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Abstract: The examination timetabling problem belongs to the class of combinatorial
optimization problems and is of great importance for every University. In this paper, a
hybrid evolutionary algorithm running on a GPU is employed to solve the examination
timetabling problem. The hybrid evolutionary algorithm proposed has a genetic algorithm
component and a greedy steepest descent component. The GPU computational capabilities
allow the use of very large population sizes, leading to a more thorough exploration of the
problem solution space. The GPU implementation, depending on the size of the problem, is
up to twenty six times faster than the identical single-threaded CPU implementation of the
algorithm. The algorithm is evaluated with the well known Toronto datasets and compares
well with the best results found in the bibliography. Moreover, the selection of the encoding
of the chromosomes and the tournament selection size as the population grows are examined
and optimized. The compressed sparse row format is used for the conflict matrix and was
proven essential to the process, since most of the datasets have a small conflict density, which
translates into an extremely sparse matrix.
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1. Introduction

Optimization is the process of finding the best solution from a set of available alternatives, taking into
account all of the required problem constraints [1]. A single objective optimization problem consists of
finding the minimum or the maximum value of an objective function that measures the quality of each
solution. The variables of optimization problems can be either continuous or discrete. Optimization
problems with discrete variables are also called combinatorial optimization problems [1], and the
examination timetabling problem (ETP) that is solved in this work belongs to this class of problems.

There are many techniques and algorithmic strategies that are used to solve difficult combinatorial
optimization problems, but none of them manages to solve efficiently all of the categories
of optimization problems, as Wolpert and Macready [2] proved. Mathematical programming [3],
artificial intelligence [4] and meta-heuristic techniques [5] are some of the algorithmic families for the
solution of these problems. The class of evolutionary algorithms (EA) [6–8], which is used in this paper,
is based on Darwinian theory [9] and is usually included in the computational intelligence family.

The examination timetabling problem (ETP) is a problem of great importance for every University,
as it implicitly affects the performance of students in examinations. The goal is to assign a set of
examinations to a set of time slots in a way such that a set of constraints are satisfied. Some constraints
are hard and should not be violated, as a student should not have to sit for two exams at the same time,
while others are soft, and violating them results in a bad solution. Practical aspects of the ETP problem
can be found in [10] alongside an approach of solving the problem carried out by our team in [11]. There
is a rich literature on the ETP, including benchmark datasets, as the ones used in this work, proposed
by Carter [12], with a simplified version of the problem. Other known benchmarks available are the
University of Nottingham benchmark data [13] and the University of Melbourne benchmark data [14].

Parallel computation has gained significant interest in recent years due to the fact that the
computer clock speed cannot be increased anymore, due to the physical limitations of semiconductor
technology [15]. In order to sustain the constant increase of processing power, manufacturers promoted
the multicore and many-core architectures. Graphical processing units (GPUs) are powerful commodity
computer components that include a large number of processing cores in order to provide better
performance of computer graphics. However, given the available processing power, GPU processors
attracted the interest of many researchers and scientists for generic computation, as well, leading to
the introduction of the term, general purpose graphical processing units (GPGPUs). After NVIDIA
introduced the Compute Unified Device Architecture (CUDA), a large number of scientific applications
have been ported to GPUs with remarkable speedups [16,17].

In this paper, a hybrid evolutionary algorithm (hEA) is presented that is designed to solve the ETP
using a GPU. The computing power of the GPU gives the opportunity to explore better the solution
space by using great population sizes. Emphasis is given to the encoding and the representation of
the solution in order to take full advantage of the GPU architecture. Moreover, the compressed sparse
row format is used for the conflict matrix to improve performance, while a greedy steepest descent
algorithm component is employed to improve the quality of the solutions of the genetic algorithm in
every generation. Furthermore, the significance of the size of the tournament selection as the population
size grows is shown.
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In the next section, the problem description is stated. In Section 3, related work for the ETP problem is
surveyed, while in Section 4, an introduction to the GPU architecture and the CUDA programming model
is presented. Our design approach for the ETP is described in the next section, and Section 6 shows the
results of the experiments undertaken. In the final section, conclusions and some future directions are
proposed.

