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Abstract: The author surveys algorithms used in star identification, commonly used in star
trackers to determine the attitude of a spacecraft. Star trackers are a staple of attitude deter-
mination systems for most types of satellites. The paper covers: (a) lost-in-space algorithms
(when no a priori attitude information is available), (b) recursive algorithms (when some a
priori attitude information is available), and (c) non-dimensional algorithms (when the star
tracker calibration is not well-known). The performance of selected algorithms and support-
ing algorithms are compared.
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1. Introduction

The requirement for attitude (orientation) information of a spacecraft has been the mother of invention
of many devices and algorithms, notably the process of autonomously identifying stars (Star-ID). Though
there is much history of devices used to identify stars and compute an attitude that do not use a star
camera, this paper primarily analyzes algorithms that use a star camera with an imaging array and an
algorithm to match observed (body) directions of stars with catalog (inertial) directions of stars without
requiring reorienting the camera or the spacecraft. These algorithms fall into two basic categories, lost-
in-space algorithms, in which no information regarding the attitude of the spacecraft is available, and
recursive algorithms, in which some information regarding the attitude is available. These techniques
typically use inter-star angles (the angle between the line-of-sight of two stars from the perspective of a
camera), the brightness of the stars, and some computations of these values to distinguish stars. A further
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subcategory of both categories is non-dimensional Star-ID, in which the exact angular separations are
not required but the values are normalized to be insensitive to poor camera calibration, or time-varying
camera calibration parameters [1–3].

Figure 1. Typical Star-Tracker Image-based Attitude Determination Flow.

Star-ID is just one step in the process of determining the attitude of a spacecraft, as depicted in Figure
1. The first algorithms in the sequence measure body-frame vectors for the locations to observed stars.
The Star-ID process has as its primary purpose determining the inertial-frame vectors for some or all
of the body-frame vectors given to it. Subsequent algorithms determine a suitable transformation that
correctly maps the body vectors to the inertial vectors, thereby calculating the spacecraft’s attitude. When
sensing the stars with a CCD imaging array, the information available for the identification process is the
brightness of the star and the angular separation between stars.

Figure 2. Typical Star-ID Process.

Star-ID task has three basic pieces, with an optional fourth, as illustrated in Figure 2. First, an al-
gorithm must extract features from a set of body vectors and associated brightness. Second, a database
search matches a subset of the observations with entries in the database, and third makes some estimate
as to the probability that they are correct. Optionally, the remaining body vectors are identified once
an estimate of the attitude is available in a method called “recursive” Star-ID. This fourth step typically
implements a variation of the “direct match” technique in which stars are identified by their close prox-
imity to their predicted location. The recursive mode is typically much faster than the first two, and can
usually be repeated successively for additional observations with an a priori estimate of the attitude.

1.1. Topics Covered, Notation, and Figures

The algorithms surveyed in this paper are evaluated by the analytical asymptotic performance of

1. the feature extraction step,
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2. database search, and

3. their utilization of independent pattern features in the star features based on how many stars are
used in a pattern.

For all cases, the number of stars referenced in the star catalog is n, the average number of stars observed
in the field of view of the camera is f , and the number of stars in a pattern is b. Although a star pattern

containing b stars has
b(b− 1)

2
inter-star angles which may be measured, the number of independent

pattern features for a star pattern of b stars, is only (2b−3), since some inter-star angles are dependent on
the values of others. By including star magnitude information, which is typically much less precise than
inter-star angle information, an additional b independent pattern features may be used. Throughout this
paper, the use of asymptotic notation, O(. . .), is used to indicate the highest order term in the running
time of an algorithm. Algorithms are analyzed based on the described implementation in the referenced
papers. Any assumptions drawn about their performance time, when not directly stated in the paper, is
based on the progression and availability of certain algorithms at the time, although alternative running
times are discussed if it seems likely they could have been implemented. Furthermore, the common
computer science notation, “lg n” is used to mean “log2 n”.

To preserve the original authors’ intent, the figures shown here are duplicated from the referenced
papers.

