this behavior is that experiments with different
specified time limits are not direct “progressions” from one another and there is variance
of results, even when individual time limits are higher.

4.1. Student Services Simulation Case Study

As mentioned in Section 3.1.1, the goal of this case study is to optimize the operations
of three student service centers that handle stochastic student arrivals and offer both general
and specialized services. Figure 2 shows the relationship between normalized hypervolume
and time limits for the Student Services problem. The symbols between the two lines of
each MO pair represent the mean value, while the lines represent the limits of the associated
confidence interval. The graph suggests that the Student Services problem is relatively
easy to solve, as all MO pairs, even with low time limits, can achieve a high normalized
hypervolume (above 0.98).

Figure 2. Student services experiments—hypervolume evaluation—time series.

Algorithms 2024, 17, 41 11 of 27

Table 1 summarizes the results for the Student Services experiments based on the mean
normalized hypervolume performance (µnorms) of each MO pair with the best-performing
one at each time limit. The results show that at the lowest time limit of 50 s, GR-B turns out
to be the best-performing approach while GR-GA delivers a similar performance based on
the statistical test. As the time limit is increased to 75 s, NN-GA becomes the best approach,
where the performance difference is statistically significant with p-values being less than
0.05 when compared to both GR-based methods. NN-B delivers a similar, but slightly
worse performance than NN-GA. As the computational budget is increased further to 100 s
and 125 s, NN-B outperforms the other MO pairs, while NN-GA ranks the second best
method with a similar performance to NN-B, except for 100 s. The GR-B and GR-GA pairs
once again turn out to be the worst methods of all. The performance difference between
NN-B and GR-based methods is statistically significant at the 95% confidence level for the
time limits greater than 50 s. Regardless of the given time limit, all methods produce a
µnorm about 0.99.

Table 1. Student services experiments—normalized hypervolume performance comparison of each
MO pair with the best-performing one at each time limit.

Time Limit (s) MO Pair µnorm σ p-Value

50 GR-B 0.991049 3.23 × 10−4 Best
GR-GA 0.990360 2.35 × 10−4 8.61 × 10−2

NN-B 0.986146 1.08 × 10−3 1.57 × 10−4

NN-GA 0.987603 6.28 × 10−4 1.37 × 10−5

75 GR-B 0.991151 2.71 × 10−4 3.76 × 10−2

GR-GA 0.990927 2.88 × 10−4 8.04 × 10−3

NN-B 0.992102 8.78 × 10−4 3.97 × 10−1

NN-GA 0.992128 4.74 × 10−4 Best

100 GR-B 0.992058 2.95 × 10−4 1.93 × 10−5

GR-GA 0.991106 3.16 × 10−4 1.94 × 10−6

NN-B 0.994665 5.34 × 10−4 Best
NN-GA 0.993041 4.19 × 10−4 4.96 × 10−3

125 GR-B 0.991801 2.92 × 10−4 3.17 × 10−4

GR-GA 0.990969 2.52 × 10−4 3.94 × 10−6

NN-B 0.994517 5.65 × 10−4 Best
NN-GA 0.994415 3.06 × 10−4 1.29 × 10−1

One interesting detail is that for the 75 s time limit case, the best Pareto front (Figure 3)
and the worst Pareto front (Figure 4) are both from the NN-B pair, which has the largest
standard deviation across all MO pairs and time limits. The reason for the difference
between them is that the metamodel in the worst case has underestimated the performance
of solutions that would have otherwise been located in the top left corner of the Pareto
front, where wages are low and student inquiry time is high. In this case, that means it had
an excessively high estimate for student time cost or employee wages. The explanation
for this is that the Basic optimizer uses the metamodel evaluations to check every possible
solution and does not identify them as possible candidates for inclusion.

The general pattern of slow improvements in the two Gaussian regression-based pairs,
leading to them being out-performed by the neural network-based pairs is also reflected in
the normalized Hausdorff distance plot in Figure 5.

Algorithms 2024, 17, 41 12 of 27

Figure 3. Student services experiment—optimal and best Pareto front.

Figure 4. Student services experiment—optimal and worst Pareto front.

Figure 5. Student services experiments—Hausdorff distance evaluation—time series.

The crowding distances depicted in Figure 6 confirm the previously identified patterns
of behavior.

Algorithms 2024, 17, 41 13 of 27

Figure 6. Student services experiments—crowding distance evaluation—time series.

4.2. Telecom Simulation Case Study

As mentioned in Section 3.1.2, the goal of this case study is to optimize the opera-
tions of a telecom company in a competitive market, considering call price, marketing
aggressiveness, and revenue components. There is a dramatic improvement in normalized
hypervolume initially, as well as a later clear separation of performance between the differ-
ent MO pairs seen in Figure 7 which depicts the hypervolume evaluation. For example,
between the two NN-based pairs (and overall between all four pairs) the NN-GA pair
underperforms in terms of not improving from between the time limits of fifty to one
hundred seconds, with the second-worst being the GR-GA pair.