2. Problem Description

The examination timetabling problem (ETP) is an optimization problem, whose goal is to assign a set
of examinations to a set of time slots in a way that a set of constraints are satisfied. The constraints are
categorized as hard for the ones that should be satisfied in order for a timetable solution to be feasible
and legal and soft for the ones for which when satisfied, the solution becomes better in terms of quality.
Two versions of the ETP problem exist, the capacitated and the uncapacitated one. In the capacitated
version, the room capacity is taken into account, while in the uncapacitated, it is not. In this paper, the
Carter/Toronto datasets are used as benchmarks to evaluate the proposed algorithm. For these datasets,
there exists essentially one hard constraint that has to do with the fact that a student cannot sit in two or
more examinations at the same time. The main soft constraint involves the spreading of the examinations
in the whole examination period in order to facilitate the preparation of the students. The Carter/Toronto
benchmark Version I problems are summarized in Table 1.

Table 1. Toronto examination timetabling problem (ETP) datasets.

Dataset Examinations Students Periods Conflict Density

car-f-92 I 543 18,419 32 0.14
car-s-91 I 682 16,925 35 0.13
ear-f-83 I 190 1125 24 0.27
hec-s-92 I 81 2823 18 0.42
kfu-s-93 I 461 5349 20 0.06
lse-f-91 I 381 2726 18 0.06
pur-s-93 I 2419 30,032 42 0.03
rye-s-93 I 486 11,483 23 0.07
sta-f-83 I 139 611 13 0.14
tre-s-92 I 261 4360 23 0.18
uta-s-92 I 622 21,266 35 0.13
ute-s-92 I 184 2749 10 0.08
yor-f-83 I 181 941 21 0.29

A formal description of the problem follows. Let E be a set of examinations assuming values one to
|E| and P a set of periods assuming values one to |P |. Binary variables xip are defined over each i ∈ E

and p ∈ P assuming value one if exam i is scheduled to period p or zero otherwise. Let S be the total
number of students, Nij be the number of students that examinations i and j have in common and w a
weight vector that assumes values w = {16, 8, 4, 2, 1, 0}. Each of the w’s values corresponds to a
distance between two examination periods. When the distance between two examinations is only one
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time slot, the value of w is 16, and as the distance increases, the value of w decreases. Equation (1) is
the objective function that should be minimized. Constraint Equation (2) ensures that each exam will be
assigned to exactly one period. Constraint Equation (3) assigns to variables ei the number value of the
period to which examination i is scheduled. Constraint Equation (4) ensures that no two examinations
having students in common will be scheduled to the same period. In this constraint, M is a very large
number and |ei − ej| is the distance between the time slots to which examinations i and j are scheduled.

minimize
1

S

|E|∑
i=1

|E|∑
j=i+1

w(|ei − ej|)Nij (1)

s.t.
|P |∑
p=1

xip = 1 (i : 1..|E|) (2)

ei =

|P |∑
p=1

xipp (i : 1..|E|) (3)

(M + |ei − ej|)Nij >= (M + 1)Nij (i, j : 1..|E|) (4)

For this problem, a conflict matrix that shows the percentage of examinations with common students
among the various examinations and, in effect, models the computational complexity of the problem is
also defined. The (E × E) conflict matrix, with the examinations being both on its rows and columns,
has the value “1” at the intersections of pairs of examinations with common students between them.
Furthermore, the conflict density parameter in Table 1 is the number of elements with value “1” in the
conflict matrix divided by the total number of elements of the matrix.

3. Related Work

Many approaches have been published to tackle the ETP problem, and there are various surveys that
examine them. Qu et al. [18] published a very thorough survey describing the problem, the techniques
used to solve it and the benchmark datasets that exist for this problem, while Schaerf [19] presents the
approaches published to solve the school timetabling problem, the university course timetabling problem
and the examination timetabling problem. Furthermore, in Petrovic and Burke [20], the integration
of several approaches about university timetabling problems aiming at achieving a higher level of
generality is discussed. According to Qu et al. [18], the techniques used to solve the ETP problem can
be categorized into graph based, constraint based, local search based, population based, multi-criteria
techniques and hyper-heuristics.

In the graph-based techniques category belongs the work of Welsh and Powell [21], which is very
important, as they show the relation between graph coloring and timetabling. Carter et al. [12] examine
the impact of six ordering heuristics in timetabling problems. The heuristics examined are saturation
degree, largest degree, largest weighted degree, largest enrollment, random ordering and color degree.
Moreover, in this work, the 13 Toronto datasets have been introduced, which have been a performance
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benchmark for most ETP research since. Asmuni et al. [22] use fuzzy logic for the solution of the ETP
problem, while Corr et al. [23] developed a neural network to decide the difficulty of an examination to
be scheduled according to more than one ordering heuristics. Furthermore, Burke and Newall [24] solve
the ETP problem with a more general and faster method by adapting heuristic orderings. This method
was examined in many benchmark problems and proved to be a robust and reliable solution.

