

Article

An Efficient Local Search for the Feedback Vertex Set Problem

Zhiqiang Zhang 1,2 , Ansheng Ye 1,2,* , Xiaoqing Zhou 1,2 and Zehui Shao 1,2

- ¹ Key Laboratory of Pattern Recognition and Intelligent Information Processing, Shiling, Institutions of Higher Education of Sichuan Province, Chengdu 610106, China; E-Mails: zzq118@163.com (Z.Z.); zxq@cdu.edu.cn (X.Z.); zshao@cdu.edu.cn (Z.S.)
- ² School of Information Science and Technology, Chengdu University, Chengdu 610106, China
- * Author to whom correspondence should be addressed; E-Mail: yas@cdu.edu.cn; Tel.: +86-028-84616090.

Received: 24 June 2013; in revised form: 7 August 2013 / Accepted: 28 October 2013 /

Published: 1 November 2013

Abstract: Inspired by many deadlock detection applications, the feedback vertex set is defined as a set of vertices in an undirected graph, whose removal would result in a graph without cycle. The Feedback Vertex Set Problem, known to be NP-complete, is to search for a feedback vertex set with the minimal cardinality to benefit the deadlock recovery. To address the issue, this paper presents NewkLS_FVS(LS, local search; FVS, feedback vertex set), a variable depth-based local search algorithm with a randomized scheme to optimize the efficiency and performance. Experimental simulations are conducted to compare the algorithm with recent metaheuristics, and the computational results show that the proposed algorithm can outperform the other state-of-art algorithms and generate satisfactory solutions for most DIMACSbenchmarks.

Keywords: feedback vertex set; local search; variable depth search; heuristic

1. Introduction

Inspired by many deadlock detection applications, the Feedback Vertex Set Problem (FVSP) is known to be NP-complete and plays an important role in the study of deadlock recovery [1,2]. For example, the wait-for graph is a directed graph used for deadlock detection in operating systems and relational database systems of an operating system. and each directed cycle corresponds to a deadlock situation in the wait-for graph. In order to resolve all deadlocks, some blocked processes need to be aborted.

A minimum feedback vertex set in this graph corresponds to a minimum number of processes that one needs to abort. Therefore solving the FVSP with more efficiency and better performance can contribute to an improved deadlock recovery.

To describe the FVSP, the following concepts are predefined. Assuming G = (V(G), E(G)) is a graph, then the set of vertices is denoted by V(G), and the set of edges of G is denoted by E(G). For $S \subseteq V(G)$, the subgraph induced by S is denoted by S. The set of vertices adjacent to a vertex, $i \in V(G)$, will be denoted by S is denoted by S and called the *openneighborhood* of the vertex, S. Let S be a graph. A feedback vertex set, S, in S is a set of vertices in S, whose removal results in a graph without cycle (or equivalently, every cycle in S contains at least one vertex in S).

The FVSP can be considered in both directed and undirected graphs. Let G be an undirected graph. A Feedback Vertex Set Problem (FVSP), S, in G is a set of vertices in G, whose removal results in a graph without cycle (or equivalently, every cycle in G contains at least one vertex in S). Let G be a directed graph. A feedback vertex set (FVS), S, in G is a set of vertices in G, whose removal results in a graph without directed cycle (or equivalently, every directed cycle in G contains at least one vertex in S).

Inspired by real world applications, several variants were proposed over the years. Some of them are summarized by the following definitions.

- (a) FVSP: Given a graph, G, the feedback vertex set problem is to find an FVS with the minimum cardinality.
- (b) The Parameterized Feedback Vertex Set Problem (DFVSP): Given a graph, G, and a parameter, k, the Parameterized Feedback Vertex Set Problem is to either find an FVS of at most k vertices for G or report that no such set exists.
- (c) The Vertex Weighted Feedback Vertex Set Problem (VWFVSP): Given a vertex weighted graph, *G*, the Vertex Weighted Feedback Vertex Set Problem is to find an FVS with the minimum weight.

The Parameterized Feedback Vertex Set Problem is the decision version of the feedback vertex set problem. The FVSP and DFVSP were classic NP-complete problems that appeared in the first list of NP-complete problems in Karp's seminal paper [3]. When the edges or arcs instead of vertices are considered, it becomes the corresponding edge or arc version. For example, the parameterized feedback arc set problem is to find out whether there is a minimum of k arcs in a given graph, whose removal makes the graph acyclic.

Let G be a graph. It is said that a vertex set, S, is an acyclic vertex set if G[S] is acyclic. An acyclic vertex set, S, is maximal if $G[S \cup \{v\}]$ is not acyclic for any $v \in V(G) \setminus S$. Note that if G[S] is acyclic, then $V(G) \setminus S$ is a feedback vertex set.

Without loss of generality, only the feedback vertex set problem for an undirected graph is considered in this paper, and the aim is to search for the largest subset, $S \subseteq V(G)$, such that G[S] is acyclic.

The rest of this paper is organized as follows: Section 2 presents the related work of local search heuristics. Then, Sections 3 and 4 propose the k-opt local search (KLS)-based local search algorithm and the KLS with a randomized scheme algorithm in detail. Section 5 conducts the experiments of both the proposed algorithms and the compared metaheuristics with the results for the performance and efficiency evaluation. Finally, Section 6 discusses the contributions of this paper and draws a conclusion.

2. Related Work

As a local improved technology, the local search is a practical tool and a common technique looking for the near-optimal solutions for combinatorial optimization problems [4]. In order to obtain high-quality solutions, it was applied to many metaheuristic algorithms, such as simulating annealing, genetic algorithm, memetic algorithm and swarm intelligent algorithms, in many cases.

The local search is a common tool looking for near-optimal solutions in reasonable time for combinatorial optimization problems. Usually, the current solution is iteratively replaced by an improved solution from its neighborhood, until no better solution can be obtained. Then, the current solution is called *locally optimal*.

The basic local search starts with a feasible solution, x, and repeatedly replaces x with an improved one, x', which is selected from the neighborhood of x. If no better neighbor solutions can be found in its neighborhood, the local search immediately stops and returns as the final best solution found during the search [4].