Figure 7. Telecom experiments—hypervolume evaluation—time series.

Table 2 summarizes the results for the Telecom experiments based on the mean nor-
malized hypervolume performance (µnorms) of each MO pair with the best-performing one
at each time limit. At a time limit of 25 s, the NN-B pair performs the best among all MO
pairs without statistical significance. At the time limits of 50 s, 75 s and 100 s, the “top two
MO pairs” in this Telecom case study are different from the Student Services case study,
as the GR-B pair outperforms the others. For all these increasing time limits, the NN-B pair
delivers a similar performance to GR-B, while the performance differences between GR-B
and both GR-GA and NN-GA pairs are statistically significant having p-values less than
0.05. The µnorm produced by GR-B increases from 0.953 to 0.971 as the time limit is doubled.

Algorithms 2024, 17, 41 14 of 27

Table 2. Telecom experiments—normalized hypervolume performance comparison of each MO pair
with the best-performing one at each time limit.

Time Limit (s) MO Pair µnorm σ p-Value

25 GR-B 0.890518 4.84 × 10−3 6.22 × 10−1

GR-GA 0.889344 4.16 × 10−3 9.85 × 10−1

NN-B 0.890610 4.50 × 10−3 Best
NN-GA 0.888545 4.13 × 10−3 9.15 × 10−1

50 GR-B 0.952749 2.41 × 10−3 Best
GR-GA 0.932791 3.53 × 10−3 5.26 × 10−5

NN-B 0.944377 3.67 × 10−3 1.08 × 10−1

NN-GA 0.941043 3.70 × 10−3 1.60 × 10−2

75 GR-B 0.972904 1.56 × 10−3 Best
GR-GA 0.955054 2.82 × 10−3 1.90 × 10−6

NN-B 0.965317 3.06 × 10−3 6.88 × 10−2

NN-GA 0.939940 4.08 × 10−3 1.10 × 10−7

100 GR-B 0.970620 1.71 × 10−3 Best
GR-GA 0.957607 2.92 × 10−3 6.67 × 10−4

NN-B 0.967764 3.26 × 10−3 7.72 × 10−1

NN-GA 0.942319 3.62 × 10−3 2.67 × 10−7

There is a small decrease in munorm from a time limit of 75 s to 100 s for GR-B. When
testing if this difference is statistically significant, the p-value is 0.447, so the decrease is not
statistically significant at the 95% confidence level.

Plotting the best-performing Pareto front from the 100 s case in Figure 8 highlights
where losses in quality occur relative to the optimal Pareto front. Where both Pareto fronts
overlap, the color is black, corresponding to the best Pareto front. Thus, any red points
plotted correspond to points only found on the optimal Pareto front. The right-side edge of
the Pareto fronts is where the majority of these points are seen. However, as this best Pareto
front has a high normalized hypervolume of 0.997, the quality losses from not including
the red points are not major, which implies the Pareto front already captures most of the
trade-off solutions by hypervolume.

We can compare the previous situation to the worst-performing 100 s Pareto front
(normalized hypervolume of 0.880) plotted in Figure 9. There is a more visually obvious
presence of red points on the left and right edges of the worst Pareto front.

In this case study, the two best-performing MO pairs are the GR-B and NN-B pairs.
Thus the main decider of performance is the optimizer rather than the metamodel. This
contrasts with the Student Services case where the two best-performing MO pairs are the
NN-B and NN-GA pairs which would suggest the main decider of performance is the
metamodel rather than the optimizer. If we consider the normalized Hausdorff distances
plotted in Figure 10, the two best-performing MO pairs are still the GR-B and NN-B pairs,
but the distinctive under-performance of the NN-GA pair relative to the other three MO
pairs seen in the hypervolume evaluation at time limits of 75 s or 100 s is not observed in
the Hausdorff distance evaluation.

By contrast, when considering the normalized crowding distances plotted in Figure 11,
the GR-GA pair has a noticeably higher crowding distance from the other three MO pairs
at 75 s and 100 s, although as previously noted it is not the worst-performing in the
hypervolume evaluation.

Algorithms 2024, 17, 41 15 of 27

Figure 8. Telecom experiments—optimal and best Pareto front.

Figure 9. Telecom experiments—optimal and worst Pareto front.

Algorithms 2024, 17, 41 16 of 27

Figure 10. Telecom experiments—Hausdorff distance evaluation—time series.

Figure 11. Telecom experiments—crowding distance evaluation—time series.

4.3. Continuous News Vendor Simulation Case Study

As mentioned in Section 3.1.3, the goal of this case study is to optimize a news
vendor’s stock quantity and selling price, considering random daily demand. In both the
hypervolume evaluation plotted in Figure 12 and the Hausdorff distance evaluation plotted
in Figure 13, the NN-GA pair is a consistent worst-performer when compared to the other
three MO pairs.