2. The Beginning

After the first CCD-based star tracker was developed by Salomon in 1976 at JPL [4], Junkins, Turner,
Strikwerda [5, 6], and others began work on implementing an algorithm that could identify stars in
real-time. While they realized the benefit of using the easily-computable sine of inter-star angles as a
pattern feature, the key problem that arose was the matching of observed inter-stars to the items in the
database. After several years of work and a few conference papers, Junkins et al. published “Star Pattern
Recognition and Spacecraft Attitude Determination” in 1981 [7]. Although the algorithm was able to
identify star triplets, it had the primary limitation of requiring an a priori estimate of the spacecraft’s
attitude before it was able to perform in real-time. The reason is that Junkins had used “sub catalogs”
of the sky, illustrated in Figure 3, each representing a portion of the sky, in order to accelerate the
computation. Although the method was robust to non-stars because the catalog included all combinations
of stars that might be observed, it only updated the attitude estimation algorithm once or twice a minute,
as contrasted with the angular rate sensors, which updated at 1, 000 times per minute. The majority of
the attitude estimation was propagation of the angular rate sensors, and periodic checks were established
to confirm and improve the propagated attitude. Junkins’ feature extraction runs very fast, in O(b)

time, since it may select any three of the observed stars and measure the sine of their inter-star angles.
However, since his database search considers every possible permutation of stars available in a given
region of sky, the search time is O(f 3), where f is the number of stars in a given sub-catalog, usually the
same size of a given field of view. The time to perform Star-ID increases if the stars are not located in the
predicted field of view as other sub-catalogs are searched. The database itself would grow as O(nf 2).

In 1986, Groth [8] suggested that a faster way to search the sub-catalogs would be to sort the triangles
sides in order based on permutation-invariant values such as the logarithm of the perimeter of a triangle.
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Figure 3. Field-of-view-sized sub-catalogs (reprinted from [7]).

He admits, however, that his algorithm runs at high polynomial power of n, much as Junkins’ has.
Groth’s algorithm differs in that the performance has a lower constant factor. While the asymptotic
order of the database is identical to Junkins, there would be more data included, associated with the
permutation-invariant values.

In 1987, Sasaki [9] and others published a patent showing how to improve the search time by using
the area of a star triangle and the sum of the luminous intensities as preliminary markers in performing
the star identification, using O(b)-time for star feature extraction. His method does not discuss the way in
which the database is searched, requiring only that a “number of stars” will be selected from the database
by a method using “parallel, serial, or the like” processors. It is not noted whether his database indeed
contains as many star triplets as does Junkins’ method, nor is the search procedure described.

Later, in 1989, Van Bezooijen [2] suggested in his dissertation that the speed of the star pattern recog-
nition algorithm could be improved by making more use of the available information in the star patterns.
Van Bezooijen discussed directly the relationship between the number of stars and the amount of in-
formation available from a star pattern with a given number of stars. His analysis also included a very
detailed statistical probability that a star had been identified correctly. Unfortunately, Van Bezooijen’s
method sometimes required the spacecraft to slew in order to detect stars for his Star-ID method, and as
such, his work is not covered in depth here.

In 1991, with Junkins on his advisory committee, David Anderson [10] addressed the ambiguity of the
order of star triplets by proposing a permutation matrix, and the development of star pattern parameters
that were independent of the order in which the stars are selected. Sticking with the tried-and-true star-
triple pattern, Anderson also proposed the use of an array processor to handle the matrix multiplications
required to use his permutation matrices. Unfortunately, the database storage remained O(nf 2), and
there was no advance made on the database search. Anderson suggested that an array processor be
used to perform the matrix multiplication, decreasing the running time of the Star-ID process. The
design engineer should note that array processors, while performing a comparatively large number of
computations when contrasted with a serial processor, also use a comparatively large amount of power,
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because they both tend to use identical amounts of energy to perform each computation.

3. Search Process Acceleration

The next year, Liebe [11] made the critical connection of the feature selection process to the database
search time, making the Lost-In-Space problem tractable. Liebe suggested the use of the two closest stars
to a selected star as components of the star pattern, and the angular separations from the two closest stars
and the angle between them as his parameters, as illustrated in Figure 4, and addressed the situations
in which predicted stars would not be seen due to their magnitude being very close to the detection
threshold. Liebe also address the situation in which small errors would cause the incorrect selection of
the closest two stars when the distance to these stars were similar. Although Leibe’s feature extraction
process now took O(f lg b)-time to compute, his database could be reduced to O(n), and subsequently,
his database search could be performed much faster, though still linear-time. Liebe makes full use of the
available angular independent pattern features, neglecting the stellar magnitudes. Liebe later implements
the optional recursive direct match mode which could identify the remaining stars up to 20 times faster
than the Lost-In-Space algorithm.