Another category of techniques that were applied to the ETP problem is the constrained-based
techniques. Brailsford et al. [25] show how combinatorial optimization problems can be solved using
these techniques. In the same category falls the work of Merlot et al. [14] given that they use a
constrained programming method to create initial solutions in the first phase. However, in a second
phase, simulated annealing and hill climbing, which belong to local search methods, are applied in order
to improve the solutions.

Local search-based techniques include hill climbing, simulated annealing and tabu search. Gaspero
and Schaerf [26] use a combination of two tabu search-based solvers in order to solve the ETP
problem, one to focus on the hard constraints, while the other to provide other possible improvements.
White et al. [27] show that long-term memory can improve tabu search to a great extent. Casey and
Thompson [28] designed a greedy randomized adaptive search procedure (GRASP) algorithm, where in
the first greedy phase, a feasible, collision-free timetable is constructed, and in the second, the solution
quality is improved. Duong and Lam [29] present a solution that uses the backtracking with a forward
checking algorithm to create an initial legal solution and simulated annealing to improve the cost of the
solution. Caramia et al. [30] use local search techniques to obtain some of the best available results in
the bibliography, while Thompson and Dowsland [31] designed a robust system, which solves the ETP
problem with a simulated annealing algorithm.

Another widely-used technique uses population-based algorithms, such as genetic, memetic and ant
algorithms. Burke and Silva [32] in their survey discuss the decisions that should be taken into account in
order to design an effective memetic algorithm and particularly examine the infeasibility of the solutions
as part of the search space, the fitness evaluation function with the complete and approximate evaluator,
the encodings of the algorithm, the fitness landscape and the fraction of the algorithm that should be done
with the genetic operators and the fraction that should be done with local search. Moreover, Burke and
Newall [33] designed a memetic algorithm, the main contribution of which is that it splits the problem
into subproblems, so that the computational time decreases and the quality of the solutions increases.
Eley [34] present a Max-Min ant system to solve the ETP. In their work, Côté et al. [35] solve the same
problem with an evolutionary algorithm that, instead of recombination operators, uses two local search
operators. Furthermore, Burke et al. [13] present a memetic algorithm with two mutation operators
followed by hill climbing techniques. No crossover operator is used. Another approach is described
by Erben [36], who attacks the ETP problem with a grouping genetic algorithm giving emphasis to
the encoding and the fitness function to obtain good quality solutions. A different solution strategy is
proposed by Deris et al. [37], who combine the constraint-based reasoning technique with a genetic
algorithm (GA) to find good quality results. The informed genetic algorithm designed by Pillay and
Banzhaf [38] consists of two phases, with the first focusing on the hard constraints and the second on the
soft constraints.
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Apart from the above-mentioned techniques, a number of solution approaches originating
from various disciplines have been proposed, and satisfactory results were reported with various
metaheuristics [39], hyper heuristics [40,41], hybrid methods [42] and others.

There are also many works dealing with parallel metaheuristics. Alba et al. [43] conducted a
thorough survey about parallel metaheuristics, both trajectory based and population based. They examine
many of the applications that parallel metaheuristics apply, the programming models, the available
parallel architectures and technologies, as well as the existing software and frameworks. Lazarova
and Borovska [44] present a comparison of a parallel computational model of ant colony optimization
of simulated annealing and of a genetic algorithm applied to the travelling salesman person
problem. Talbi et al. [45] examine parallel models for metaheuristics, such as self-contained parallel
cooperation, problem-independent and problem-dependent intra-algorithm parallelization. They analyze
the calculation time and surveyed many works for the specific models. Recently, extended research
has been done in porting GAs to GPUs. Pospichal et al. [16] designed an island model for a genetic
algorithm in CUDA software and tested it with some benchmark functions. All of the parts of the
algorithm are executed in the GPU, and the results show a speedup of about 7,000× compared to a
CPU single-threaded implementation. Moreover, Maitre et al. [46] present a genetic algorithm that
evaluates its population in the GPU with a speedup of up to 105×. Wong [47] built a multi-objective
evolutionary algorithm in a GPU with a speedup between 5.62 and 10.75. A different approach is given
by Luong et al. [48]. A hybrid genetic algorithm is shown, and only the generation and the evaluation
of the neighborhood of the local search procedure are done in parallel, with a speedup up to 14.6×.
Furthermore, a fine-grained parallel genetic algorithm is described in Yu et al. [49] achieving a speedup
of about 20.1×. A hierarchical parallel genetic algorithm is presented by Zhang and He [50], but no
experimental results are shown. Vidal and Alba [51] described a cellular genetic algorithm with the
complete algorithm running on the GPU, and the speedup is up to 24×. A CUDA implementation of a
parallel GA, both binary and real coded, is described in Arora et al. [17] with very good speedups, up to
400×. They propose modifications, not only in the evaluation function, but also in the genetic operators.