Figure 12. Continuous News Vendor experiments—hypervolume evaluation—time series.

Algorithms 2024, 17, 41 17 of 27

Figure 13. Continuous News Vendor experiments—Hausdorff distance evaluation—time series.

Table 3 summarises the results from the Continuous News Vendor experiments based
on the mean normalized hypervolume performance (µnorms) of each MO pair with the
best-performing one at each time limit. For any given time limit, the GR-B pair outperforms
the rest of the methods. At the 100 s time limit, all methods deliver a similar performance
to GR-B, although their µnorms are slightly worse. This observation persists for the time
limit of 150 s, while NN-GA performs significantly worse than GR-B. As the time limit
increases above 200 s, the performance differences between GR-B and each of the other
MO pairs become statistically significant with p-values less than 0.05, and GR-GA ranks
the second best-performing method among all. The µnorms of GR-B increases from 0.836 to
0.939 as the time limit increases by a factor of 2.5.

Table 3. Continuous News Vendor experiments—normalized hypervolume performance comparison
of each MO pair with the best-performing one at each time limit.

Time Limit (s) MO Pair µnorm σ p-Value

100 GR-B 0.835878 9.33 × 10−3 Best
GR-GA 0.811036 1.17 × 10−2 1.45 × 10−1

NN-B 0.820163 8.09 × 10−3 1.32 × 10−1

NN-GA 0.807869 1.20 × 10−2 7.89 × 10−2

150 GR-B 0.920727 5.03 × 10−3 Best
GR-GA 0.918869 4.00 × 10−3 4.96 × 10−1

NN-B 0.899821 7.03 × 10−3 1.18 × 10−2

NN-GA 0.836305 9.49 × 10−3 7.18 × 10−8

200 GR-B 0.935907 3.00 × 10−3 Best
GR-GA 0.921874 3.95 × 10−3 9.02 × 10−3

NN-B 0.914207 5.74 × 10−3 2.30 × 10−3

NN-GA 0.847465 8.43 × 10−3 2.91 × 10−9

250 GR-B 0.939361 2.22 × 10−3 Best
GR-GA 0.915885 4.24 × 10−3 9.44 × 10−5

NN-B 0.907325 9.17 × 10−3 1.21 × 10−3

NN-GA 0.850925 9.84 × 10−3 8.26 × 10−9

One feature of the Continuous News Vendor optimization problem is that relatively
few sets of inputs will correspond to a point on the Pareto front: an exhaustive search
encompasses 651 potential input combinations of which only eleven make up the op-
timal Pareto front. Solution Pareto fronts had between four to fifteen points across all
the experiments.

Algorithms 2024, 17, 41 18 of 27

To further analyze the potential effect this causes in solution quality, we consider the
Pareto fronts from experiments with a time limit of 150 s. The best-performing Pareto front
from a 150 s time limit experiment is plotted in Figure 14 (and is from a GR-GA pair) and
can be compared with the best Pareto front from a 150 s time limit experiment specifically
from a NN-GA pair, shown plotted in Figure 15. In these figures, the Pareto front of interest
and the optimal Pareto front from the FE records are plotted, with the dominated area for
each shaded in the appropriate color.

Figure 14. Continuous News Vendor experiments—optimal and best Pareto front.

Figure 15. Continuous News Vendor experiments—optimal and best NN-GA Pareto front.

The main area of difference between the two Pareto front solutions is the area cor-
responding to high quantities sold and low profits. To follow up on this, consider the
best NN-GA Pareto front from an experiment with a higher time limit of 250 s plotted
in Figure 16. Although the Pareto front from this experiment captures the corner corre-
sponding to high quantities sold and low profits, it does not capture part of the medium
quantities sold and medium profits area.

These findings can indicate an issue faced by the genetic algorithm optimizer relative
to the Basic optimizer when parent populations are relatively small due to Pareto fronts
having only a few points in them. It is harder to identify ex ante which metamodel would
under-perform in this situation. However, the hypervolume evaluation shows that the
GR-B pair performs the best and the NN-GA pair performs the worst for this problem.

Algorithms 2024, 17, 41 19 of 27

Figure 16. Continuous News Vendor experiments—optimal and best NN-GA Pareto front.

The crowding distance evaluation plotted in Figure 17 confirms that the NN-GA pair
has the most widely spaced Pareto fronts of the four pairs, while the GR-B has the closest
spacing. Additionally, at a time limit of 250 s, there are GR-B Pareto fronts with normalized
crowding distances below 1.

Figure 17. Continuous News Vendor experiments—crowding distance evaluation—time series.