Since the basic local search is usually unable to obtain a good-quality solution and often far from the optimal solution, various improved local searches were proposed, e.g., tabu search [5–7], variable depth search [8,9], variable neighborhood search [10–12], reactive local search [13–16], k-opt local search (KLS) [4,17], iterated local search [18], iterated k-opt local search [17] and phased local search [19].

In many cases, the local search can be applied into heuristic algorithms, such as simulated annealing, ant colony and particle swarm optimizations. However, normally, it is hard to obtain the best solution, or even an approximate solution with high quality, for a certain combinatorial optimization problem. Therefore, various local search methods, such as phased local search [19] and variable depth local search, were proposed. The variable depth local search was initially used to solve the Graph Partitioning Problem (GPP) [9] and the Traveling Salesman Problem (TSP) [8]. Then, it was applied to other heuristic algorithms [20–23]. In [4], it was applied to solve the maximum clique problem and successfully obtained good solutions.

Different from the previous studies, the proposed local search algorithms are based on KLS and are combined with a depth variable search, which can improve the performance and efficiency.

3. KLS-Based Local Search Algorithm

In the simple local search procedure, the current solution is changed by adding or removing one vertex. The idea of KLS-based local search is to operate more vertices for each time. That is to say, the current solution is changed by way of adding or removing more than one vertex. Furthermore, the number of operated vertices is not limited in KLS. Therefore, it is a variable depth local search, also called k-opt local search.

As a comparison, the KLS-based local search is explored to solve the feedback vertex set problem. Then, a variable depth-based local search with a randomized scheme is proposed to solve this problem. For a given graph, G, it can be observed that if S is acyclic, then $V(G) \setminus S$ is a feedback vertex set. Therefore, such a vertex set, S, with maximum cardinality corresponds to a feedback vertex set with minimum cardinality. Hence, the goal is to find a vertex set, $S \in V(G)$, with maximum cardinality, for which G[S] is acyclic. The main framework of this algorithm is taken from KLS in [4].

The following notations will be used to describe the algorithms.

- CF: the current vertex subset, CF, for which G[CF] is acyclic.
- PA: the possible vertex set of addition. i.e., $PA = \{v | \text{the subgraph induced by } CF \cup \{v\} \text{ is acyclic} \}$
- f(v): the degree of v in the graph, G[CF];
- $f^+(v)$: the degree of v in the graph, $G[CF \cup \{v\}]$, i.e., $f^+(v) = d_{G[CF \cup \{v\}]}(v)$.

First, a vertex set, $CF \subseteq V$, is randomly generated as an initial acyclic vertex set. If CF is not maximal, then a vertex, $v \in PA$, that minimizes f(v) is chosen to add to CF. On the contrary, if CF is maximal, then a vertex, $v \in CF$, with the maximum degree is chosen to be dropped. In the search process, some vertices are iteratively added or removed, ensuring that the vertex set, CF, is acyclic at each iteration. In order to avoid cycling, when a vertex, v, is added (resp.dropped), v would not be dropped (resp.added) immediately. The pseudocode of the procedure is shown in Algorithm 1 (k-opt-LS).

Algorithm 1 k-opt-LS(G, CF, PA)

```
Require:
```

```
G: a graph with the vertex set, \{1, 2, \dots, n\};
    CF: the current acyclic vertex set;
    PA: the possible vertex set of addition;
 1: generate an acyclic vertex set, CF, randomly.
 2: repeat
       CF_{Prev} \leftarrow CF; D \leftarrow CF_{Prev}; P \leftarrow \{1, 2, \cdots, n\}; q \leftarrow 0; q_{max} \leftarrow 0
 3:
 4:
       repeat
          if PA \cap P \neq \emptyset then
 5:
              find a vertex, v, from PA \cap P that minimizes f^+(v). if multiple vertices are found, select
 6:
              one randomly.
              CF \leftarrow CF \cup \{v\}; q \leftarrow q + 1; P \leftarrow P \setminus \{v\};
 7:
 8:
           else
              if CF \cap P \neq \emptyset then
 9:
                 find a vertex, v, from CF \cap P that maximizes f(v), if multiple vertices are found, select
10:
                 one randomly.
                 CF \leftarrow CF \setminus \{v\}; g \leftarrow g - 1; P \leftarrow P \setminus \{v\};
11:
                 if v is contained in CF_{Prev} then
12:
                    D \leftarrow D \setminus \{v\};
13:
14:
                 end if
              end if
15:
           end if
16:
       until D = \emptyset
17:
18: until g_{max} \leq 0
```

In this local search algorithm, if $PA = \emptyset$, then the acyclic vertex set, CF, is maximal. In this case, a vertex, $v \in CF$, will be dropped; otherwise, a vertex $v \in V \setminus CF$ will be added. Algorithm 1 starts with a random acyclic vertex set, CF; then, a possibly better acyclic vertex set is obtained by adding

or removing more than one vertex. Therefore, it is called the variable depth local search, and it can be applied to other heuristic algorithms, such as simulated annealing. Compared with the simple local search algorithm, where only one vertex would be added or removed to change the current solution, the variable depth local search operates more vertices and provides more efficiency in searching for the desired acyclic vertex set.

4. KLS with a Randomized Scheme for the FVSP

In Algorithm 1, when a vertex is added (resp.dropped), it is no longer dropped (resp.added) if it does not exit the inner loop. Moreover, at each iteration, a vertex that minimizes $f^+(v)$ or minimizes f(v) is selected. These conditions are too restricted, and they may trap the procedure into a local minimum. In order to overcome these drawbacks, a variable T_v is used to store the moment of the last iteration, while the vertex, v, was under operation, and c is used to record the iteration number of the inner loop. If v is added (resp.dropped), then the chance is given to make v dropped (resp.added) for at most k times within a given number of iterations. Moreover, at each iteration, a vertex is selected with a probability associated with the degree of v. The modified version of Algorithm 1 is shown in Algorithm 2 (NewKLS_FVS(LS, local search; FVS, feedback vertex set)).

