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Abstract: In this work the optimal design of sensor networks for chemical plants is 
addressed using stochastic optimization strategies. The problem consists in selecting the 
type, number and location of new sensors that provide the required quantity and quality of 
process information. Ad-hoc strategies based on Tabu Search, Scatter Search and 
Population Based Incremental Learning Algorithms are proposed. Regarding Tabu Search, 
the intensification and diversification capabilities of the technique are enhanced using Path 
Relinking. The strategies are applied for solving minimum cost design problems subject to 
quality constraints on variable estimates, and their performances are compared. 

Keywords: Sensor location, Stochastic optimization, Tabu search, Scatter search, 
Population based incremental learning algorithms. 

 

1. Introduction 

A reliable and complete knowledge of current plant state is essential for plant monitoring, 
regulatory and supervisory control, real time optimization, planning and scheduling, etc. The quality 
and availability of variable estimates strongly depend on the sensor network (SN) installed in the 
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process and the data reconciliation packages used to enhance the precision of estimates during plant 
operation.   

The problem of selecting a set of variables to be measured, which is optimal with respect to some 
specified criteria and simultaneously provides the quantity and quality of information required from 
the process, is called the sensor network design problem (SNDP).  

Different types of instrument arrangements arise depending on the number and location of the 
selected measurements. A minimum-number SN contains the smallest amount of instruments that 
allow the estimation of all unmeasured variables. If more sensors are used than the minimum required 
to satisfy the aforementioned condition, a so-called redundant SN is obtained. The quantity of sensors 
contained in both types of arrangements is known in advance to problem resolution. In practice it is 
necessary to satisfy constraints only on a subset of key measured or unmeasured variable estimates. In 
this case a general SN is designed without knowing in advance the cardinality of the optimal sensor 
set. As only a subset of variables are of real practical interest, the optimal selection of measurements 
for general SNs is a powerful tool for the design of large-scale plants. 

Diverse criteria have been proposed for the optimal selection of sensor structures, such as the 
minimization of cost while ensuring quality constraints (precision, reliability, estimability) on variable 
estimates, the maximization of the minimum variable-estimate availability subject to cost constraints, 
the minimization of the global error of variable estimates for a fixed instrumentation-project budget, 
etc. 

In SND the important decision to be made with regard to each stream variable is whether to 
measure it or not.  To mathematically formulate these decisions, binary variables are employed which 
indicate the presence or absence of sensors. The problem is usually multimodal and involves many 
binary variables, therefore a huge combinatorial optimization problem subject to constraints should be 
solved. 

At first meta-heuristics based on Genetic Algorithms (GAs) [1-2] were proposed to deal with the 
design of sensor structures. In this regard, Sen et al. [3] developed an evolutionary procedure devoted 
to the selection of flowmeters for nonredundant SNs. It optimizes single criteria such as  cost, 
reliability or estimation accuracy based on concepts from graph theory. Carnero et al. [4] dealt with the 
optimal design of non-redundant structures for linear processes that ensure the observability of all 
unmeasured variables while optimizing single or multiple criteria. The solution procedure was 
developed using a GA whose operators were modified based on linear algebra concepts. Furthermore, 
Viswanath and Narasimhan [5] presented an evolutionary approach for the design of linear redundant 
SNs that maximize the reliability of variable estimates. In previous references, the quantity of sensors 
to be installed in the network is fixed before the run of the optimization procedure. 

Regarding the design of general SNs, characterized by the fact that the optimal number of sensors is 
unknown in advance, Chao-An et al. [6] presented the design of maximum-availability networks 
subject to cost and precision constraints, but they solved the problem for a small size network using 
the classic GA. Gerkens and Heyen [7] presented two ways of parallelizing the GA, namely the global 
parallelization and the distributed GA, to reduce the solution time. They concluded that both 
techniques allow reducing the elapsed time but the second one is more efficient. Also Benqlilou et al. 
[8] applied GAs to solve the design and retrofit of reliable SNs. Their implementation was performed 
using the GA toolbox of MATLAB program. Then a hybrid procedure based on GAs (HGA) was 
developed by Carnero et al. [9] to minimize the instrumentation network cost subject to precision 
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constraints on key variables. They used a structured population in the form of neighbourhoods and a 
local optimizer of the best current solutions, which provide a good balance between the algorithm 
capabilities of exploration and exploitation. Recently, Gerkens and Heyen [10] proposed a general 
approach for designing the cheapest SN able to detect and locate a set of specified faults. They applied 
the previously developed parallel procedure [7] to select sensors and their locations. 

In recent years some applications of Tabu Search (TS) meta-heuristic [11] for the solution of 
chemical engineering problems have appeared [12 - 14]. The technique guides a local-search 
procedure that explores the solution space beyond local optimality. The local search uses an operation 
called move to define the neighbourhood of a given solution. It was reported that TS has a more 
flexible and effective search behaviour than other stochastic methods as consequence of the use of 
adaptive memory. This motivated the development of new strategies for the design and upgrade of 
SNs. Within the framework of TS, a Strategic Oscillation Technique around the feasibility boundary 
(SO-TS) was reported by Carnero et al. [15-16]. A comparative performance-analysis indicated that 
the strategy efficiently searches the solution space, significantly reducing the number of required calls 
to the evaluation function in comparison with HGA and the Classic TS (C-TS) [9]. 