4.4. Dual Sourcing Simulation Case Study

As mentioned in Section 3.1.4, the goal of this case study is to minimize costs and
penalties for a manufacturer present in multiple locations, involving procurement from
regular or expedited suppliers with varied costs and delays. The Dual Sourcing experiments
provide an important contrast with those of the Continuous News Vendor, as the proportion
of total input combinations that would be on the Pareto front is much higher (861 of
1681). While solution Pareto fronts have between 383 to 694 points across all experiments,
the hypervolume evaluation plot in Figure 18 shows that all MO pairs perform very well,
similar to what was observed in the Student Services experiments.

Table 4 summarizes the results from the Dual Sourcing experiments based on the mean
normalized hypervolume performance (µnorms) of each MO pair with the best-performing
one at each time limit. In all time limits (240 s, 300 s, 360 s and 420 s), GR-B outperforms the
rest of the MO pairs, and this performance variation is statistically significant with p-values

Algorithms 2024, 17, 41 20 of 27

less than 0.05. Regardless of the given time limit, all methods produce a high µnorm over
0.99. The µnorms produced by GR-B increase slightly from 0.9954 to 0.9997 even if the time
limit is increased by a factor of 1.75.

Figure 18. Dual Sourcing experiments—hypervolume evaluation—time series.

Table 4. Dual Sourcing experiments—normalized hypervolume performance comparison of each
MO pair with the best-performing one at each time limit.

Time Limit (s) MO Pair µnorm σ p-Value

240 GR-B 0.995415 6.93 × 10−4 Best
GR-GA 0.993214 7.18 × 10−4 1.10 × 10−4

NN-B 0.992700 5.32 × 10−4 3.49 × 10−4

NN-GA 0.991999 1.08 × 10−3 6.89 × 10−5

300 GR-B 0.997616 2.22 × 10−4 Best
GR-GA 0.995695 3.17 × 10−4 8.17 × 10−5

NN-B 0.994081 5.68 × 10−4 8.71 × 10−7

NN-GA 0.994431 3.89 × 10−4 2.18 × 10−7

360 GR-B 0.998792 1.51 × 10−4 Best
GR-GA 0.995610 7.16 × 10−4 6.25 × 10−8

NN-B 0.994595 8.22 × 10−4 9.88 × 10−8

NN-GA 0.996224 2.34 × 10−4 1.82 × 10−8

420 GR-B 0.999778 7.88 × 10−5 Best
GR-GA 0.997865 2.35 × 10−4 8.83 × 10−10

NN-B 0.996043 5.52 × 10−4 9.75 × 10−9

NN-GA 0.996886 2.57 × 10−4 7.44 × 10−9

However, the Hausdorff distance evaluation plotted in Figure 19 suggests a large
relative separation of solution qualities, which is not observed when considering the
normalized hypervolumes. As the Hausdorff distances are normalized, an outlier with a
high pre-normalized value will compress the distribution of normalized values towards
0. In fact, the Student Services experiments may exhibit the compression of normalized
values issue the most, as the highest plotted point in the Hausdorff distance evaluation
plot in Figure 5 which corresponds to the upper confidence interval for NN-GA at the 50 s
time limit is close to 0.3, in contrast to the highest plotted point in the Hausdorff distance
evaluation for the Dual Sourcing case which is 0.8. The definition of the Hausdorff distance
can lead to it being very sensitive to the possibility of a “very bad” solution that is part of a
solution Pareto front leading to a very high distance, even though the corresponding point
in objective space would not greatly affect the front’s measured hypervolume.

Algorithms 2024, 17, 41 21 of 27

Figure 19. Dual sourcing experiments—Hausdorff distance evaluation—time series.

However, the normalized crowding distances plotted in Figure 20 not only support
a significant improvement in Pareto front quality in terms of density, but the patterns
of relative performance differ between the Hausdorff distance and crowding distance
measures. Taken together, these two suggest that a high level of density is not required to
properly characterize the Pareto front.

Figure 20. Dual sourcing experiments—crowding distance evaluation—time series.

We can further investigate these features by plotting the best Pareto front obtained from
a 420 s time limit in Figure 21 which has a normalized hypervolume above 0.999 despite
showing a large section of red points that were missed but do not result in significant loss.

Viewing the Pareto front from another angle, as in the plot Figure 22 shows clearly
that the large amount of red points seen previously are very close to (many are exactly
on) the plane of minimum average penalty. In this case study, it is entirely plausible to
have exactly 0 average penalty, as this corresponds to the stock never running out in all
the simulation runs done for the FE. There are also a number of points with very small
average penalties as well for the same reason. Not only does this follow the general pattern
of corners or boundary edges having the majority of “misses” by MO pairs, but in this case,

Algorithms 2024, 17, 41 22 of 27

the hypervolume loss is so extremely small because only a couple of points already capture
all the relevant space.

Figure 21. Dual Sourcing experiments—optimal and best Pareto front.