Algorithm 2 NewKLS_FVS(G, CF, PA, k)

```
Require:
```

```
G: a graph with the vertex set, \{1, 2, \dots, n\};
     CF: the current acyclic vertex set;
     PA: the possible vertex set of addition;
 1: generate an acyclic vertex set, CF, randomly.
 2: repeat
         CF_{Prev} \leftarrow CF; D \leftarrow CF_{Prev}; g \leftarrow 0; g_{max} \leftarrow 0; c \leftarrow 0; T_i \leftarrow 1 \text{ for } i = 1, 2, \cdots, n;
 3:
 4:
         repeat
            c \leftarrow c + 1;
 5:
            P \leftarrow \{v | c - T_v \ge k\};
 6:
            if PA \cap P \neq \emptyset then
 7:
                find a vertex, v, from PA \cap P with a probability, \rho.
 8:
                CF \leftarrow CF \cup \{v\}; g \leftarrow g+1; T_v \leftarrow c;
 9:
10:
            else
                if CF \cap P \neq \emptyset then
11:
12:
                   find a vertex v from CF \cap P with a probability, \rho.
                   CF \leftarrow CF \setminus \{v\}; g \leftarrow g - 1; T_v \leftarrow c;
13:
                   if v is contained in CF_{Prev} then
14:
15:
                       D \leftarrow D \setminus \{v\};
16:
                   end if
                end if
17:
18:
            end if
         until D = \emptyset
19:
20: until g_{max} \leq 0
```

5. Experimental Results

5.1. Experimental Setup and Benchmark Instances

All the algorithms are coded in Visual C++ 6.0 and executed in an Intel Pentium(R) G630 Processor 2.70 MHz with 4 GB of RAM memory on a Windows 7 Operating System.

Two sets of testing instances are used in the experiments. One instance is a set of random graphs, which are constructed with parameter n and p with order (the vertex number) n, inserting an edge with probability p. This probability is called the edge density (or edge probability). The graph, G(n,p), is used to represent a graph constructed with parameter n and p. Then, the proposed algorithm is compared with other algorithms on random graphs, G(400,0.5) and G(800,0.5). The other instance is the well-known DIMACSbenchmarks for graph coloring problems (see [24]), consisting of 59 graph coloring problem instances. Table 1 gives the characteristics of these instances, including the number of vertices (|V|), the number of edges (|E|) and the graph density (density).

Table 1. Benchmark instances and their characteristics.

No.	Instance	V	$ oldsymbol{E} $	density
1	anna.col	138	986	0.104
2	david.col	87	812	0.217
3	DSJC125.1.col	125	736	0.095
4	DSJC125.5.col	125	3,891	0.502
5	DSJC125.9.col	125	6,961	0.898
6	fpsol2.i.1.col	496	11,654	0.095
7	fpsol2.i.2.col	451	8,691	0.086
8	fpsol2.i.3.col	425	8,688	0.097
9	games120.col	120	1,276	0.179
10	homer.col	561	3,258	0.021
11	huck.col	74	602	0.223
12	inithx.i.1.col	864	18,707	0.050
13	inithx.i.2.col	645	13,979	0.067
14	inithx.i.3.col	621	13,969	0.073
15	jean.col	80	508	0.161
16	latin_square_10.col	900	307,350	0.760
17	le450_5a.col	450	5,714	0.057
18	le450_5b.col	450	5,734	0.057
19	le450_5c.col	450	9,803	0.097
20	le450_5d.col	450	9,757	0.097
21	le450_15b.col	450	8,169	0.081
22	le450_15c.col	450	16,680	0.165
23	le450_15d.col	450	16,750	0.166

Table 1. Cont.

No.	Instance	V	$ oldsymbol{E} $	density
24	le450_25a.col	450	8,260	0.082
25	le450_25b.col	450	8,263	0.082
26	le450_25c.col	450	17,343	0.172
27	le450_25d.col	450	17,425	0.172
28	miles250.col	128	774	0.096
29	miles500.col	128	2,340	0.288
30	miles750.col	128	4,226	0.519
31	miles1000.col	128	6,432	0.791
32	miles1500.col	128	10,396	1.279
33	mulsol.i.1.col	197	3,925	0.203
34	mulsol.i.2.col	188	3,885	0.221
35	mulsol.i.3.col	184	3,916	0.233
36	mulsol.i.4.col	185	3,946	0.232
37	mulsol.i.5.col	186	3,973	0.231
38	myciel3.col	11	20	0.364
39	myciel4.col	23	71	0.281
40	myciel6.col	95	755	0.169
41	myciel7.col	191	2,360	0.130
42	queen5_5.col	25	320	1.067
43	queen6_6.col	36	580	0.920
44	queen7_7.col	49	952	0.81
45	queen8_8.col	64	1,456	0.722
46	queen8_12.col	96	2,736	0.6
47	queen9_9.col	81	2,112	0.652
48	queen10_10.col	100	2,940	0.594
49	queen11_11.col	121	3,960	0.546
50	queen12_12.col	144	5,192	0.504
51	queen13_13.col	169	6,656	0.469
52	queen14_14.col	196	8,372	0.438
53	queen15_15.col	225	10,360	0.411
54	queen16_16.col	256	12,640	0.387
55	school1.col	385	19,095	0.258
56	school1_nsh.col	352	14,612	0.237
57	zeroin.i.1.col	211	4,100	0.185
58	zeroin.i.2.col	211	3,541	0.16
59	zeroin.i.3.col	206	3,540	0.168

5.2. Computational Results on k-opt-LS and NewKLS_FVS

5.2.1. Impact of the Tabu Tenure

In order to observe the impact of the tabu tenure of the algorithm, NewKLS_FVS, the algorithm for the tabu tenure, k, is tested from 100 to 1,000 on four chosen graphs. Table 2 reports the best and worst solutions, respectively, for the algorithm, NewKLS_FVS, with different values of the parameter, k.

Table 2. Results with with different values of the parameter k.