There exist other population-based methodologies that have demonstrated a rewarding performance 
for solving hard optimization problems and constitute attractive alternatives to GAs. In this regard, 
Scatter Search (SS) [17-18] is founded on the premise that systematic designs and methods for creating 
new solutions afford significant benefits beyond those derived from recourse to randomization. Also 
Estimation of Distribution Algorithms (EDAs) [19-20] offer a novel evolutionary paradigm. They 
make use of a probabilistic model, learnt from the promising solutions, to guide the search process.  
Within the framework of EDAs approach, Population Based Incremental Learning Algorithms (PBIL) 
are devised, which introduce the concepts of competitive learning (typical in artificial neural networks) 
to direct the search [21].  Successful applications of SS and PBIL have been reported to solve complex 
combinatorial problems, such as the vehicle routing, knapsack and scheduling problems [22 - 24]. 

Furthermore Path Relinking (PR) has been proposed as a method to better explore the solution 
space of complex problems when a set of promising solutions is known [11].  It has been incorporated 
to algorithms based on TS to provide better intensification and diversification capabilities to the 
search. The technique is recognized as an effective tool to solve difficult combinatorial problems [25].  

The rewarding performance of SS and PBIL algorithms for solving multimodal optimization 
problems with a huge number of binary or integer variables sustains their selection to address the 
SNDP and perform a comparative performance analysis among SO-TS, SS and PBIL. Furthermore the 
performance of the effective search strategy PR is analyzed within the framework of TS and compared 
also with SO-TS. 

For this work new strategies to solve the sensor location problem are developed. They are based on 
the meta-heuristics SS, PBIL and PR within the framework of TS (PR-TS). The distinctive features of 
the algorithms are provided and comparative performance studies are conducted among SO-TS, PR-
TS, SS and PBIL for solving instrumentation designs of industrial networks extracted from the 
literature.  

The rest of the paper is organized as follows. In Section 2 the design problem is briefly introduced. 
Sections 3 to 5 present algorithms based on the meta-heuristics TS, SS and PBIL respectively. 
Application results are provided and discussed in Section 6 and, conclusions are addressed in Section 
7. 
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2. Sensor Network Design and Upgrade Problem 

Let us assume the operation of a process under steady state conditions can be represented by the 
following set of m non-linear algebraic equations R 

 
 R(z) = R(x, u) = 0,  (1) 
 

where z stands for the n-dimensional vector of process variables, and x and u  represent the vector of 
measured and unmeasured variables respectively. The problem of optimal selection of instruments 
during plant design or upgrade consists of determining the optimal partition of vector z in vectors x 
and u, and it is formulated as follows 
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where q is a n-dimensional vector of binary variables such that: qi = 1 if variable i is measured, and qi 
= 0 otherwise. For the sake of simplicity it is assumed that there is only one potential measuring device 
for each variable; if it is not the case the number of binary variables increases significantly.  
Furthermore f(q) represents a one-dimensional objective function, gj(q) indicates the constraint 
imposed on the quality of the j-th key variable estimate, considering  there exists only one constraint 
for each key variable, S is the set of key process variables, and I0 stands for the initial set of 
instruments that is empty at the network design stage.  No instruments’ localization restrictions are 
imposed in this formulation but they may arise in practice. 

Different performance criteria of the sensor structure, f(q), are used depending on the specific 
application. Frequently the life cycle instrumentation cost for the design or upgrade project leads the 
selection; nevertheless reliability measures are sometimes preferred for safety reasons. A wide variety 
of objective functions have been used: instrumentation cost, global error of variable estimates, system 
reliability, variable reliability and availability, the economic value of instrumentation projects, etc, [4], 
[9], [26]. 

Regarding the set of constraints, g(q), engineers not only require to know the value of  key 
variables for economic, safety or environmental reasons (estimability constraints), but impose 
conditions about the precision, reliability or availability of variable estimates. 

In general nonlinear discrete optimization problems arise. For large scale processes the dimension 
of the search-space for optimization models represented by equation (2) increases significantly. In 
consequence the design turns out to be a huge combinatorial optimization problem that may have 
many local optima. In these cases, it is really valuable that the solution procedure provides at least a 
good solution, if not the global optima, and that also can be run in parallel computers to reduce 
execution times. 
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3. Tabu Search Approach 

In this section the technique SO-TS, which currently appears as the best approximate solution 
method for the SNDP, is revised [15-16]. Also C-TS meta-heuristic is modified to incorporate the 
effective strategy PR for search intensification and diversification. The objective is to analyze the 
behaviour of PR to address this particular design problem.   

3.1 An Overview 

Tabu Search is a meta-heuristic approach devoted to the solution of optimization problems. It uses a 
guided local-search procedure to explore the entire solution space in a way that makes it difficult to be 
entrapped in local optima and prevents solution cycling. The strategy incorporates adaptive memory 
that allows local searches being guided by the information collected previously, which is presented in 
the form of Tabu lists [11]. 

Given a current solution q, a neighbourhood of possible solutions, N(q), is defined at each iteration 
by modifying q through an operation called move, whose definition is highly problem-dependent. A 
modified neighbourhood N´(q) is obtained from N(q), as result of maintaining a selective history of 
the recent states encountered during the search. The neighbours in N´(q) are inspected to select the 
best one that becomes the starting point for the new iteration (q´), even if it is worse than q. 
Furthermore the best solution ever found (q*) is saved. Aspiration criteria are applied to determine 
when the Tabu lists can be overridden to avoid missing good solutions. 