Figure 4. Liebe’s parameters, 2 inter-star angles and 1 interior angle (reprinted from [11]).

Then in 1993, Baldini [12] proposed a multi-step Star-ID method. Baldini’s method identifies the
brightest b stars in a given image, requiring O(f lg b) time. He then measures the angular separation
of the sequence of five stars, O(b) time. Baldini then proceeds through a linear search of the catalog
search for every star in the catalog which falls within an acceptable tolerance range of the observed
stars, requiring O(bn)-time, neglecting the time for dynamic list creation, although this step would be
improved by other algorithms in the future. If we use the expression ∆m to represent the fraction of
stars in the catalog that fall within the acceptable range, he has an intermediate result of O(∆mn) stars
in each of b lists. He then compares the distance of each star in adjacent lists determining if any star
cannot have an angular separation within the tolerance of the observed angular separation, requiring
O (b(∆mn)2)-time, although as he points out, as items are eliminated the number of comparison at each
iteration is reduced. Baldini is then left with b lists containing stars that meet their neighboring distance
criteria, he then forms all combinations of the stars, discarding combinations whose sequence of angular
separations does not match the observed stars. The running time of this step is represented analytically
by O

(
ab

)
, assuming there are approximately a stars in each of b lists. It is certain that the rejection of

certain combinations in the second or third step is sure to reduce the total number of comparisons, and
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Baldini is certain to conclude with only one or two possible combinations of stars. Baldini has used
five stars, inherently containing twelve independent features, but uses only nine when performing his
identification process, suggesting the required field of view may be larger for Baldini’s method when
compared to other methods to be sure that there will be enough visible stars. Although non-stars will get
weeded out in the process, the addition of non-stars to the algorithms increases most of the steps linearly
or quadratically.

In 1995 Ketchum [13] proposed a second sequential filtering algorithm, this time using the brightness
of the brightest star to attempt to determine the likelihood of pointing in any particular direction. She
then filters the list of possible stars using the brightness of the second brightest star. Although she admits
the algorithm would need to search as much as 43% of the catalog for the appropriate stars, she notes
that the storage space required by his algorithm is much less than required by Van Bezooijen’s method.
Furthermore, Ketchum is one of few to give direct empirical data regarding the running-time of his
algorithm, reporting it requires up to 63 seconds to run on a 50 MHz processor.

Later in 1995, Scholl [14] published a more straightforward method. The inter-star angles were to
be ordered by their relative brightness, eliminating the permutations that arise when considering the
possible orders of three stars. Unfortunately, Scholl retains the O(n f 2)-sized catalogs, and does not
specify the search technique used. While it’s true that his method uses less time to search the database
when compared to Baldini, it is nonetheless still O(n f 2), since faster techniques were not proposed until
the following year.

3.1. Search Time Dramatically Reduced

In 1996, Quine [15] was the first to attack the database search problem head on, realizing that a binary
search tree (see Figure 5) could be used to search the database in O(lg n)-time. He retains Liebe’s use
of the two closest stars to a given star to form a pattern, resulting in a database of size O(n), instead
of previous catalogs that used all observable combinations of stars. While this increases his feature
extraction time to O(f lg b), the trade off is quite advantageous for large values of n.

Figure 5. Quine’s Binary Tree (reprinted from [15]).



Algorithms 2009, 2 99

3.2. Novel Grid Algorithm

In 1997, Padgett [16] published perhaps the first novel star pattern recognition algorithm, which
actually used a star “pattern.” Padgett’s grid algorithm cast the locations of neighboring stars as items on
a loose grid (see Figure 6). Padgett solved the roll ambiguity by rotating the observed stars about a given
star until the nearest star to the given star was aligned with the x axis. The cells in the grid were then
considered to be “on” if there was a star located inside it, and “off” if there were not. The locations of
the “on cells” then become the features, the indexes of the “on cells” were listed as items in a vector. His
feature extraction time became O(f). Unfortunately, Padgett was unable to improve the database search
time for his features beyond linear, and the resulting database search remained O(n). Further analysis
indicated that Padgett’s method was quite robust to the presence of non-stars owing to its large grid cell
size when compared to the angular error in star position.

Figure 6. Illustration of Padgett’s Grid Algorithm (reprinted from [16]).