To our knowledge, there is no previous work solving the examination timetabling problem with a
hybrid evolutionary algorithm on a GPU. In this paper, such an algorithm is proposed, and tests have
been made in order to evaluate its performance. Our goal is to achieve the best possible speedup,
but also to obtain comparable quality solutions with the already published ones. The encoding that,
according to our study, matches the GPU architecture better, is chosen, and although the datasets used
do not have many constraints, the experimental results promise good performance for more constraint
timetabling problems.

4. The GPU Architecture and CUDA Programming Model

Before going into detail on the design options, a description of the GPU architecture and the CUDA
programming model is given. The details of the programming model given below apply to the Fermi
architecture of graphics cards, such as the ones used in this work. GPUs are powerful and relatively cheap
parallel machines, whose initial goal was the improvement of graphics processing. Due to their high
computational power, they attracted the interest of many scientists and researchers, who tried to harness
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the power of GPUs in order to boost the performance of their scientific applications. The first attempts to
program GPUs were with the use of OpenGL. Given that many researchers used GPUs for applications
other than graphics, NVIDIA introduced in 2007 the Compute Unified Device Architecture (CUDA) in
order to make GPUs more friendly to programmers not familiar with graphics. The language used is
an extension to the C programming language. After the introduction of CUDA, the use of GPUs was
increased significantly. Many papers have been written since then, reviewing the speedups achieved and
the new capabilities GPUs give in the solution of scientific problems [52]. Apart from CUDA, OpenCL
is a standard that is becoming popular and is about parallel programming in general. However, at the
time of writing, CUDA is more widespread, and therefore, it was our choice for writing our algorithms.

Many works have been done that investigate how to get the best performance on the GPU [53–55],
including one of our team’s [56]. In order to obtain the best performance of a GPU, its architecture
should be taken into account, and some limitations should be overcome. GPUs need a large number of
threads to be executed to be well utilized and to hide the memory latency. Threads are organized into
groups of threads, called blocks of threads, and blocks are organized into grids. Each block contains
a three-dimension array of threads, and each grid contains a three-dimension array of blocks. Every
GPU has a number of streaming multiprocessors (SM), each one containing a specific number of CUDA
cores, which is related to the generation and the model of the graphics unit. All of the cores inside a
multiprocessor execute the same command, while cores in different multiprocessors can execute different
commands. The part of the code that is executed on the GPU is called a kernel. The programmer is
responsible for defining the threads each kernel should execute, and the GPU is responsible for allocating
them to its resources. A kernel can have many blocks of threads, each one containing up to 1024 threads.
A single block is executed on one multiprocessor. A multiprocessor can execute up to 1536 threads and
up to eight blocks simultaneously.

Regarding the memory hierarchy, GPUs have a global memory that is relatively slow, but with a high
capacity, a shared memory, located in every multiprocessor, which is many times faster, but with only
up to 48 KB of space available, and a number of registers that are even faster. All of the threads have
access to the global memory, while in the shared memory, only the threads of a block that is executed in
the same multiprocessor can have access. The registers store the local variables of each thread.

It is of great importance to have many active threads during the execution of the kernel and to find
the best configuration of threads per block and blocks per grid in order to achieve the best performance.
Furthermore, the transfers to and from the GPU are time consuming; thus, they should be avoided as
far as this is possible. Another important aspect in order to obtain the best performance in the GPU is
trying to avoid the divergent execution of the threads within a warp. A warp is the number of active
threads in a multiprocessor, which is equal to 32. The reason for this is that every thread would execute
a different block of commands, depending on the validity of the condition imposed, and given that all
threads of a warp should execute the same instruction in every time unit, some threads may be active,
while the others wait, decreasing the performance. Another interesting point for best performance is the
global memory access pattern. In GPUs, if a memory access pattern is coalescable, meaning that threads
access contiguous memory locations, the number of necessary memory transactions decreases; thus, the
performance increases. On the other side, if the memory access pattern is strided, the performance drops,
and even worse, when the access pattern becomes random, then the performance is bad.



Algorithms 2014, 7 302

5. Methodology

In this work, a hybrid evolutionary algorithm is employed in order to solve the ETP problem. Firstly,
a pool of initial solutions is created, and then, a genetic algorithm is applied. The evaluation of the
solutions takes place and a new generation is created by applying a crossover operator and a mutation
operator. Afterwards, a greedy steepest descent algorithm is employed to further improve the quality of
the solutions. Given that the transfers of the data to and from the GPU are time consuming, the whole
algorithm is executed on the GPU, except for the construction of the initial solutions, which, for now, is
executed on the CPU of the host server and is considered as a pre-processing step.