Tabu Search makes use of short-term and long-term memory. The first one prevents solution 
cycling and being entrapped in local optima. It identifies the elements of N(q) excluded from N´(q) 
because they correspond to solutions recently visited. Short-term knowledge is provided by means of a 
Recency based Tabu List, where new solutions are incorporated at each iteration, and remained there 
as forbidden moves during the Tabu Tenure Period, pt. 

The use of long-term memory allows the inclusion of solutions not ordinarily found in N(q), 
because it penalizes the elements of N´(q) associated to moves that have been done more often. These 
are contained in the Frequency based Tabu list that represents the long-term memory of the technique.  

Within the framework of TS, other procedures are incorporated for search intensification and 
diversification such as SO and PR. The first one consists of a sequence of destructive and constructive 
phases. Given a feasible solution, the search is strategically driven to cross the feasibility boundary 
and to continue in the infeasible region (destructive phase) until certain depth is reached, then the 
search changes the direction towards the feasible region where it continues until the same depth 
(constructive phase).  The process of repeatedly crossing the feasibility boundary from different 
directions originates an oscillatory behaviour. Standard TS mechanisms are applied to avoid going 
back over previous trajectories. 

Path relinking consists in selecting two components of a reference set R which is made up of high 
quality solutions. They are called Initiating Solution (IS) and Guiding Solution (GS) respectively. A 
path is generated in the neighbourhood space from the IS to the GS selecting moves that introduce 
attributes contained in GS. The rationale behind the strategy is that high quality solutions share certain 
attributes, and their combinations produce other solutions that could be better than those contained in 
R and even better than the best current one. The strategy performance depends on the rules adopted to 
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generate the reference set R, select IS and GS and identify the neighbour structure and the guiding 
attributes. 

3.2 Special features of Tabu Search-based strategies for Sensor Network Design 

3.2.1 Initial Solution 

A solution is represented by a vector q whose i-th element is 1 or 0 depending on whether the 
process variable is measured or not. The procedure used to generate the initial population in the GA-
based strategy developed by Carnero et al. [9] is run. Each member of the population represents a set 
of sensors that provides an estimate for all key variables. Then, the subset of individuals that satisfy 
the restrictions imposed on variable estimates is inspected to determine the best solution. This is 
selected as the TS initial solution q0. 

3.2.2 Neighbourhood 

Given a solution q, its neighbourhood N(q) comprises a set of new solutions, qN,  that are at a 
Hamming distance of one with respect to q, that is 

 
 { }ijqqqq jNjiiN ≠∀=≠= and/)(N Nqq  (3) 

 

3.2.3 Tabu Lists 

The Recency based Tabu list, t, is a vector of dimension n. A non-zero element of t indicates that 
this variable move is forbidden because it was modified recently. Furthermore its value is the number 
of remaining iterations until pt for this move is elapsed. 

The Frequency based Tabu list is represented by a vector h of dimension n. The i-th component of h 
reports the number of moves of variable i used to generate the next solution during ph iterations. If the 
search process has become stuck in a specific area, it is necessary to direct the search to unvisited areas 
or regions visited less frequently. Consequently the evaluation function corresponding to the i-th 
allowable move is penalized in proportion to hi. After ph iterations vector h is reset. 

3.2.4 Evaluation Function 

A member of the neighbourhood is evaluated using a function, F that takes into account constraint 
violations as follows 
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where fmax represents  an upper bound of f(q) for feasible individuals and Q(q) takes into account 
constraint violations as follows, 
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where Ru is the number of unsatisfied constraints. 

3.2.5 Aspiration and Termination Criterion 

If the best neighbour is in a tabu area but has a better evaluation function value than q* then its tabu 
property is overridden. 

Termination on convergence criterion has been implemented. If the improvement after #MaxIter 
iterations is no larger than a threshold, the search is stopped. 

3.2.6 Strategic Oscillations within the framework of Tabu Search  

For the sensor structure design problem the neighbourhood is built as follows. Given a feasible set 
of instruments q, the destructive phase consists in eliminating one measurement per iteration, therefore 
the amount of null elements in the members of N(q) increases.  The search crosses the feasibility 
boundary and proceeds in the infeasible region until the evaluation function reaches the bound L0. 
Then it turns around and the constructive phase is initiated by incorporating measurements. In this 
phase, the amount of zero elements in the members of N(q) lowers and the search returns to the 
feasible region. The constructive phase finishes when the number of measurements is greater than the 
bound L1. The assumed bounds are the instrumentation cost if all variables are measured plus the cost 
of the most expensive measurement for L0, and 80% of the length of q for L1. 

3.2.7 Path relinking within the framework of Tabu Search 

After a predefined number frecpr of consecutive moves, the basic TS procedure switches to a PR 
phase that stops when the reference set R has a cardinality ≤  1. Then, either stopping conditions are 
verified or the procedure is repeated to form a new R. 