3.3. Search Time Reduced Much Further

Later in 1997, Mortari [17, 18] proposed an even faster database search technique, the “Search-Less
Algorithm,” (SLA). Mortari retained the approach of selecting any pair of stars in the field of view, O(b)-
time, but he proposed using a “k-vector” to search the database in an amount of time independent of the
size of the database [19]. Figure 7 shows the k-vector construction for a 10-element database. The small
horizontal lines are equally spaced and they give the k-vector values: 0, 2, 2, 3, 3, 5, 6, 8, 9, 10.

The search time for a single star-pair would be O(k), where k is the number of possible star pairs with
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Figure 7. Example of k-vector construction (reprinted from [19]).
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inter-star angles within the measurement tolerance. Unfortunately, the dominant time of the algorithm
came when comparing multiple lists of stars returned for each inter-star angle. Since multiple stars had
to have all their inter-star angles confirmed to be a match, the running time of the comparison would
be O(bk2), and b is the number of stars in the pattern required to guarantee uniqueness. Even though
the resulting value of k would be a number based on the uncertainty associated with the inter-star angle
measurement and the number of observable star pairs, Mortari had made the first important step in
breaking the dependence of the database search time on the size of the database. Mortari’s method could
also reject a single non-star from a set of selected stars, without loosing the progress made in identifying
the others. The resulting Search-Less Algorithm (SLA) was then successfully tested on orbit on an Indian
satellite [20].

A few years later, realizing that the robustness to non-star “spikes” was essential towards reducing the
number of iterations of his algorithm, Mortari developed the “Pyramid” algorithm [21] which uses an
optimal permutation algorithm to exploit the ability of his algorithm to select which stars to match. This
permutation is written to minimize the time spent considering stars that don’t match, fearing them to be
non-star spikes. The code has been tested to reject non-stars in an image containing only five real star but
with 63 non-stars thrown in. The Pyramid algorithm has been successfully tested on Draper’s “Inertial
Stellar Compass” star tracker [22] and on MIT’s satellites HETE and HETE-2 [23]. This algorithm is
presently under exclusive contract to StarVision Technologies.

Neural networks, have been proposed for use in Star ID as early as 1989, [24]. In 2000, Hong
[25], proposed using a neural network and fuzzy logic to identify the stars, as illustrated in Figure 8.
Hong used the popular ordered triple, based on star brightness, and fed the resulting angular separations
into a neural network. While his feature extraction process runs very fast, O(1), he is forced to use a
massively parallel architecture to implement the neural network. Though such techniques may be used
with much success on ground-based systems, it is uncertain if this technique is the best for use in a



Algorithms 2009, 2 101

system with limited electrical power, or that requires expensive radiation-tolerant hardware. Hong notes
quite accurately that his algorithm performs much faster than some other of the mentioned algorithms,
referencing Van Bezooijen, Quine and Ketchum, but failed to make a comparison with Mortari’s method.
Hong readily admits that his technique requires more than a quarter-million multiplications.

Figure 8. Hong’s Neutral Network (reprinted from [25]).

Then in 2007, Guangjun [26] proposed a feature extraction technique, similar to Liebe [11], using the
inter-star angles and the angle made by two stars relative to a central star. Though his feature extraction
time is O(f lg b), he uses a linear database search, performing bit-by-bit comparisons, running in O(n)

time. While Guangjun’s claim [26] is true that his algorithm runs faster than Padget’s grid algorithm
[16], similarly to Hong [25], he fails to compare his algorithm to more-recent faster algorithms.

In 2008, Kolomenkin [27] proposed a modification of the SLA algorithm to reduce the time spent
cross-checking the results of the k-vector. In the original SLA algorithm, Mortari selects any four stars
in the image and performs six k-vector searches to find six lists of approximately k = 100 candidate star
pairs. The cross checks take O(k2)-time, and this cross-check step is the bulk of the time used by the
SLA algorithm. Kolomenkin suggests, however, finding all lists of all possible stars in the image (which
is O(f 2)-searches) and maintaining a list of the number of times each visible star is listed in a particular
search result, O(fk) items). Once all the inter-star angles have been determined and the stars voted,
the visible-catalog star match with the largest number of votes is considered to be the correct answer,
and the results are filtered from there. This latest step would have running time O(fk). While the
algorithm does perform the cross check O(k/f) faster than the SLA, it calculates O(f 2) more inter-star
angles, and k-vector searches, each of which takes O(k)-time, contributing an increase of O(kf 2)-time.
For the purpose of this analysis, the time for list insertion for keeping track of voting is assumed to be
O(1), though in practice it is difficult to perform this step in less than O(lg k)-time. So Kolomenkin’s
modification would run asymptotically faster in systems for which f 2 < k. Since, in a given system, f