5.1. Encoding and Representation

The selection of the encoding of the chromosomes is of great importance, as it affects the performance
of the algorithm in terms of the speed and quality of solutions. The main encoding schemes are the
direct and indirect encoding, also referred to as permutation and value encoding, respectively. In direct
encoding, the chromosome is an array of integers with a size equal to the number of examinations, so
that each cell corresponds to the respective examination, and the values of each cell of the array being
the time slot in which the corresponding examination is scheduled (Figure 1). In indirect encoding, the
chromosome is an array of lists of a size equal to the number of time slots. Thus, there exists one cell for
every time slot, and each cell of the array contains the examinations that are assigned to the particular
time slot (Figure 2). Ross et al. [57] argue about the importance of the right chromosome encoding
used in the algorithm and propose the cataclysmic adaptive mutation as a solution to the problems that
direct representation introduces in the search process. In this work, the direct encoding scheme was
selected, because the arrays are more suitable for the GPU vector architecture than the lists needed
in the indirect encoding. In addition, the crossover operator in indirect encoding sometimes results
in infeasible solutions, because some examinations may disappear or appear twice, as Figure 2 shows
(in bold red color, the examinations that appear twice are shown), while in direct encoding, this cannot
happen (Figure 1). In indirect encoding, if after the crossover operator, an examination is listed twice or
not at all, usually a repair method is applied to find a similar legal solution.

Figure 1. Direct encoding: single-point crossover between two chromosomes after the
second gene. E1–E5: examinations; T1–T3: timeslots.
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Figure 2. Indirect encoding: single-point crossover between two chromosomes after the
first gene. Examinations in bold red are missing or appear twice. E1–E5: examinations;
T1–T3: timeslots.

5.2. Initial Construction of Solutions

The process of finding quality initial solutions is done at the CPU side as a pre-processing
step. The starting population consists of a pool of algorithmically-computed solutions and a set of
randomly-created solutions. The algorithmically computed solutions are very few in number (less than
250), and for their construction, the following approach is used. Examinations are ordered according to
their largest degree (LD) values, which in effect brings the examinations with the most conflicts on top,
and in each step, a specific examination is selected using roulette selection [58] of the 20 or less still
unscheduled examinations giving preference to higher LD values. Then, a period is selected randomly
from the periods that do not already have examinations in conflict with the selected examination. If no
such period exists, then a period has to be selected in which offending examinations should be removed
before placement of the newly selected examination. This occurs by exploiting an extra field (removals)
that tracks the removals of examinations that each examination is responsible for during the process of
solution construction. Therefore, when an examination supersedes other examinations, the number of
dislocated examinations is added to the removal field of the examination to be inserted. In order for
the process of solution construction to progress, a period is selected based on the aggregate value of the
removals field of all examinations that have to be removed and belong to this period. The basic idea is
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that the dislocation of examinations with a great total value of removals should be discouraged. This is
achieved by organizing a tournament between periods that should be relieved from certain examinations
where periods having a high removal value due to the examinations that are scheduled in them tend not
to be selected. Algorithm 1 shows the pseudocode of this process.

Algorithm 1: Construction of the initial solutions.

// E is the set of examinations, P is the set of periods

pendingExaminations← E;
forall the e ∈ E do

removals[e]← 0;
end
// sort examinations by Largest Degree

sortExaminationsByLD(pendingExaminations);
while pendingExaminations 6= ∅ do

// select the examination among a maximum of 20 pending

examinations giving a higher probability to the high largest

degree values

selectedExam← rouletteSelect(pendingExaminations);
validPeriods← getConflictFreePeriodsFor(exam);
if validPeriods 6= ∅ then

selectedPeriod← selectRandomly(validPeriods);
end
else

forall the p ∈ P do
totalRemovals[p]← 0;
forall the e ∈ examinations scheduled in period p do

totalRemovals[p]← totalRemovals[p] + removals[e];
end

end
// select the period among all periods giving a higher

probability to periods with low total removal values

selectedPeriod← rouletteSelectPeriod(totalRemovals);
removals[selectedExam]←
removals[selectedExam] + totalRemovals[selectedPeriod];
conflictingExams← getConflictingExams(selectedPeriod, selectedExam);
pendingExams← pendingExams ∪ conflictingExams;