Figure 22. Dual sourcing experiments—optimal and best Pareto front (alternative angle of view).

Algorithms 2024, 17, 41 23 of 27

4.5. Best-Performing MO Pair

In Table 5, we provide the nbest value which is the number of times that an MO
pair performs the best along with the other top-ranking MO pairs delivering a similar
performance to the best (if there are any) considering all four time limits per case study.

Table 5. Best-performing MO pairs per case study.

Case Study Best MO Pair (s) nbest

Student Services NN-B & NN-GA 3
Telecom GR-B & NN-B 3

Continuous News Vendor GR-B 4
Dual Sourcing GR-B 4

The GR-B pair is the best overall option in three of the four case studies with a total
nbest value of 11. The Basic optimization method (B) is the winner when compared to the
genetic algorithm metaheuristic, as this method appears as part of the top-ranking MO
pairs in almost all cases.

4.6. Experimental Computational Costs

Table 6 shows the MO Time which is the real-world time taken to run the experiments
on each simulation problem. While this does not include the time taken for the associated
FEs (as these are looked up from the record) the FE times are recorded and “paid for” with
the allowed time limit. As a result, an experiment that is given a time limit of 60 s may run
for 15 s of the user time, and end with 15 s of MO time and 45 s of FE time. The “FE Record
Time” is the time taken to generate the full list of FEs, and helps demonstrate the savings
when many experiments are run. For example, the Student Services experiments took under
6 h, but were able to save an additional 11 h by using the FE records. The gains are largest
in the Dual Sourcing case where a higher proportion of the allowed time limit is spent
on FEs, such that even though time limits are higher for the Dual Sourcing experiments,
the real-world time spent does not increase proportionally.

Table 6. Experimental computational costs.

Simulation MO Time (min) FE Time (min) FE Record Time
(min)

FE Record Size
(KB)

Student Services 352 672 3.6 13
Telecom 205 557 3.7 21

Continuous
News Vendor 462 1541 24.2 13

Dual Sourcing 337 3981 10.7 40

5. Discussion

In the experimental investigation of four simulation optimization problems, it turned
out that two of them (Student Services and Dual Sourcing) can be considered straightfor-
ward in that all the MO pairs evaluated performed similarly and produced high-quality
Pareto fronts. In the other two (Telecom and Continuous News Vendor), there was more
of a separation of quality with different patterns between the MO pairs evaluated, which
comes from the way in which the metamodels estimate objective values for the inputs
being explored by the optimizers. One can form more intuitive relationships from MO pair
performance patterns to response surface properties than starting from the simulation com-
ponents or domains, as there are only a limited number of MO pair performance patterns.

Ideally, even a problem with a computationally intensive simulation model of interest
would have well-behaved response surfaces, allowing a metamodel to identify areas of
interest quickly and with confidence. This would enable the use of expensive FEs more
sparingly, focusing on those areas of interest identified by the metamodel to maximize

Algorithms 2024, 17, 41 24 of 27

the precision of the optimization. However, being “well-behaved” is not necessarily a
simple property that would hold for all MO pairs that might be employed. As seen, some
MO pairs may perform better than others for certain problems of interest. Additionally,
multi-domain problems may or may not behave similarly to the problems of any particular
component domain [40].

The application of metamodeling to ABS is currently a topic of great interest and
ongoing research. In the Student Services case study, we showed that despite the agent-
based behavior of the model, it was still able to be solved to a high standard across all
evaluated MO pairs. In fact, for this problem, the agents’ decision-making did not lead to a
complex response surface. In contrast, a more challenging problem like the one investigated
in the Continuous News Vendor case study has a simple simulation model but a response
surface that is not equally responsive to different MO pairs.

It is important to note that the FE times are based on a fixed record. However, the time
limit stopping condition treats a second of FE time as equivalent to a second of metamodel
or optimizer time. Therefore, if one runs experiments on problems where records were
generated on a slower system, the faster system will always obtain better quality solutions
within the same time limit, as the faster system has more computational resources. It will
be possible to replicate previous results by creating a different version of the record with
scaled decreased FE times. This will better match what the faster system is experiencing.
Additionally, a smaller time limit can be used in the same proportion. This approach still
allows the user to use records, but avoids having to set up numerous simulation models.

While handy for experimental work like that detailed here, the downside of using an
FE recording approach is that it does introduce an issue if there is a desire to create records
for simulation models with a large input space due to memory constraints. Furthermore,
referencing the records will take longer as they grow in size. This can lead to a memory-
computation cost tradeoff. However, for the simulation models presented in this paper,
the records are small enough so that they do not require a lot of memory to load. The ability
to use records without having to run the underlying simulation model is also a form of ex-
periment enabler, especially if the associated model would otherwise be simply inaccessible.