The procedure devoted to build the set R is essential to generate new high quality solutions. In this 
work, R is created during the TS phase and then improved during the PR phase. To build R the 
following steps, which aim at ensuring quality and diversity of solutions, are executed: 
a) A set P is made up of each solution that, at some stage of the TS phase, improves the best current 

solution and becomes the best one 
b) The first half of R is loaded with the best solution vectors p from set P 
c) For each solution vector p that belongs to P but is not included in R, that is p ∈  {P/R}, the 

Hamming distance, d, between p and R is computed 
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d) The second half of R is loaded with p ∈  {P/R} that maximizes the Hamming distance. 
The IS and GS are defined as the worst and best solutions in R, respectively. 
Regarding the rules to identify the neighbour structure and the guiding attributes, two types of 
moves are proposed: 
a) Let us consider qi and qg represent the current IS and GS, respectively. Starting from qi, the idea 

is to generate neighbours that tend to qg at last. To generate the first neighbour, n1, it is set equal 
to qi. Then the elements of both vectors are compared from left to right until a difference is 
found. For this position, for example the k-th position, the element of qi is replaced by the 
corresponding element of qg. The comparison finishes and the first neighbour is obtained. The 
same procedure is repeated between n1 and qg to obtain n2 but in this case the comparison starts 
at the (k+1) position. The rest of the neighbours are obtained in the same way until the last 
neighbour has only one element that differs with respect to qg. 

b) The rationale behind this move is to build the neighbourhood by changing the position of a 
measurement. Consequently the total number of measurements remains unchanged. At first, the 
arithmetic difference between vectors qg and qi

  is calculated for each element. Positive (+1), 
negative (-1) and zero differences are obtained. The positions of positive and negative 
differences are registered in position vectors pp and np. Then all combinations between each 
element of pp and all the elements of np form a set of interchanges between the corresponding 
elements of qi. Each interchange generates a neighbour. 

3. 3 Tabu Search based procedures 

3.3.1 Classic  Tabu Search 

Generate an initial solution q0 
Set q*=q=q0 and F(q*) = F(q0) 
for i =1 to  # Max Iter  do 
 Generate neighbourhood N(q) 

Select q’ ∈ N(q) with the lowest F value  
 If  q’∈ N(q) satisfies the aspiration criterion F(q’) < F(q*) 
            Set q*=q’ and F(q*) = F(q’) 
       else 
             Select a new solution q’ ∈ N(q) that minimizes F(q’) and is non-tabu 
       endif 
 Set the reverse move for pt iterations and update h 
 Set q=q’ 
endfor 
return q* 

3.3.2 Tabu Search with Strategic Oscillations 

Select a  feasible initial solution q0  
Set L0= i

i
cost∑ +max(cost) 
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Set L1 = 0.8 * length(q0) 
Set remove=1 
Set q*=q= q0 

for i =1 to  # MaxIter  do 
 if  remove=1 
  Generate neighbourhood N1(q) and evaluate 
  Get  best neighbour q’ 
  If F(q’) > L0 
   remove = 0 
  else 
   Update tabu list and frequency table 
   q=q’ 
  endif  
 else 
  Generate neighbourhood N2(q) and evaluate 
  Get  best neighbour q’ 
  If  sum(q) > L1 and q is feasible 
   remove=1 
  end 
  q=q’ 
 end 
      if F(q)<F(q*) 
  q*=q 
 end 
end 
return q* 

3.3.3 Tabu Search with Path Relinking 

R, the reference set; q*, the current best solution 
Select the initial solution qi and the guiding solution, qg 

Set q= qi 

while q≠ qg 
 Generate neighbourhood N1(q) (path 1) 
 Generate neighbourhood N2(q) (path 2) 
 Select a solution q∈ N1(q) ∪  N2(q) that minimize F( q ) or satisfies the aspiration criterion 
 Set q = q  
return q 
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4. Scatter Search Approach 

4.1 An Overview 

Scatter Search is an evolutionary approach which is established on the principle that systematic 
methods for creating new solutions provide significant benefits beyond those obtained by random 
algorithms. 

An algorithmic description of this meta-heuristic was presented by Glover in 1998 [27]. In this 
version, a starting set of solutions that guarantees a certain level of diversity is generated and heuristic 
procedures, devised for the problem under consideration, are applied to improve these solutions. Then 
a subset of the best vectors, in terms of quality and diversity, is selected as the Reference Set Refset. 
New solutions are generated by applying structured combinations of subsets of Refset, and the same 
heuristic procedures applied above are used to improve new solutions. A collection of the best 
improved solutions is added to Refset. The steps are repeated until Refset remains unchanged. 

The well known algorithm template proposed by Glover [27] is made up of five methods devoted to 
perform the following tasks: Diversification Generation, Improvement of Solutions, Reference Set 
Generation and Upgrade, Subset Generation and Solution Combination. In the next subsection the ad-
hoc methods developed to carry out these tasks for the optimal design of SNs are described. 

4.2 Special features of the Scatter Search-based strategy for Sensor Network Design 

4.2.1 Diversification Generation 

To generate a collection of diverse trial solutions the procedure proposed in Carnero et al. [9] to 
initialize the GA population is run. Each solution guarantees that all key variables can be estimated. 
Nevertheless there exist feasible and unfeasible solutions in this set that provide the required diversity 
to enhance the exploratory capabilities of the technique. 

The most diverse solutions with respect to the fitness function defined by equation (4) are 
incorporated in a set U of size Usize = 50. 