end
schedule(selectedExam, selectedPeriod);
pendingExaminations← pendingExaminations \ selectedExam;

end
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5.3. Evaluation

The evaluator is based on Equation (1). The division with S is dropped, since S is a scaling factor
that does not add at all to the solution approach, while by omitting it, the computations are fully based on
integer arithmetic instead of slower floating point arithmetic. Equation (1) has to be calculated for all of
the members of the population. The cost evaluation of every member is independent of the computation
of the other members. For every examination indexed i in the input, only the conflicts with examinations
indexed j ≥ i + 1 need to be considered. At this point, two independent processes are detected in
order to be parallelized: the calculation of the cost of a whole chromosome and the calculation of the
cost of a single examination. Both approaches were implemented. From now on, the first approach
will be referred to as the chromosome-threaded approach, while the second will be referred to as the
examination-threaded approach.

In the chromosome-threaded approach, each thread calculates the sum of a whole chromosome; thus
pop threads are executed, where pop is the population size, and no synchronization is needed. Every
thread computes the cost of the chromosome in a local variable, and at the end, it stores it in the global
memory. The pseudocode for the chromosome-threaded approach is given in Algorithm 2.

Algorithm 2: Evaluation, chromosome-threaded approach: each thread evaluates one chromosome
of the population.

chromosome← blockDim.x ∗ blockIdx.x+ threadIdx.x;
small_sum← 0;
__shared__ int w_shared[];
if threadIdx.x < n_slots then

w_shared[threadIdx.x]← w_d[threadIdx.x];
end
__syncthreads();
for i← 1 to n_courses do

for k ← i+ 1 to n_courses do
distance← abs(slot[i]− slot[k]);
small_sum + = w_shared[distance] ∗ students_in_conflict[i][k];

end
end
cost_d[chromosome]← small_sum;

In the examination-threaded approach, each thread calculates the cost of one examination only and
places the result in an array in the shared memory. After the calculation of the cost of each examination,
the total cost of the chromosome should be computed. The total cost of each chromosome can be
computed with a reduction operation, keeping as many threads as possible active [59]. After examining
the characteristics of the datasets that are used in this paper, a problem occurs with the pur-s-93 dataset.
The number of examinations in this dataset is 2419, which means that 2419 threads are needed for the
calculation of a single chromosome. However, due to the limitations of the CUDA programming model,
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each block can have up to 1024 threads, thus needing three blocks of threads if each block is configured
to contain the most available threads. However, having a block with 1024 threads means that in that
multiprocessor, only one block can be executed at the same time, since a multiprocessor can have up to
1536 threads, and therefore, the multiprocessor is not fully utilized. Taking these into consideration, our
approach for the number of threads per block and the number of blocks is:

tpb.x =

{
E E < 512

512 otherwise

blocks.x =

{
1 E < 512

1 + bE/512c otherwise

blocks.y = pop

Algorithm 3: Evaluation, examination-threaded approach: each thread evaluates one gene of
the population.

chromosome← blockIdx.y;
course_id← threadIdx.x+ blockIdx.x ∗ blockDim.x;
__shared__ lcost[];
__shared__ w_shared[];
lcost[threadIdx.x]← 0;
if threadIdx.x < n_slots then

w_shared[threadIdx.x]← w_d[threadIdx.x];
end
__syncthreads();
if course_id < n_courses then

for j ← course_id+ 1 to n_courses do
distance← abs(slot[course_id]− slot[j]);
lcost[threadIdx.x] + = w_shared[distance] ∗ students_in_conflict[course_id][j];

end
end
__syncthreads();
lcost[0]← total sum of lcost array with reduce sum operation;
if threadIdx.x = 0 and n_courses < 512 then

cost_d[chromosome]← lcost[0];
end
if threadIdx.x = 0 and n_courses >= 512 then

atomicAdd(&cost_d[chromosome], lcost[0]);
end

In the above equations, tpb.x is the number of threads per block in the x direction, blocks.x and
blocks.y are the number of blocks in the x and y direction, E is the number of examinations and pop
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is the population size. As can be seen from the above equations, we chose to split the work into two
blocks of threads for all of the big datasets containing more than 512 examinations, and not only for
the pur-s-93 dataset. In order to achieve better performance, the weight factor w and the array used to
calculate the total cost of a chromosome lcost are placed in the shared memory. Given that the data in
the shared memory have the lifetime of a block and the threads of each block cannot access the data in
the shared memory of another block, in the datasets with a number of examinations greater than 512,
an atomic operation is needed to calculate the total cost of one chromosome. One thread (the first) of
each of the needed blocks in the x-axis adds the result of the total sum of its block to the corresponding
position of the costs array in the global memory, in order to get the total cost of the whole chromosome.
The pseudocode for the examination-threaded approach is given in Algorithm 3.