6. Conclusions

In this paper, we have presented and tested a comprehensive methodology designed
to facilitate the systematic application and evaluation of metamodeling and optimization
heuristics in the form of MO pairs. Our methodology enables researchers to compare setups
experimentally, in a way that allows drawing general conclusions about the optimal MO
pairs. Hence, the aim detailed in Section 1.4 has been fulfilled. The methodology has been
tested with the help of a test environment that allows algorithmic testing and evaluation of
MO pair performance for different types of problems. We have demonstrated its use with
the help of four illustrative case studies. The performance of the different four MO pairings
we tested suggests that patterns of relative performance (and thus the ideal choice) may
differ between different models that they are asked to solve.

By critically assessing our work, we have identified several limitations that will need
further research: (1) Our methodology has not been tested on highly complex models.
(2) Our test cases are limited to the OR domain. (3) Instead of conducting experiments with
different time limits, it may be more efficient to run experiments up to the highest time
limit and use vertical slicing to directly investigate the evolution of Pareto front quality
over time. (4) To evaluate Pareto front quality, we can incorporate additional metrics from
the multiple objective literature to gain further insights into the performance of MO pairs.
(5) The field of metamodeling and optimization offers numerous other metamodels and
optimizers that have not yet been tested.

This presents several opportunities for future work. The most straightforward would
be to increase the number of simulation models, metamodels and optimizers available for
experimentation and performance comparisons. Since simulation models are represented
in the environment by records of their input-objective outcomes (including time taken),

Algorithms 2024, 17, 41 25 of 27

additional simulation models from other domains and implemented in various simulation
platforms can be integrated into the environment and made accessible for comparison
purposes. Better domain coverage from this can enable testing of generalizability across
a number of domains and problems without having to manage data links to external
simulators for each one.

Additionally, where there are parameters for these components that are currently
treated as fixed across all uses in these case studies, it may be possible to improve a compo-
nent by augmenting them with algorithmic hyper-parameter optimization, although this
is a non-trivial addition when keeping to the design goal of allowing generalizability to
future models. The possibility exists that having a larger variety of less individually optimized
metamodel or optimizer options is more efficient in terms of component-possibility coverage.

Another important aspect that requires further investigation is the question of when
and why simulation models behave similarly in terms of the performance of MO pairs.
While models with similar response surface properties will show similar patterns of MO
pair performance, the question remains of identifying the more abstract properties that
lead to these similarities in the performance of MO pairs. Alternatively, the possibility
of building a selection-type hyperheuristic that explores the space of metamodel and
optimizer selection within the optimization process and selects an optimal pair on the fly
could potentially be more beneficial for practical applications. This approach could also
be generalizable if performance patterns can be detected early enough in the optimization
process to justify allocating computational resources to the hyperheuristic layer, rather than
a simple initial MO pair selection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/a17010041/s1.

Author Contributions: Conceptualization, K.J.H. and P.-O.S.; methodology, K.J.H., E.Ö. and P.-
O.S.; software, K.J.H.; validation, K.J.H. and P.-O.S.; formal analysis, K.J.H.; writing—original draft
preparation, K.J.H.; writing—review and editing, K.J.H., E.Ö. and P.-O.S.; supervision, E.Ö. and
P.-O.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Acknowledgments: The authors would like to acknowledge the valuable advice provided by Russell
R. Barton (Pennsylvania State University) regarding this work.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MO Metamodel Optimizer
ABS Agent-Based Simulation
OR Operations Research
FE Full Evaluation
QE Quick Evaluation
GR Gaussian Regression
NN Neural Network
B Basic
GA Genetic Algorithm

https://www.mdpi.com/article/10.3390/a17010041/s1
https://www.mdpi.com/article/10.3390/a17010041/s1

Algorithms 2024, 17, 41 26 of 27

References
1. Kleijnen, J.P. Design and Analysis of Simulation Experiments; Springer: Berlin/Heidelberg, Germany, 2018.
2. Alizadeh, R.; Allen, J.K.; Mistree, F. Managing computational complexity using surrogate models: A critical review. Res. Eng. Des.

2020, 31, 275–298.
3. Cui, Y.; Geng, Z.; Zhu, Q.; Han, Y. Multi-objective optimization methods and application in energy saving. Energy 2017,

125, 681–704.
4. Lotov, A.V.; Miettinen, K. Visualizing the Pareto Frontier. Multiobject. Optim. 2008, 5252, 213–243.
5. Gunantara, N. A review of multi-objective optimization: Methods and its applications. Cogent Eng. 2018, 5, 1502242. [CrossRef]
6. Afshari, H.; Hare, W.; Tesfamariam, S. Constrained multi-objective optimization algorithms: Review and comparison with

application in reinforced concrete structures. Appl. Soft Comput. 2019, 83, 105631.
7. Barton, R.R. Metamodelling: Power, pitfalls, and model-free interpretation. In Proceedings of the 11th Operational Research

Society Simulation Workshop, SW 2023, Southampton, UK, 27–29 March 2023; Operational Research Society: Birmingham, UK,
2023; pp. 48–62.