tends to be on the order of 10 to 40 and k on the order of 100, it seems dubious the algorithm achieves any
real decrease in asymptotic running time, most likely if any improvement is achieved, it is by a constant
factor. In the paper, Kolomenkin did not provide any direct performance comparison to the unmodified
SLA.
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For the reader’s convenience, the major advances in asymptotic performance of Star-ID are listed in
Table 1.

Table 1. Summary of Advances in Asymptotic Performance.

Author Year Feature Database Database Validation Used
Extraction Size Search measurements

/Available

Junkins 1981 O(b) O(nf 3) O(f 3) N/A 3/3
Liebe 1992 O(f lg b) O(n) O(n) N/A 3/3
Baldini 1993 O(f lg b) O(nb) O(b(∆mn)2) O(ab) 9/12
Scholl 1995 O(b lg b) O(nf 2) O(nf 2) O(k) 6/6
Quine 1996 O(f lg b) O(n) O(lg n) N/A 6/6
Padgett 1997 O(f) O(n) O(n) N/A 2f/2f

Mortari 1997 O(b) O(nf) O(k) O(bk2) 6/6
Kolomenkin 2008 O(b) O(nf) O(k) O(kf 2) 6/6

4. Non-dimensional Algorithms

In 2003 Samaan, along with Junkins and Mortari [3], presented a new Star-ID technique that was
robust to calibration errors. For flight systems in which temperature variations would cause cyclic vari-
ations in the accuracy of the calibration, the new technique would promise to eliminate the ambiguity in
matching star patterns. Instead of using the inter-star angles between stars in a triangle, Samaan used the
triangle’s interior angles, the angle between two stars, with a third star as a vertex. While the inter-star
angles respond linearly to changes in temperature, the triangle interior angles are invariant in the first
order of the distortion, as illustrated in Figure 9. Samaan’s technique uses the smallest and largest of the
interior angles to place stars in a catalog, so the feature extraction time is O(lg b). The database is sub-
sequently searched with Mortari’s k-vector searching technique, taking O(k) time. Samaan’s numerical
tests found that at least five stars must be matched before the technique produces, which introduces a
cross-checking routine, using O(b k2)-time. Samaan concludes the paper by using Star-ID to re-calibrate
the camera.

Rousseau also published a method in 2005 [28], which he billed as being robust to errors introduced
by new CMOS Active Pixel Sensors (APS). His metric is the sine of star-triangle interior angles, but
instead of using any combination of stars, he used only the closest two stars, and used only one of
the three (two independent) interior angles as a parameter. His pattern selection pattern means there is
only one entry in the catalog for each star; so his catalog size is O(n). It also follows that the feature
extraction time is O(f lg 2) = O(f). Furthermore, Rousseau does not specify a method for selecting
star triangles from the catalog, but according to his published parameter distribution, the fastest method
available would be a binary-tree search, taking O(k lg n)-time. Rousseau then actually computes the
attitude for each star triangle, and finds all the stars from the catalog that should be visible, which
should take no less than O(f), and more likely O(f lg n). Each observation is then transformed into
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Figure 9. Distortion from calibration variations (reprinted from [3]).

the reference frame. The observed stars are then matched up with catalog stars, and the inter-star angles
compared. The process by which this is done is not described, but likely takes O(f lg f)-time. The best
of the matches of all the triangles is then selected. The final analytic time of Rousseau’s algorithm is
then O(kf lg f lg n). It is unclear whether Rousseau’s performance data is on his original 45,000-star
catalog, or another mentioned, reduced 1,300-star catalog, but his timed results are disappointing; all
of his averages are longer than a second on a 650 MHz processor. Although the tests are performed
in MATLAB, which unnecessarily increases the computation time, it is unclear why Rousseau claims
the algorithm is fast from his reported data, and without any performance comparison to any other
algorithm. Furthermore, he does not describe why his validation phase, which uses inter-star angles to
reject incorrect matches, is more robust to APS-induced measurement errors, when the same inter-star
angles are used by previous methods, like SLA. It seems likely that he simply used the smaller star
catalog, in which larger measurement errors result in fewer incorrect matches. Rousseau’s parameters,
however, have the benefit that there is no ambiguity as to which star in the triangle is the listed star, as
long as the star triangle does not contain nearly identical angles.