Instance	k	Best	Worst	Average
inithx.i.1.col	100	572	550	553
	200	575	552	561
	300	575	553	561
	400	575	552	562
	500	575	543	555
	600	572	548	558
	700	573	549	553
	800	569	546	553
	900	592	541	563
	1,000	570	546	556
le450_25a.col	100	157	154	155
	200	156	153	155
	300	157	155	155
	400	157	155	155
	500	156	155	155
	600	157	154	155
	700	157	154	155
	800	156	154	155
	900	157	155	155
	1,000	157	154	155
G(400,0.5)	100	15	13	13
	200	15	12	13
	300	15	13	13
	400	15	13	13
	500	15	13	13
	600	15	13	14
	700	15	13	14
	800	15	13	14
	900	15	12	14
	1000	15	12	14

Table 2. Cont.

Instance	$oldsymbol{L}$	Best	Worst	Average
G(800,0.5)	100	17	13	14
	200	15	13	14
	300	16	13	14
	400	17	13	14
	500	16	13	14
	600	16	14	15
	700	17	13	15
	800	16	15	15
	900	18	13	15
	1,000	17	14	15

From the results above, it can be seen that the parameter, k, is important for the algorithm. For example, for the graph, inithx.i.1.col (resp.le450_25a.col, G(400,0.5), G(800,0.5)), k = 900 is the most suitable one.

5.3. Comparison of NewKLS_FVS with Other Algorithms

In order to verify the efficiency and performance of the proposed algorithm, the performance of the proposed heuristic for the feedback vertex set problem is also compared to that of several others. Note that the proposed problem can be solved approximately by various heuristics, including simulated annealing (SA) and variable neighborhood search (VNS).

(1) **Simulated annealing:** The simulated annealing algorithm was introduced to solve combinatorial optimization problems proposed by Kirkpatrick [25]. Since then, it has been widely investigated to solve many combinatorial optimization problems. Simulated annealing allows a transition to go opposite towards achieving the goal with a probability. As a result, the simulated annealing algorithm has some opportunities to jump out of the local minima. As preparation, for a given graph, G, and a positive integer, k, a partition (S_1, S_2) of V(G) is found, such that $G[S_1]$ is acyclic. Then, the parameters, T_0 (initial temperature), T_s (stop temperature) and α (cooling down coefficient), are required as input. For convenience, the edge numbers of $G[S_1]$ and $G[S'_1]$ are denoted by $e(S_1)$ and $e(S_1)$, respectively. After the preparation, the algorithm begins with a randomly generated partition (S_1, S_2) of V(G). Then, a partition (S'_1, S'_2) is chosen that is obtained by swapping two elements from S_1 and S_2 . If $e(S_1')$ is fewer than $e(S_1)$, then (S_1', S_2') is accepted. Otherwise, it is accepted according to the simulated annealing rule. At the end of each iteration, the temperature would cool down. Usually, let $T = \alpha T$, where $\alpha \in (0,1)$. If $G[S_1]$ is acyclic, the procedure terminates successfully, and an acyclic induced subgraph with order k would be returned. When the temperature reaches T_s , the procedure also terminates. The pseudocode is presented in Algorithm 3, where u(0,1) denotes a random number in (0,1).

Algorithm 3 SA(G, k, T_0 , T_s , α ,t)

```
1: while Stop condition is not met do
       Generate a partition (S_1, S_2) of V(G) with |S_1| = k;
2:
3:
       T \leftarrow T_0;
       while T > T_s do
4:
          Generate a new partition (S'_1, S'_2) by swapping two elements from S_1 and S_2;
5:
          if e(S_1') is fewer than e(S_1) then
6:
             (S_1, S_2) \leftarrow (S_1', S_2');
7:
8:
          else
             if u(0,1) < e^{e(S_1') - e(S_1)} then
9:
                (S_1, S_2) \leftarrow (S_1', S_2');
10:
             end if
11:
          end if
12:
          T \leftarrow \alpha T;
13:
       end while
14:
15: end while
```

(2) **Variable neighborhood search:** Hansen and Mladenović [10–12] introduced the variable neighborhood search (VNS) method in combinatorial problems. In [5], it was applied to solve the maximum clique problem. It constructs different neighborhood structures, which are used to perform a systematic search. The main idea of variable neighborhood search is that when it does not find a better solution for a fixed number of iterations, the algorithm continues to search in another neighborhood until a better solution is found.

Denote \mathcal{N}_k , $(k = 1, 2, \dots, k_{max})$ as a finite set of pre-selected neighborhood structures and $\mathcal{N}_k(X)$ as the set of solutions in the kth neighborhood of X. The steps of the basic VNS are presented in Algorithm 4 (see [5]).

To solve the feedback vertex set problem, the neighborhood structure is described as follows. Let (S_1, S_2) be the current partition, for a positive integer, k, with $k < \min\{|S_1|, |S_2|\}$; define $B_k(S)$ as the set of the k-subset of S. The kth neighborhood of P is defined by:

$$\mathcal{N}_k(S_1, S_2) = \{ (S_1 \cup U_2 \setminus U_1, S_2 \cup U_1 \setminus U_2) | U_1 \in B_k(V_r), U_2 \in B_k(V_b) \}$$
 (1)

The proposed algorithms operate the partition, S_1, S_2 . They change the current partition to another solution, S_1', S_2' , by swapping exactly k vertices between S_1 and S_2 . Therefore, the neighborhood of (S_1, S_2) is the set of all the solutions obtained from (S_1, S_2) by swapping exactly k vertices between S_1 and S_2 . The parameter, k_{max} , called the radius of the neighborhood, controls the maximum k of the procedure.