8. Westermann, P.; Evins, R. Surrogate modelling for sustainable building design—A review. Energy Build. 2019, 198, 170–186.
[CrossRef]

9. Wang, C.; Duan, Q.; Gong, W.; Ye, A.; Di, Z.; Miao, C. An evaluation of adaptive surrogate modeling based optimization with
two benchmark problems. Environ. Model. Softw. 2014, 60, 167–179. [CrossRef]

10. Serra, P.; Stanton, A.F.; Kais, S. Pivot method for global optimization. Phys. Rev. E 1997, 55, 1162–1165. [CrossRef]
11. Kandris, K.; Romas, E.; Tzimas, A. Benchmarking the efficiency of a metamodeling-enabled algorithm for the calibration of

surface water quality models. J. Hydroinform. 2020, 22, 1718–1726.
12. Lejeune, E. Mechanical MNIST: A benchmark dataset for mechanical metamodels. Extrem. Mech. Lett. 2020, 36, 100659.
13. Swan, J.; Adriaensen, S.; Brownlee, A.E.; Hammond, K.; Johnson, C.G.; Kheiri, A.; Krawiec, F.; Merelo, J.J.; Minku, L.L.;

Özcan, E.; et al. Metaheuristics “in the large”. Eur. J. Oper. Res. 2022, 297, 393–406. [CrossRef]
14. Pamparà, G.; Engelbrecht, A.P. Towards a generic computational intelligence library: Preventing insanity. In Proceedings of the

2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015; IEEE: Piscataway,
NJ, USA, 2015; pp. 1460–1467.

15. Muravev, D.; Hu, H.; Rakhmangulov, A.; Mishkurov, P. Multi-agent optimization of the intermodal terminal main parameters by
using AnyLogic simulation platform: Case study on the Ningbo-Zhoushan Port. Int. J. Inf. Manag. 2021, 57, 102133. [CrossRef]

16. Ivanov, D. Operations and Supply Chain Simulation with AnyLogic; Berlin School of Economics and Law: Berlin, Germany, 2017.
17. Railsback, S.F.; Lytinen, S.L.; Jackson, S.K. Agent-based simulation platforms: Review and development recommendations.

Simulation 2006, 82, 609–623. [CrossRef]
18. Soetaert, K.; Herman, P.M. A Practical Guide to Ecological Modelling: Using R as a Simulation Platform; Springer: Berlin/Heidelberg,

Germany, 2009; Volume 7.
19. Juan, A.A.; Faulin, J.; Grasman, S.E.; Rabe, M.; Figueira, G. A review of simheuristics: Extending metaheuristics to deal with

stochastic combinatorial optimization problems. Oper. Res. Perspect. 2015, 2, 62–72. [CrossRef]
20. Eskandari, H.; Mahmoodi, E.; Fallah, H.; Geiger, C.D. Performance analysis of comercial simulation-based optimization packages:

OptQuest and Witness Optimizer. In Proceedings of the 2011 Winter Simulation Conference (WSC), Phoenix, AZ, USA, 11–14
December 2011 ; IEEE: Piscataway, NJ, USA, 2011; pp. 2358–2368.

21. Eckman, D.J.; Henderson, S.G.; Shashaani, S. SimOpt: A testbed for simulation-optimization experiments. INFORMS J. Comput.
2023, 35, 495–508. [CrossRef]

22. Sóbester, A.; Forrester, A.I.; Toal, D.J.; Tresidder, E.; Tucker, S. Engineering design applications of surrogate-assisted optimization
techniques. Optim. Eng. 2014, 15, 243–265. [CrossRef]

23. Viana, F.A.; Gogu, C.; Goel, T. Surrogate modeling: Tricks that endured the test of time and some recent developments. Struct.
Multidiscip. Optim. 2021, 64, 2881–2908. [CrossRef]

24. do Amaral, J.V.S.; Montevechi, J.A.B.; de Carvalho Miranda, R.; de Sousa Junior, W.T. Metamodel-based simulation optimization:
A systematic literature review. Simul. Model. Pract. Theory 2022, 114, 102403. [CrossRef]

25. Hey, J.; Siebers, P.O.; Nathanail, P.; Ozcan, E.; Robinson, D. Surrogate optimization of energy retrofits in domestic building stocks
using household carbon valuations. J. Build. Perform. Simul. 2022, 1–22. [CrossRef]

26. Beck, J.; Friedrich, D.; Brandani, S.; Fraga, E.S. Multi-objective optimisation using surrogate models for the design of VPSA
systems. Comput. Chem. Eng. 2015, 82, 318–329. [CrossRef]