5. Recursive Star Identification

Samaan made other advances for recursive Star-ID in 2005 [29]. His key to reducing the recursive
mode time was to speed the selection of stars that ought to be visible given some other visible stars. He
presented two methods, one which used the Mortari’s Spherical Polygon-Search (SP-Search) [30, 31],
which in turn used his k-vector, and the second which used a pre-built catalog of stars that should be
visible if another star is visible, the Star Neighborhood Approach (SNA). The SP-Search uses a k-vector
3 times to find the stars within calculated x, y, and z ranges in inertial space. By finding stars in common
in the three resulting lists, Mortari produces a list of stars that should be visible. Each of the three
database searches takes O(k) time, while the cross-comparison takes O(k3)-time. Samaan then uses the
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attitude estimate to search for the presence of these predicted stars in the set of the camera’s observed
stars. Samaan’s other method, the SNA, constructs a table ahead of time, of the six closest stars to any
given star, presuming these stars to be the most likely to be visible if the first star is found. Samaan’s
method takes O(b)-time to find candidate stars, if b stars are identified by the LISA. It is uncertain how
many successive iterations would be necessary to ensure that all the stars in the given field of view have
been found, other than it is most likely bounded by O(fb).

Star Trackers for Different Applications

Although Star-ID is predominantly used for attitude determination, it can be used for other spacecraft
related tasks. Here are some examples:

1. Star Gyros. With appropriate algorithms, images from star cameras may also be used for estimat-
ing the angular velocity of the spacecraft [32].

2. Space Surveillance. It can be used for space situational awareness to estimate the orbit of other
visible spacecraft [33–35].

3. Space Navigation. If placed on an interplanetary probe, it could observe visible planets and esti-
mate the location of the probe [36, 37].

4. Positioning System. If carried on a planet or moon, it could be used to estimate its position on the
body when combined with a clock and two inclinometers [30, 31].

Interesting research have been carried out to increase star sensor accuracy as well as to simplify the
Star-ID problem. Here are two examples:

1. Multiple Fields-of-View system. While attitude determination from a single star camera image
produces very accurate information about the direction of the camera boresight, the estimate of the
rotation about the camera’s boresight axis is less accurate. In order to solve this problem, a second
star camera is sometimes used. There is another method, which uses a single star camera to record
a combination of multiple star images simultaneously. For a two fields-of-view camera the light are
preferentially smeared by the optics (e.g., by adding astigmatism) so that stars from one aperture
are smeared in a horizontal direction in the image plane, while light from the other aperture is
smeared in the vertical direction [38, 39]. Image filtering algorithms can detect the direction of the
smearing and separate the stars according to which aperture they entered. If, however, the Star-ID
technique is very robust to the presence of non-stars, the Star-ID algorithm may be run many times
on the same image, perhaps on stars from three apertures, all in orthogonal directions [40–42]. In
these cases it is possible to separate the stars without the need for smearing the stars in a given
direction.

2. Techniques requiring multiple images as well as attitude maneuvers have been implemented [43].

3. Uniform Star Catalog. In order to develop optimized star sensing and star identification with
respect to continuous operation and reliability, the concept of star catalogs with near uniform
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angular spacing between stars has been proposed [44]. These catalogs are not characterized by
constant magnitude cutoffs. They are reference star catalogs where the expectation of the number
of stars that fall in a given field of view is approximately constant (i.e. 5 or 6) (minimum standard
deviation), independently which region of the sky the sensor optical axis is pointing.

6. Conclusion

Through the past three decades, steady advancements have been made by various authors, employ-
ing many techniques for autonomous Star-ID. Although many complex arrangements have found to be
successful, the trend for faster and more reliable methods saw rapid advancement in the 1990’s. Star-ID
techniques tend to fall in one of four categories separated by two decisions: whether or not to use star
brightness information, and whether to select any stars for a given star pattern or use ordinal informa-
tion from brightness or distance. Once the goal of solving the Lost-In-Space case from a single image in
real-time became possible without a priori information, advancements in the Star-ID field turned towards
improving the robustness of Star-ID to errors in detecting stars and measuring their features.
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