5.3.1. Weight Factor

The weight cost factor to produce examination spreading is related to the distance between two
examinations in the timetable. Due to the fact that the conditional on distance > 6 to use a w = 0

can be a problem with CUDA, since conditional statements decrease performance, w is transformed to a
vector of a size equal to the number of available time slots, padded with zeros. Furthermore, in order to
heavily penalize conflicts and very tight schedules, a value M (a very large value) was selected for exam
conflicts. Therefore, w takes the following form:

w = {40, 000, 16, 8, 4, 2, 1, 0, 0, . . . , 0}

5.3.2. Exploiting Sparsity

As shown in Table 1, the conflict matrix is sparse. Thus, in this work, apart from the full conflict
matrix, the compressed sparse row (CSR) format is also used (Figure 3). In CSR, the sparse matrix
becomes a vector of rows, R. Each row Ri is a vector of pairs, one for each non-zero element. Each pair
contains the non-zero column index and the element value:

Ri = {(j, Ci,j) : ∀j : ej ∈ E,Ci,j 6= 0}

In a pre-processing stage, the compressed conflict matrix is calculated in two different forms.
One form represents the full conflict matrix, where each examination is associated with each other
examination in conflict. The CSR format is equivalent to the adjacency matrix for the conflict graph
between the examinations. The other form, more useful for this work, is the diagonal conflict matrix.
For every examination i, the diagonal conflict matrix row RDi contains only conflicts with examinations
indexed with j ≥ i+ 1.

RDi = {(j, Ci,j) : ∀j : ej ∈ E, j > i, Ci,j 6= 0}

This way, the O(|E|2) complexity for the full evaluator is reduced to O(|E|2CD)), where CD < 1 is
the conflict density. The CSR evaluators exploit the sparse features of the conflict matrix.
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Figure 3. (a) Conflict graph for the problem described in the half-compressed conflict matrix
figure; (b) half-compressed conflict matrix structure (the dat array contains tuples of the
exam in conflict (white) and the conflicting number of students (gray)).
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5.4. Selection and Reproduction

The next step of the algorithm is the selection of the parents that will form two new children, according
to their cost. The tournament selection with a size 3% of the population size and the one-point crossover
operator were selected. During the experiments that were done, it was observed that the tournament
selection size is of great importance for the performance of the algorithm. For small population sizes,
the size of the tournament selection can be small, as well, but as the population size increases, a small
tournament selection size does not allow the algorithm to improve the solutions. Thus, the tournament
selection size needs to be increased for bigger populations, but this comes with a cost in execution
time, and therefore, a balance should be found. After many runs, we ended up in this fraction of the
population size.

The two parallelization approaches were implemented for this stage, as well. In the
chromosome-threaded approach, each thread selects two chromosomes as parents, according to their
costs, and forms two new chromosomes for the next generation. Therefore, only pop/2 threads are
needed. In the examination threaded approach, each thread produces only one gene (time slot of an
examination) for each of the two new chromosomes. The problem that arises here is that all of the
threads that form a new chromosome should take the same chromosomes as parents and the same
cut point. In order to achieve this, the same curandstate was given to each thread, so as to produce
the same numbers in its own local variables, thus selecting the same parents and the same cut point.
However, the accesses to specific locations of memory from many threads at the same time lead to very
bad performance. Therefore, another approach was followed. The selection was separated from the
reproduction stage, and they were executed in different kernels, so that each process can have a different
number of threads launched. In the selection process, pop/2 threads are executed and select the parents
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and the cut point for the threads of the crossover kernel. They store the selected values in arrays in global
memory, so that they are later accessible from the threads of the crossover kernel. Then, the reproduction
is performed by assigning one thread to each examination. The configuration of threads launched is the
same with the examination threaded approach in the evaluation stage, with the only difference being that
instead of pop blocks executed in the y direction, only pop/2 are launched in this stage. The pseudocodes
for the three approaches are given in Algorithms 4–7. The device API of the curand library was used in
this stage, as it is not known beforehand the number of random numbers that are needed, as we need to
ensure that the chromosomes selected are not the same, and therefore, the curand function may be used
a lot of times.