4.2.2 Improvement of Solutions 

Two procedures are devised to improve each solution contained in U. 
a) Improvement Method 1 

The neighbourhood of the solution is inspected to find a sensor structure with the same number of 
measurements but that has an F value lower than the current solution. If a better solution is not found, 
the current one remains in U. 
b) Improvement Method 2 

For large neighbourhoods the previous method is time consuming, therefore another technique is 
proposed to improve solutions obtained by combination. 

At first building blocks or patterns that are shared by high quality solutions are identified by means 
of the false outputs of the XOR or Exclusive OR function. Then all neighbours constituted by these 
blocks are generated. 
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For example, let us consider that q1=[1 1 1 1 1 1 0] and q2= [0 1 1 1 1 0 1] are two solutions 
obtained by combination that share the block [- 1 1 1 1 - -]. Therefore, the neighbourhood inspected to 
improve the solutions is made up of the following vectors N(q1, q2) = {[0 1 1 1 1 0 0], [0 1 1 1 1 0 1 
0], [0 1 1 1 1 1 1],[1 1 1 1 1 0 0], [1 1 1 1 1 0 1], [1 1 1 1 1 1 1]}. If this procedure fails to incorporate 
new solutions to Refset, the first one is run. 

4.2.3 Reference Set Generation and Upgrade 

Twenty percent of the solutions contained in U are incorporated to Refset. The first half of Refset is 
loaded with the best solutions in U. The remaining elements of Refset are the most diverse solutions in 
U. These are determined in terms of the Hamming distance as it is explained in Section 3.2.7. 

4.2.4 Subset Generation and Solution Combination 

The simplest form of subset generation, which consists in generating all pairs of reference solutions, 
is selected. To combine a couple of solutions q1 and q2, a mechanism made up of the subsequent steps 
is implemented [11]: 
a) Let consider each binary variable as a random discrete variable Ck and assign to it the following 
probability distribution 
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where kq1  and kq2  stand for the value of the k-th binary variable in q1 and q2 respectively. 
b) Generate a random sample of size 1 for Ck. To obtain it, the P(Ck = 1) is first calculated using (7) for 
given values of  kq1 , kq2  , F1 and F2. Then a random uniform number r is generated and compared with 
P(Ck = 1). If r≤  P(Ck = 1), the k-th element of the combined solution is 1, otherwise it is zero. These 
conditions are stated by equation (8) 
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If kq1  and kq2  have the same value for their k-th component, then it is reproduced in the combined 
solution. If the values are different, the application of the above procedure enhances the probability 
that good solutions transfer their components to the combined solution, given that the numerator of 
equation (7) is weighted by the binary value of the components. 
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4.3 Scatter Search Based Procedure 

Set U = Ø 
U= Diversification Generation method(Usize) 
U= Improvement Method 1(U) 
RefSet= Reference Set Generation and Upgrade method(U) 
Refset=Sort(Refset) 
NewSolution = TRUE 
while (NewSolution) 

NewSolution = FALSE 
Generate subsets of RefSet, using the Subset Generation method, with at least  
one new solution. 
while (there is at least one subset without evaluation) 

Select the subset and label it as evaluated. 
Apply the Solution Combination method to the solutions in the subset. 
Apply Improvement Method 2 to each solution obtained by  
 combination. Let q be the improved solution. 
If F(q) is better than  F(qworst) and q is not included in RefSet 

 qworst = q 
 Refset=Sort(Refset) 
 NewSolution = TRUE 

 else 
  q= Improvement Method 1(q) 
  If F(q  )< qbest solution in RefSet 
   qbest =q  

NewSolution = TRUE 
endif 

 endif 
 endwhile 
endwhile 

5. Population Based Incremental Learning Approach 

5.1 An Overview 

Estimation of Distribution Algorithms are Evolutionary Algorithms that work with a population of 
candidate solutions. At first an initial population is generated and their members are evaluated using 
the objective function. Those with better function values are selected to build a probabilistic model of 
the population, and a new set of points is sampled from the model. The process is iterated until a 
termination criterion is fulfilled. 

Therefore EDAs’ approach is based on the evolution of a probabilistic model of the solution space. 
The potential solutions included in the population are assumed as realizations of multivariate random 
variables, whose joint probability distribution can be estimated and updated. In this sense, a solution 
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vector q ={ q1, q2, ..., qn} can be considered as a sample of an n-dimensional vector Q = { Q1, Q2, ..., 
Qn} where Qi  is a binary variable. 

Several EDAs have been proposed with a variety of models and learning algorithms. EDAs can be 
broadly divided, according to the complexity of the probabilistic models used to capture the 
interdependencies between the variables, into  univariate, bivariate or multivariate approaches [19-20]. 

An univariate EDA, called PBIL, was originally proposed by Baluja [21] who introduced the 
concept of competitive learning (typical in artificial neural networks) to guide the search. The 
technique explicitly maintains statistics about the search space and uses them to direct its exploration. 
The objective of the algorithm is to create a real valued probability vector which, when sampled, 
reveals high quality solution vectors with high probability. 

The original PBIL methodology considers independent variables, thus the product of their marginal 
distributions constitutes the joint distribution of all variables. This is updated to take into account the 
structure of best current solutions. The use of PBIL with univariate probabilistic models has shown 
good results for solving complex problems [23-24]. 