27. Wu, J.; Luo, Z.; Zheng, J.; Jiang, C. Incremental modeling of a new high-order polynomial surrogate model. Appl. Math. Model.
2016, 40, 4681–4699. [CrossRef]

28. Prada, A.; Gasparella, A.; Baggio, P. On the performance of meta-models in building design optimization. Appl. Energy 2018,
225, 814–826. [CrossRef]

29. Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modeling in water resources. Water Resour. Res. 2012, 48. [CrossRef]
30. Garzón, A.; Kapelan, Z.; Langeveld, J.; Taormina, R. Machine Learning-Based Surrogate Modeling for Urban Water Networks:

Review and Future Research Directions. Water Resour. Res. 2022, 58, e2021WR031808. [CrossRef]

http://doi.org/10.1080/23311916.2018.1502242
http://dx.doi.org/10.1016/j.enbuild.2019.05.057
http://dx.doi.org/10.1016/j.envsoft.2014.05.026
http://dx.doi.org/10.1103/PhysRevE.55.1162
http://dx.doi.org/10.1016/j.ejor.2021.05.042
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102133
http://dx.doi.org/10.1177/0037549706073695
http://dx.doi.org/10.1016/j.orp.2015.03.001
http://dx.doi.org/10.1287/ijoc.2023.1273
http://dx.doi.org/10.1007/s11081-012-9199-x
http://dx.doi.org/10.1007/s00158-021-03001-2
http://dx.doi.org/10.1016/j.simpat.2021.102403
http://dx.doi.org/10.1080/19401493.2022.2106309
http://dx.doi.org/10.1016/j.compchemeng.2015.07.009
http://dx.doi.org/10.1016/j.apm.2015.12.002
http://dx.doi.org/10.1016/j.apenergy.2018.04.129
http://dx.doi.org/10.1029/2011WR011527
http://dx.doi.org/10.1029/2021WR031808

Algorithms 2024, 17, 41 27 of 27

31. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53.

32. Emmerich, M.T.; Deutz, A.H. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat. Comput.
2018, 17, 585–609. [PubMed]

33. Ng, A.; Grimm, H.; Lezama, T.; Persson, A.; Andersson, M.; Jägstam, M. OPTIMISE: An internet-based platform for metamodel-
assisted simulation optimization. Adv. Commun. Syst. Electr. Eng. 2008, 4, 281–296.

34. Konzen, E.; Cheng, Y.; Shi, J.Q. Gaussian process for functional data analysis: The GPFDA package for R. arXiv 2021,
arXiv:2102.00249.

35. Günther, F.; Fritsch, S. Neuralnet: Training of neural networks. R J. 2010, 2, 30.
36. Riedmiller, M. Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms.

Comput. Stand. Interfaces 1994, 16, 265–278. [CrossRef]
37. Bogoya, J.M.; Vargas, A.; Schütze, O. The averaged hausdorff distances in multi-objective optimization: A review. Mathematics

2019, 7, 894. [CrossRef]
38. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197.
39. AnyLogic. Cell Telecom Market. 2019. Available online: https://cloud.anylogic.com/model/11e1d402-1fb9-4f6f-8a6b-7f7e91f4

c6e3?mode=SETTINGS (accessed on 23 May 2023).
40. Viana, F.A.; Simpson, T.W.; Balabanov, V.; Toropov, V. Special section on multidisciplinary design optimization: Metamodeling in

multidisciplinary design optimization: How far have we really come? AIAA J. 2014, 52, 670–690.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.ncbi.nlm.nih.gov/pubmed/30174562
http://dx.doi.org/10.1016/0920-5489(94)90017-5
http://dx.doi.org/10.3390/math7100894
https://cloud.anylogic.com/model/11e1d402-1fb9-4f6f-8a6b-7f7e91f4c6e3?mode=SETTINGS
https://cloud.anylogic.com/model/11e1d402-1fb9-4f6f-8a6b-7f7e91f4c6e3?mode=SETTINGS

	Introduction
	Simulation Optimization
	Metamodeling
	Optimizers
	Aim

	Test Environment and Methods
	Metamodels
	Gaussian Regression (GR) Metamodel
	Neural Network (NN) Metamodel

	Optimizers
	Basic (B) Optimizer
	Genetic Algorithm (GA) Optimizer
	Normalized Hypervolume
	Normalized Hausdorff Distance
	Normalized Crowding Distance

	Experimentation
	Simulation Models
	Student Services Simulation
	Telecom Simulation
	Continuous News Vendor Simulation
	Dual Sourcing Simulation

	Procedural Steps
	System Configuration and General Experimental Setup

	Results
	Student Services Simulation Case Study
	Telecom Simulation Case Study
	Continuous News Vendor Simulation Case Study
	Dual Sourcing Simulation Case Study
	Best-Performing MO Pair
	Experimental Computational Costs

	Discussion
	Conclusions
	References