The algorithms, k-opt-LS, NewKLS_FVS, VNS and SA, are carried out on several random graphs and DIMACS benchmarks for the maximum feedback vertex set. In the VNS algorithm, the value of K_{max} is set to be one and two, which are called VNS1 (if $K_{max} = 1$) and VNS2 (if $K_{max} = 2$), respectively. In the SA algorithm, the initial temperature is set to be $T_0 = 1,000$, and the cooling down coefficient

 $\alpha = 0.9997$. Tables 3–7 show the results of these algorithms, and each is carried out for 15 runs with a CPU-time limit of 30 min.

```
Algorithm 4 VNS(G, r)
```

```
1: Initialize \mathcal{N}_k, k=1,2,\cdots,k_{max}, initial solution X and stop criteria;
 2: while Stop condition is not met do
       k \leftarrow 1;
 3:
       Generate a partition \mathcal{N}_k = (S_1, S_2) of V(G) with |S_1| = r;
 4:
 5:
       while k < k_{max} do
          Generate a point, X' \in \mathcal{N}_k(X);
 6:
          Apply the local search method with X' as the initial solution; denote by X'' the obtained
 7:
          solution;
          if X'' is better than incumbent then
 8:
             X \leftarrow X''; k \leftarrow 1;
 9:
          else
10:
             k \leftarrow k + 1;
11:
          end if
12:
13:
       end while
       r \leftarrow r + 1
14:
15: end while
```

Table 3. Results for NewKLS_FVS (LS, local search; FVS, feedback vertex set) and a CPU-time limit of 30 min for 15 runs.

Instance	Best	Worst	Average	Instance	Best	Worst	Average
anna.col	126	126	126	miles1000.col	20	20	20
david.col	66	66	66	miles1500.col	10	10	10
DSJC125.1.col	58	58	58	mulsol.i.1.col	121	121	121
DSJC125.5.col	15	15	15	mulsol.i.2.col	133	133	133
DSJC125.9.col	6	6	6	mulsol.i.3.col	129	129	129
fpsol2.i.1.col	366	364	365	mulsol.i.4.col	130	130	130
fpsol2.i.2.col	370	370	370	mulsol.i.5.col	131	131	131
fpsol2.i.3.col	344	344	344	myciel3.col	8	8	8
games120.col	47	46	46	myciel4.col	16	16	16
homer.col	520	520	520	myciel6.col	61	61	61
huck.col	52	52	52	myciel7.col	122	122	122
inithx.i.1.col	602	554	569	queen5_5.col	7	7	7
inithx.i.2.col	549	548	548	queen6_6.col	9	9	9
inithx.i.3.col	529	529	529	queen7_7.col	11	11	11
jean.col	63	63	63	queen8_8.col	13	13	13
$latin_square_10.col$	13	13	13	queen8_12.col	16	16	16

 Table 3. Cont.

Instance	Best	Worst	Average	Instance	Best	Worst	Average
le450_5a.col	114	108	111	queen9_9.col	14	14	14
le450_5b.col	114	109	111	queen10_10.col	16	16	16
le450_5c.col	104	94	98	queen11_11.col	18	18	18
le450_5d.col	104	97	101	queen12_12.col	20	19	19
le450_15b.col	129	126	127	queen13_13.col	21	21	21
le450_15c.col	66	63	64	queen14_14.col	23	22	22
le450_15d.col	67	65	65	queen15_15.col	25	24	24
le450_25a.col	157	154	155	queen16_16.col	26	25	25
le450_25b.col	141	138	140	school1.col	77	75	75
le450_25c.col	78	76	76	school1_nsh.col	71	67	69
le450_25d.col	72	70	70	zeroin.i.1.col	139	139	139
miles250.col	81	80	80	zeroin.i.2.col	160	160	160
miles500.col	43	43	43	zeroin.i.3.col	156	156	156
miles750.col	27	27	27				

Table 4. Results for k-opt-LS and a CPU-time limit of 30 min for 15 runs.

Instance	Best	Worst	Average	Instance	Best	Worst	Average
anna.col	126	126	126	miles1000.col	20	20	20
david.col	66	66	66	miles1500.col	10	10	10
DSJC125.1.col	58	57	57	mulsol.i.1.col	121	121	121
DSJC125.5.col	15	15	15	mulsol.i.2.col	133	133	133
DSJC125.9.col	6	6	6	mulsol.i.3.col	129	129	129
fpsol2.i.1.col	364	362	362	mulsol.i.4.col	130	130	130
fpsol2.i.2.col	370	369	369	mulsol.i.5.col	131	131	131
fpsol2.i.3.col	344	344	344	myciel3.col	8	8	8
games120.col	47	46	46	myciel4.col	16	16	16
homer.col	520	520	520	myciel6.col	61	61	61
huck.col	52	52	52	myciel7.col	122	121	121
inithx.i.1.col	601	554	566	queen5_5.col	7	7	7
inithx.i.2.col	548	546	547	queen6_6.col	9	9	9
inithx.i.3.col	529	528	528	queen7_7.col	11	11	11
jean.col	63	63	63	queen8_8.col	13	13	13
latin_square_10.col	13	12	12	queen8_12.col	16	16	16
le450_5a.col	112	107	109	queen9_9.col	14	14	14
le450_5b.col	111	106	108	queen10_10.col	16	16	16
le450_5c.col	106	95	99	queen11_11.col	18	18	18

Table 4. Cont.

Instance	Best	Worst	Average	Instance	Best	Worst	Average
le450_5d.col	104	97	100	queen12_12.col	20	19	19
le450_15b.col	126	123	124	queen13_13.col	21	21	21
le450_15c.col	65	60	62	queen14_14.col	23	22	22
le450_15d.col	65	60	63	queen15_15.col	25	24	24
le450_25a.col	153	149	151	queen16_16.col	26	25	25
le450_25b.col	139	136	137	school1.col	76	72	73
le450_25c.col	76	73	74	school1_nsh.col	69	66	67
le450_25d.col	70	67	68	zeroin.i.1.col	137	137	137
miles250.col	80	80	80	zeroin.i.2.col	160	159	159
miles500.col	43	43	43	zeroin.i.3.col	155	154	154
miles750.col	27	27	27				

Table 5. Results for variable neighborhood search 1 (VNS1) with $k_{max}=1$ and a CPU-time limit of 30 min for 15 runs.