In this work a parallel implementation of the algorithm that allows NPBIL instances being executed 
independently is applied. After the NPBIL populations evolve one iteration, their probability vectors 
are related by means of uniform crossover using a crossover probability Pinteraction. 

5.2 Special features of PBIL-based strategies for Sensor Network Design 

5.2.1 Initial Solution and Evaluation Function  

The procedure devised to create the set Refset is also applied to generate the initial population for 
each instance, which is made up of N individuals. Furthermore the function defined by equation (4) is 
selected as the evaluation function. It should be noted that certain features of the proposed 
methodologies are maintained fixed in order to perform comparisons on the same basis. 

5.2.2 Marginal Distribution Estimation  

The initial population is used to estimate the marginal probability of the variables for the first 
iteration of the algorithm. Each random unidimensional variable Qi (i =1:n) follows a Bernoulli 
Distribution. The maximum likelihood estimate of the expected value of Qi is its sample mean. 
Therefore the vector of sample means for each instance is evaluated as follows 

 

 ∑
N

i i
1

1p = q
N

    (i =1:n) (9) 

5.2.3 Selection and Local Search 

The probabilistic model of the solution space is used to generate another set of solutions by 
simulation. Then,  Improvement Method 2 is applied  to each member of the population. The best one 
in terms of the F values is selected in order to upgrade the probability vector. 
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5.2.4 Distribution Probability Upgrade 

The probability vector is updated, position by position, using the learning rate LR as follows 
 
 LRsLRpp i

c
i

u
i +−= )1(    (i =1:n) (10) 

 
where u

ip  is the updated probability, c
ip  stands for the current probability and si represents the i-th 

element of the best solution. 
The value of LR is essential to the convergence of the algorithm. High values of LR introduce a bias 

towards specific solution structures avoiding the exploration of different regions of the search space; 
consequently they originate problems of premature convergence. 

5.2. Mutation 

To introduce diversity in the search, each element of the probability vector is involved in a mutation 
procedure, with probability PMUTA, as follows 

 
 MSrandMSpp c

i
u
i )1,0()1( +−=    (i =1:n) (11) 

 
where MS is the mutation amount [28]. 

5.3 PBIL Based Procedure 

Initiate NPBIL probability vectors pk (k =1,…,NPBIL) 
while (stopping criteria  = .FALSE.) 
    for k = 1,…, NPBIL do 
       Generate N individuals by simulation according to pk 
       Evaluate the fitness function F for each member of the population 
       Apply the Improvement Method 2 to each member of the population 
          Select the best solution  
          Upgrade pk using the best solution and the learning rate LR 
          Mutate pk using a probability of mutation PMUTA and a quantity of mutation MS 
    end for 
    Set OffSpring= Ø 
    for k = 1,…, NPBIL step 2 do 
    Select 2 individuals (parents) among all vectors p 
    if random<Pinteraction 
               Use uniform crossover to calculate two children 
         Add children to OffSpring 
   else 

        Add parents to OffSpring 
   endif 
    endfor 
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     for k=1,..., NPBIL do 
             Set pk=OffSpring(k) 
    endfor 
endwhile 

6. Analysis of Results 

Previous methods are applied to the instrumentation design of process flowsheets frequently used as 
test cases in the literature. Problem 1 and 2 are solved for different case studies, and a comparative 
performance analysis is conducted. First both problems are described; then results are presented and 
discussed. 

6. 1. Problem 1 

The minimum cost SNDP that satisfies precision and estimability constraints for a set of key 
variable estimates is formulated as follows 
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where cT is the acquisition cost vector; jσ̂  is the standard deviation of the j-th variable estimate after a 

data reconciliation procedure is applied and Ek stands for the degree of estimability of variable k. For 
this formulation Ek is set equal to one, consequently only a variable classification procedure run is 
needed to check its feasibility. Furthermore σS  and SE are the set of key process variables with 

requirements in precision and estimability respectively. 
For Problem 1 five case studies are solved that are presented in order of increasing complexity. 

a) Cases 1 to 4  
The selection of flowmeters for an industrial steam metering network is performed. The process 

consists of 11 units interconnected by 28 streams. It is assumed that there is no restriction for the 
location of sensors on any stream, therefore the search space is made up of 228 solutions. Data of cost 
and standard deviation for measurement errors are obtained elsewhere [1]. This flowsheet is frequently 
used to test new methodologies in the area of process monitoring.  

Different case studies are run increasing the number of streams subject to estimability and precision 
constraints. In this sense, the set of key variables for Cases 1 and 2 is constituted by only three 
flowrates, but they are associated with distant streams for the second case. The number of key 
variables is increased to 6 and 10 for Cases 3 and 4 respectively. In Table 1 this information is 
summarized. 
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All cases were previously addressed using the HGA procedure. Furthermore Cases 1, 3 and 4 were 
presented in Carnero et al. [15-16]  where it was reported that the technique SO-TS outperforms both 
HGA and C-TS. 

Table 1. Case Studies’ Constraints. 

Case Constraints 
1 E ≥ 1 for stream  1 

*
2σ =0.025 *

6σ =1.785 

2 E ≥ 1 for stream  2 
*
10σ =1.048  *

28σ =1.445 

3 E ≥ 1 for streams 17  23 
199.2*

4 =σ 281.3*
8 =σ 754.1*

21 =σ 709.1*
25 =σ  

4 E ≥ 1 for streams 7  16  18  20  
199.2*

4 =σ  065.1*
5 =σ  281.3*

8 =σ 345.1*
12 =σ 415.1*

27 =σ 445.1*
28 =σ  

5 E ≥ 1 for streams  5 12 14 35 37 44 62 70 77 
*
10σ =1584.2, *

17σ =1359.6, *
35σ =200.7, *

39σ =1580.6, *
56σ =122.72, *

69σ =1284.4 

6 *
4A = 0.9, *

8A = 0.9 
 *

3σ =0.7, *
8σ =0.5 

7 *
4A = 0.8, *

8A = 0.8, *
10A = 0.8 

 *
3σ =0.7, *

8σ =0.15 *
12σ =0.4 

 
b) Case 5 

The flowmeter network design for a simplified ethylene plant is conducted. The process involves 82 
streams and 47 units. It is assumed that the standard deviation of flowmeters is 2.5% of the 
corresponding true flowrates [15]. The search space of this problem is made up of 282 solutions, 
therefore it is large in comparison with other cases presented in the literature. In Table 1 the 
constraints of the optimization problem are included. 

Case 5 was previously solved using the method SO-TS, which also showed better performance than 
C-TS and HGA to address this design problem. 

6.2. Problem 2 

The problem of minimizing the life cycle cost of an arrangement of sensors subject to precision and 
availability constraints on a set of key flowrate estimates is posed as follows 
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where LCC indicates the life cycle cost of the sensor structure, Ak stands for the availability of the k-th 
variable estimate and, Sσ and SA are the set of variables subject to precision and availability constraints 
on their estimates respectively. The formulations used for LCC and Ak in this work are the same 
presented by Carnero et al. [16]. Variable availabilities are calculated using the cutsets of the process 
graph and sensor failure probabilities. The evaluation of availability constraints incorporates additional 
complexity to Problem 2. Two case studies are presented for this formulation that differ in the number 
of problem constraints.  
Cases 6 and 7 

The flowmeter network design for a simplified hydrodealkylation plant, constituted by 8 nodes and 
14 edges, is conducted by solving the optimization problem represented by equation (13). The search 
space is formed by 214 solutions. Process flowsheet, purchase cost and precision data for the set of 
available sensors are extracted from the work by Viswanath and Narasimhan [5]. Problem constraints 
are included in Table 1. 

Also Cases 6 and 7 were previously solved using the SO-TS procedure [16] which systematically 
outperforms C-TS and HGA.  

6.3. Results 

In this study strategies’ performances are compared in terms of solution quality, computational 
effort and robustness. All procedures were developed using MATLAB program. Regarding the initial 
condition of the algorithms, the local-search procedures SO-TS and PR-TS are run using the same 
initial solution, which is the best solution of the initial population generated to run SS and PBIL based 
methods. 

In Table 2 the parameter settings for each technique are provided. Table 3 presents the solutions 
obtained for each case study. Regarding the population-based algorithms, the minimum and average 
solution values and the coefficient of variation (CV), obtained by the execution of 20 runs, are 
reported. 

Regarding the quality of solutions, the same results are obtained for both local-search procedures in 
general. Nevertheless for the largest problem instance, Case 5, SO-TS achieves a lower objective 
function value than PR-TS does. Furthermore the comparison between the population-based 
algorithms reveals the superiority of PBIL because if finds the reported minimum value for each test 
case for most of the runs. These solution values are obtained by both SO-TS and PBIL. 

The number of calls to the evaluation function, reported in Table 4, is considered as a measure of 
the time spent by each meta-heuristics. The rationale behind this assumption is that the time consumed 
in function evaluations is approximately 90% of the total elapsed time by each procedure. 
Computational experiments support this assertion. 

The minimum number of required calls to obtain the solution is reported for SO-TS and PR-TS. The 
average values of calls are presented for population-based algorithms. 

It can be seen from Table 4 that the procedure PR-TS requires more function evaluation calls than 
SO-TS to obtain solutions of the same quality. Regarding the population-based strategies, PBIL 
achieves better solutions than SS at the expense of consuming more calls. It should be noted that the 
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ratio between the number of calls required by PBIL and SS diminishes considerably for the test case of 
largest dimension. 

Table 2. Parameters of the Implemented Strategies. 

Parameter Value SO-TS PR-TS SS PBIL 

pt n⎢ ⎥
⎣ ⎦  n⎢ ⎥

⎣ ⎦  --- --- 

ph 23 60 --- --- 

Lo 
1

n

i
cos t( i ) max(cos t )

=

+∑ --- --- --- 

L1 0.8*n --- --- --- 
|R| --- 10 --- --- 
frecpr --- 15 --- --- 
# Max Iter 300 200 --- 100 
|Refset| --- --- 12 --- 
NPBIL --- --- --- 8 
N --- --- --- 12 
Pinteraction --- --- --- 0.7 
PMUTA --- --- --- 0.02 
MS --- --- --- 0.05 
LR --- --- --- 0.1 

Table 3. Solutions of the Case Studies. 