Instance	Best	Worst	Average	Instance	Best	Worst	Average
anna.col	111	107	108	miles1000.col	16	14	14
david.col	57	55	56	miles1500.col	10	9	9
DSJC125.1.col	42	40	41	mulsol.i.1.col	38	35	36
DSJC125.5.col	12	11	11	mulsol.i.2.col	49	46	47
DSJC125.9.col	6	6	6	mulsol.i.3.col	48	44	45
fpsol2.i.1.col	76	72	74	mulsol.i.4.col	48	44	46
fpsol2.i.2.col	120	113	116	mulsol.i.5.col	49	45	46
fpsol2.i.3.col	114	108	110	myciel3.col	8	8	8
games120.col	37	36	36	myciel4.col	16	16	16
homer.col	327	319	322	myciel6.col	42	41	41
huck.col	48	46	46	myciel7.col	56	53	54
inithx.i.1.col	125	118	121	queen5_5.col	7	7	7
inithx.i.2.col	136	126	131	queen6_6.col	9	9	9
inithx.i.3.col	131	123	127	queen7_7.col	11	11	11
jean.col	58	56	57	queen8_8.col	12	12	12
latin_square_10.col	7	6	6	queen8_12.col	15	14	14
le450_5a.col	62	58	59	queen9_9.col	14	13	13
le450_5b.col	61	58	59	queen10_10.col	15	14	14
le450_5c.col	41	38	39	queen11_11.col	16	15	15
le450_5d.col	41	39	39	queen12_12.col	17	17	17

 Table 5. Cont.

Instance	Best	Worst	Average	Instance	Best	Worst	Average
le450_15b.col	53	51	52	queen13_13.col	19	18	18
le450_15c.col	30	27	28	queen14_14.col	19	19	19
le450_15d.col	29	27	28	queen15_15.col	21	20	20
le450_25a.col	59	57	57	queen16_16.col	22	21	21
le450_25b.col	57	55	55	school1.col	27	25	25
le450_25c.col	31	29	29	school1_nsh.col	27	25	25
le450_25d.col	30	29	29	zeroin.i.1.col	47	44	45
miles250.col	64	62	63	zeroin.i.2.col	66	61	64
miles500.col	32	31	31	zeroin.i.3.col	66	61	63
miles750.col	21	20	20				

Table 6. Results for VNS2 with $k_{max}=2$ and a CPU-time limit of 30 min for 15 runs.

Instance	Best	Worst	Average	Instance	Best	Worst	Average
anna.col	110	107	109	miles1000.col	15	14	14
david.col	58	56	56	miles1500.col	10	9	9
DSJC125.1.col	42	40	41	mulsol.i.1.col	39	36	37
DSJC125.5.col	12	11	11	mulsol.i.2.col	50	46	48
DSJC125.9.col	6	6	6	mulsol.i.3.col	49	46	47
fpsol2.i.1.col	78	73	76	mulsol.i.4.col	50	46	47
fpsol2.i.2.col	123	118	120	mulsol.i.5.col	50	46	47
fpsol2.i.3.col	120	112	115	myciel3.col	8	8	8
games120.col	37	36	36	myciel4.col	16	16	16
homer.col	336	324	329	myciel6.col	43	41	41
huck.col	47	46	46	myciel7.col	56	54	55
inithx.i.1.col	131	123	127	queen5_5.col	7	7	7
inithx.i.2.col	144	137	140	queen6_6.col	9	9	9
inithx.i.3.col	142	136	138	queen7_7.col	11	11	11
jean.col	58	57	57	queen8_8.col	12	12	12
latin_square_10.col	7	7	7	queen8_12.col	15	14	14
le450_5a.col	61	59	60	queen9_9.col	14	13	13
le450_5b.col	62	59	60	queen10_10.col	15	14	14
le450_5c.col	41	38	39	queen11_11.col	16	15	15
le450_5d.col	41	39	40	queen12_12.col	17	17	17
le450_15b.col	54	52	52	queen13_13.col	19	18	18
le450_15c.col	30	28	28	queen14_14.col	19	19	19

Table 6. Cont.

Instance	Best	Worst	Average	Instance	Best	Worst	Average
le450_15d.col	30	28	29	queen15_15.col	21	20	20
le450_25a.col	61	58	59	queen16_16.col	22	21	21
le450_25b.col	58	55	56	school1.col	28	26	26
le450_25c.col	31	29	30	school1_nsh.col	27	25	25
le450_25d.col	31	29	30	zeroin.i.1.col	49	44	45
miles250.col	64	62	63	zeroin.i.2.col	68	63	65
miles500.col	32	31	31	zeroin.i.3.col	65	63	64
miles750.col	21	20	20				

Table 7. Results for simulated annealing (SA) and a CPU-time limit of 30 min for 15 runs.

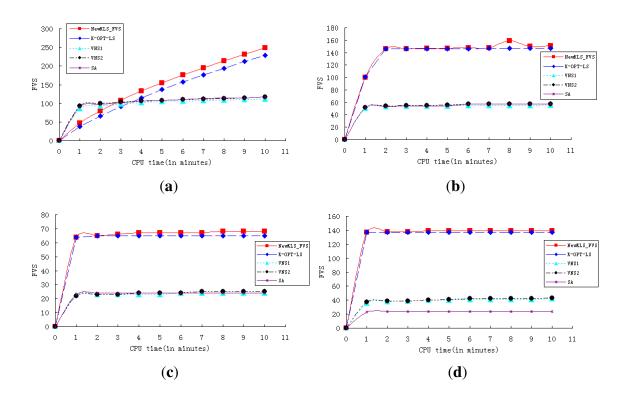
Instance	Best	Worst	Average	Instance	Best	Worst	Average
anna.col	113	100	104	miles1000.col	14	12	13
david.col	54	49	51	miles1500.col	9	8	8
DSJC125.1.col	40	37	37	mulsol.i.1.col	38	29	32
DSJC125.5.col	10	9	9	mulsol.i.2.col	45	39	42
DSJC125.9.col	5	5	5	mulsol.i.3.col	47	39	42
fpsol2.i.1.col	90	66	73	mulsol.i.4.col	47	39	42
fpsol2.i.2.col	133	116	123	mulsol.i.5.col	48	38	42
fpsol2.i.3.col	133	109	116	myciel3.col	8	8	8
games120.col	36	34	35	myciel4.col	16	15	15
homer.col	331	325	327	myciel6.col	40	34	37
huck.col	45	41	42	myciel7.col	54	46	50
inithx.i.1.col	131	124	128	queen5_5.col	7	7	7
inithx.i.2.col	148	138	143	queen6_6.col	9	9	9
inithx.i.3.col	145	134	139	queen7_7.col	10	10	10
jean.col	56	52	53	queen8_8.col	12	11	11
latin_square_10.col	7	6	6	queen8_12.col	14	13	13
le450_5a.col	61	57	58	queen9_9.col	13	12	12
le450_5b.col	60	57	58	queen10_10.col	14	13	13
le450_5c.col	40	36	37	queen11_11.col	15	14	14
le450_5d.col	41	37	38	queen12_12.col	17	15	15
le450_15b.col	54	48	50	queen13_13.col	18	16	16
le450_15c.col	28	26	27	queen14_14.col	18	17	17
le450_15d.col	28	26	26	queen15_15.col	19	18	18
le450_25a.col	61	53	56	queen16_16.col	21	19	19

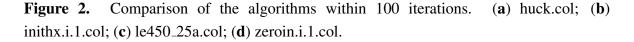
Table 7. Cont.

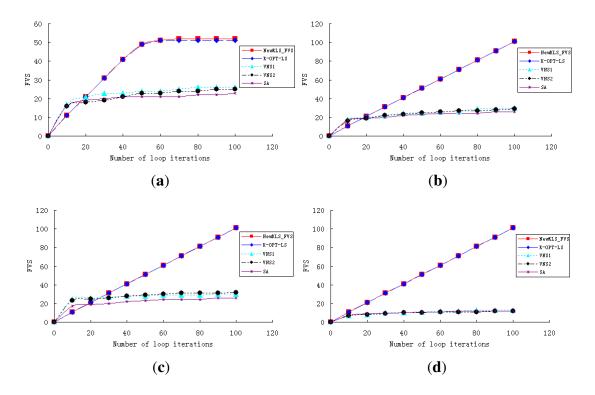
Instance	Best	Worst	Average	Instance	Best	Worst	Average
le450_25b.col	56	52	53	school1.col	26	23	23
le450_25c.col	30	26	28	school1_nsh.col	25	23	23
le450_25d.col	30	27	27	zeroin.i.1.col	51	37	42
miles250.col	61	56	58	zeroin.i.2.col	67	54	59
miles500.col	31	28	29	zeroin.i.3.col	63	53	57
miles750.col	19	18	18				

In order to show the performance and efficiency of various algorithms, experiments are conducted to test the algorithms (NewkLS_FVS, k-opt-LS, VNS1, VNS2, SA) on graphs huck.col, inithx.i.1.col, le450_25a.col, zeroin.i.1.col and school1_nsh.col. The convergence curves of these algorithms are reported on both running times (with a CPU-time limit of 10 min; see Figure 1) and iteration numbers (within 100 iterations; see Figure 2). The experimental results show that NewkLS_FVS outperforms other algorithms on graphs huck.col, le450_25a.col, zeroin.i.1.col and school1_nsh.col almost at any moment. The solution quality is better than any other compared algorithm after 3 min on inithx.i.1.col. Additionally, the solution quality of NewkLS_FVS is better than those of any other compared algorithm on all tested graphs after 20 iterations. It can be seen that the performance of the algorithm, k-opt-LS, is better than VNS1, VNS2 and SA on almost all these instances, and the convergence performance of k-opt-LS is improved by using the proposed approaches.

Figure 1. Comparison of the algorithms with a CPU-time limit of 10 min. (a) inithx.i.1.col; (b) le450_25a.col; (c) school1_nsh.col; (d) zeroin.i.1.col.







5.4. Evaluation of the Algorithms

From the report of Tables 3–7, it can be seen that the results of NewKLS_FVS and k-opt-LS are obviously better than those of VNS1, VNS2 and SA. Table 8 presents the results of the best algorithm for each instance testing DIMACS. In Table 8, the column *best* means the best result from the algorithms, and the column *worst* is the worst result from the algorithms. The column *the-best-algorithm* is the set of algorithms capable of obtaining the best result.

Table 8. Results for algorithm analysis.

Instance	Best	Worst	The-Best-Algorithm
anna.col	126	126	a,b
david.col	66	66	a,b
DSJC125.1.col	58	58	a
DSJC125.5.col	15	15	a,b
DSJC125.9.col	6	6	a,b,c,d
fpsol2.i.1.col	366	364	a
fpsol2.i.2.col	370	370	a
fpsol2.i.3.col	344	344	a,b
games120.col	47	46	a,b
homer.col	520	520	a,b

 Table 8. Cont.

Instance	Best	Worst	The-Best-Algorithm
			The-Dest-Aigorithm
huck.col	52	52	a,b
inithx.i.1.col	602	554	a
inithx.i.2.col	549	548	a
inithx.i.3.col	529	529	a
jean.col	63	63	a,b
latin_square_10.col	13	13	a
le450_5a.col	114	108	a
le450_5b.col	114	109	a
le450_5c.col	104	94	a
le450_5d.col	104	97	a
$le450_{-}15b.col$	129	126	a
le450_15c.col	66	63	a
le450_15d.col	67	65	a
le450_25a.col	157	154	a
le450_25b.col	141	138	a
le450_25c.col	78	76	a
le450_25d.col	72	70	a
miles250.col	81	80	a
miles500.col	43	43	a,b
miles750.col	27	27	a,b
miles1000.col	20	20	a,b
miles1500.col	10	10	a,b
mulsol.i.1.col	121	121	a,b
mulsol.i.2.col	133	133	a,b
mulsol.i.3.col	129	129	a,b
mulsol.i.4.col	130	130	a,b
mulsol.i.5.col	131	131	a,b
myciel3.col	8	8	a,b
myciel4.col	16	16	a,b
myciel6.col	61	61	a,b
myciel7.col	122	122	a
queen5_5.col	7	7	a,b,c,d,e
queen6_6.col	9	9	a,b,c,d,e
queen7_7.col	11	11	a,b,c,d
queen8_8.col	13	13	a,b
queen8_12.col	16	16	a,b
queen9_9.col	14	14	a,b
queen10_10.col	16	16	a,b

Table 8. Cont.