Case SO-TS PR-TS 
SS (for 20 runs) PBIL (for 20 runs) 

Min Mean CV Min Mean CV 

1 533.6 533.6 533.6 587.9 11.28 533.6 533.6 0.00 

2 894.9 894.9 894.9 1006.3 17.90 894.9 894.9 0.00 

3 752.3 752.3 752.3 767.4 2.33 752.3 754.0 0.98 

4 1178.0 1178.0 1178.0 1178.0 0.00 1178.0 1178.0 0.00 

5 50,845 50,846 50,847 54,183 6.32 50,845 50,846 0.08 

6 62,322 62,322 62,322 63,535 4.54 62,322 62,322 0.00 

7 80,548 80,548 80,548 80,821 0.22 80,548 80,567 0.11 
 

The procedures are also run using random initial solutions to analyze their robustness. Twenty runs 
are performed for Case Study 5, which is the largest problem instance. Statistics of the objective 
function values are reported in Table 5. This shows that the lowest objective function value is obtained 
by the SO-TS technique. Nevertheless the biases of the mean values, with respect to the minimum 
reported value, of the local-search procedures are considerably higher than those corresponding to 
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population-based algorithms. Furthermore, PBIL is more robust than SS because it presents lower 
values for the bias and CV. 

Table 4. Number of calls to the evaluation function. 

Case SO-TS PR-TS SS (AVG) PBIL (AVG) 

1 717 1,130 3,795 16,540 
2 781 1,063 4,771 16,674 
3 39 56 2,631 15,622 
4 110 413 1,928 7,326 
5 8,298 10,535 129,369 253,364 
6 42 56 1,442 6,882 
7 260 600 2,112 9,621 

Table 5. Case Study 1 Solutions using Random Initialization. 

 SO-TS PR-TS SS PBIL 
Min 50,846 54,974 50,847 51,124 
Max 290,572 290,296 290,295 55,312 
Mean 197,612 265,620 66,711 51,989 
Deviation 116,792 73,913 52,803 1,375 
CV 59.10% 27.83% 79.15% 2.64% 

7. Conclusions 

Meta-heuristic approaches for the design of SNs in chemical plants are presented and compared in 
this work. Within the framework of TS, an ad-hoc PR technique is implemented to provide better 
intensification and diversification capabilities to TS. Also methods based on SS and PBIL meta-
heuristics are proposed, and a parallel procedure is implemented for PBIL.  The performance of these 
strategies for solving test cases from the literature is analyzed. 

In relation to local-search procedures, the incorporation of the PR technique within the framework 
of TS does not provide advantages for solving the SNDP with respect to the procedure SO-TS 
presented in a previous work.  

Regarding population-based algorithms, PBIL presents a better overall performance. The mean 
value of the objective function and the coefficient of variation are lower than the corresponding ones 
to SS for all cases. Also the technique based on SS is more sensitive to the quality and diversity of the 
initial set of solutions than the design method based on the PBIL algorithm. 

The comparison of  SO-TS and PBIL strategies indicate that the first one strongly depends on the 
quality of the initial solution.  If a good starting point is provided it produces a high quality solution 
with a low computational effort. In contrast, PBIL is more robust. It is capable of making replicas of 
the best solutions starting from lower quality initial points at the expense of an increment of the 
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computational time. As PBIL algorithms can be naturally run in parallel, the total elapsed time can be 
reduced for a given number of calls. In this case, data transfer among parallel processors should only 
be performed for the crossover of probability vectors. Furthermore it should be noted that solution 
improvement methods based on local search enhance significantly the performance of population-
based strategies.  
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Notation 

Ak Availability of the k-th variable estimate 
c Acquisition cost vector 
d Hamming distance  
Ek Degree of estimability of variable k 
f Objective function value 
F Evaluation function 
n⎢ ⎥

⎣ ⎦  nearest integer of n  towards minus infinity 

frecpr PR frequency 
g Vector of constraints  

GS Guide solution for PR 
h Frequency based Tabu list 
I0 Initial set of instruments 
IS Initial solution for PR 
Lo Lower bound for TS 
L1 Upper bound for TS 

LCC life cycle cost of the sensor structure 
LR Learning rate 
MS Mutation amount 
N Number of process variables 
N Neighbourhood of possible solutions 
N Number of individuals for each instance of PBIL 

NPBIL Number of instances of PBIL executed in parallel 
# Max Iter Maximum Number of Iterations for TS 

pt Tabu Tenure Period 
Pinteraction Crossover probability for PBIL 

PMUTA Mutation probability for PBIL 
q Solution vector 
Q Penalty function 
Q Random n-dimensional vector 
|R| Cardinality of the Reference Set for PR 

|Refset| Cardinality of the Reference Set for SS 
Ru Number of unsatisfied constraints 
R Process model equations 
S Set of key variables 
σS  Set of key variables subject to precision constraints 
σS  Set of  key variables subject to estimability constraints 

SA Set of key subject to availability constraints  
t Recency based Tabu list 
u Vector of unmeasured variables 
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x Vector of measured variables 
z Vector of process variables 

jσ̂  Standard deviation of the j-th variable estimate 

Acronyms 

CV Coefficient of Variation 
EDA Estimation of Distribution Algorithm 

GA Genetic Algorithm 

HGA Hybrid Genetic Algorithm 

PBIL Population Based Incremental Learning Algorithm 

PR Path Relinking 

SN Sensor Network 

SNDP Sensor Network Design Problem 

SO Strategic Oscillation  
SS Scatter Search 

TS Tabu Search 
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