Instance	Best	Worst	The-Best-Algorithm
queen11_11.col	18	18	a,b
queen12_12.col	20	19	a,b
queen13_13.col	21	21	a,b
queen14_14.col	23	22	a,b
queen15_15.col	25	24	a,b
queen16_16.col	26	25	a,b
school1.col	77	75	a
school1_nsh.col	71	67	a
zeroin.i.1.col	139	139	a
zeroin.i.2.col	160	160	a
zeroin.i.3.col	156	156	a

Procedures used in Table 8: a: NewkLS_FVS; b: k-opt-LS; c: VNS1; d: VNS2; e: SA.

Table 8 shows that NewKLS_FVS obtains the best result for all the tested instances, and k-opt-LS obtains 34 best results. From the report, it can be seen that they both perform better than other test procedures for the feedback vertex set problem.

6. Concluding Remarks

This paper addresses an NP-complete problem, the feedback vertex set problem, which is inspired by many applications, such as deadlock detection in operating systems and relational database systems of an operating system. An efficient local search algorithm, NewkLS_FVS, is proposed to solve this problem, and it was compared with popular heuristics, such as variable depth search and simulated annealing. From the experiments on random graphs and DIMACS benchmarks, it can be seen that NewkLS_FVS is able to obtain better solutions than the variable depth search, and it has good performance by setting the parameter, tabu tenure, to a suitable value.

Acknowledgments

The authors would like to thank the reviewers for their careful reading of this manuscript. This project is supported by the National Natural Science Foundation of China under grant No. 61309015.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Silberschatz, A.; Galvin, P. *Operating System Concepts*, 4th ed.; Addison Wesley: Reading, MA, USA, 1994.

- 2. Gardarin, G.; Spaccapietra, S. Integrity of Databases: A General Lockout Algorithm with Deadlock Avoidance. In *Modeling in Data Base Management System*; Nijsssen, G., Ed.; North-Holland: Amsterdam, The Netherlands, 1976; pp. 395–411.
- 3. Karp, R.M. Reducibility among Combinatorial Problems. In *Complexity of Computer Computations*; Plenum Press: New York, NY, USA, 1972; pp. 85–103.
- 4. Katayama, K.; Hamamoto, A.; Narihisa, H. An effective local search for the maximum clique problem. *Inf. Process. Lett.* **2005**, *95*, 503–511.
- 5. Hansen, P. The Steepest Ascent Mildest Descent Heuristic for Combinatorial Programming. In *Congress on Numerical Methods in Combinatorial Optimization*; Capri, Italy, 1986.
- 6. Glover, F. Tabu search-part I. ORSA J. Comput. 1989, 1, 190–205.
- 7. Glover, F. Tabu search-part II. ORSA J. Comput. 1990, 2, 4–32.
- 8. Lin, S.; Kernighan, B.W. An effective heuristic algorithm for the traveling salesman problem. *Oper. Res.* **1973**, *21*, 498–516.
- 9. Kernighan, B.W.; Lin, S. An efficient heuristic procedure for partitioning graphs. *Bell Syst. Tech. J.* **1970**, *49*, 291–307.
- 10. Hansen, P.; Mladenović, N. An Introduction to Variable Neighborhood Search. In *Metaheuristics*, *Advances and Trends in Local Search Paradigms for Optimization*; Voss, S., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 433–458.
- 11. Hansen, P.; Mladenović, N. Variable neighborhood search: Principles and applications. *Eur. J. Oper. Res.* **2001**, *130*, 449–467.
- 12. Mladenović, N.; Hansen, P. Variable neighborhood search. *Comput. Oper. Res.* **1997**, 24, 1097–1100.
- 13. Battiti, R.; Protasi, M. Reactive local search for maximum clique. *Algorithmica* **2001**, 29, 610–637.
- 14. Hansen, P.; Mladenović, N.; Urošević, D. Variable neighborhood search for the maximum clique. *Discret. Appl. Math.* **2004**, *145*, 117–125.
- 15. Gendreau, M.; Soriano, P.; Salvail, L. Solving the maximum clique problem using a tabu search approach. *Ann. Oper. Res.* **1993**, *41*, 385–403.
- 16. Blöchliger, I.; Zufferey, N. A graph coloring heuristic using partial solutions and a reactive tabu scheme. *Comput. Oper. Res.* **2008**, *35*, 960–975.
- 17. Katayama, K.; Sadamatsu, M.; Narihisa, H. Iterated *k*-opt local search for the maximum clique problem. *Lecture Notes Comput. Sci.* **2007**, *4446*, 84–95.
- 18. Katayama, K.; Narihisa, H. Iterated Local Search Approach Using Genetic Transformation to the Traveling Salesman Problem. In Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, January 2000; pp. 321–328.
- 19. Pullan, W. Phased local search for the maximum clique problem. *J. Comb. Optim.* **2006**, *12*, 303–323.

20. Applegate, D.; Cook, W.; Rohe, A. Chained Lin–Kernighan for large traveling salesman problems. *Inf. J. Comput.* **2003**, *15*, 82–92.

- 21. Johnson, D.S. Local Optimization and the Traveling Salesman Problem. Automata, Languages and Programming: *Lecture Notes in Computer Science* **1990**, *443*, 446–461.
- 22. Merz, P.; Freisleben, B. Memetic algorithms for the traveling salesman problem. *Complex Syst.* **2001**, *13*, 297–345.
- 23. Merz, P.; Freisleben, B. Fitness landscapes, memetic algorithms and greedy operators for graph bipartitioning. *Evol. Comput.* **2000**, *8*, 61–91.
- 24. DIMACS Benchmarks. Available online: http://mat.gsia.cmu.edu/COLOR/instances.html (accessed on 31 October 2013).
- 25. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. *Science* **1983**, 220, 671–680.
- © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).