Algorithm 4: Selection and reproduction, chromosome-threaded approach: each thread produces
two new chromosomes.
chromosome← blockDim.x ∗ blockIdx.x+ threadIdx.x;
p1← the chromosome with the lower cost of pop/ 32 randomly selected chromosomes;
p2← the chromosome with the lower cost of pop/ 32 randomly selected chromosomes;
if random_number < crossover_rate then

cut_point← random_number in [1, (n_courses− 1)];
for j ← 1 to cut_point do

slot_next[child1 ∗ n_courses+ j]← slot[p1 ∗ n_courses+ j];
slot_next[child2 ∗ n_courses+ j]← slot[p2 ∗ n_courses+ j];

end
for j ← cut_point to n_courses do

slot_next[child1 ∗ n_courses+ j]← slot[p2 ∗ n_courses+ j];
slot_next[child2 ∗ n_courses+ j]← slot[p1 ∗ n_courses+ j];

end
end
else

for j ← 1 to n_courses do
slot_next[child1 ∗ n_courses+ j]← slot[child1 ∗ n_courses+ j];
slot_next[child2 ∗ n_courses+ j]← slot[child2 ∗ n_courses+ j];

end
end
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Algorithm 5: Selection and reproduction, examination-threaded approach (one kernel
implementation): each thread produces one gene for each of the two new chromosomes.

chromosome← blockIdx.y;
course_id← blockDim.x ∗ blockIdx.x+ threadIdx.x;
get the random seed of the chromosome;
p1← the chromosome with the lower cost of pop/ 32 randomly selected chromosomes;
p2← the chromosome with the lower cost of pop/ 32 randomly selected chromosomes;
if random_number < crossover_rate then

cut_point← random_number in [1, (n_courses− 1)];
if course_id < cut_point then

slot_next[child1 ∗ n_courses+ course_id]← slot[p1 ∗ n_courses+ course_id];
slot_next[child2 ∗ n_courses+ course_id]← slot[p2 ∗ n_courses+ course_id];

end
else

slot_next[child1 ∗ n_courses+ course_id]← slot[p2 ∗ n_courses+ course_id];
slot_next[child2 ∗ n_courses+ course_id]← slot[p1 ∗ n_courses+ course_id];

end
end
else

slot_next[child1 ∗ n_courses+ course_id]← slot[child1 ∗ n_courses+ course_id];
slot_next[child2 ∗ n_courses+ course_id]← slot[child2 ∗ n_courses+ course_id];

end

Algorithm 6: Selection, examination-threaded approach (two kernels implementation): each thread
selects the parents, the cut point and creates a random number.

chromosome← blockDim.x ∗ blockIdx.x+ threadIdx.x;
get the random seed of the chromosome;
p1← the chromosome with the lower cost of pop/ 32 randomly selected chromosomes;
p2← the chromosome with the lower cost of pop/ 32 randomly selected chromosomes;
cross_prob← random number;
cut_point← random_number in [1, (n_courses− 1)];
p1_d[chromosome]← p1;
p2_d[chromosome]← p2;
cross_prob_d[chromosome]← cross_prob;
cut_point_d[chromosome]← cut_point;
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Algorithm 7: Reproduction, examination-threaded approach (two kernels implementation): each
thread uses the previous selected chromosomes and implements the crossover operation.

chromosome← blockIdx.y;
course_id← threadIdx.x+ blockIdx.x ∗ blockDim.x;
cross_prob← cross_prob_d[chromosome];
p1← p1_d[chromosome];
p2← p2_d[chromosome];
__syncthreads();
if cross_prob < crossover_rate then

cut_point← cut_point_d[chromosome];
if course_id < cut_point then

slot_next[child1 ∗ n_courses+ course_id]← slot[p1 ∗ n_courses+ course_id];
slot_next[child2 ∗ n_courses+ course_id]← slot[p2 ∗ n_courses+ course_id];

end
else

slot_next[child1 ∗ n_courses+ course_id]← slot[p2 ∗ n_courses+ course_id];
slot_next[child2 ∗ n_courses+ course_id]← slot[p1 ∗ n_courses+ course_id];

end
end
else

slot_next[child1 ∗ n_courses+ course_id]← slot[child1 ∗ n_courses+ course_id];
slot_next[child2 ∗ n_courses+ course_id]← slot[child2 ∗ n_courses+ course_id];

end

5.5. Mutation

Mutation is used in genetic algorithms to diversify the population. The operator used in this work
selects some random examinations according to the mutation rate and changes their time slots also
randomly, respecting the time slot limit. As in all previous stages, the two approaches of parallelization
were implemented. In the chromosome-threaded approach, each thread is responsible for all of
the mutation operations needed in one chromosome. In the examination-threaded approach, another
problematic situation had to be resolved. In order for every thread to create a random number, a very
big initialization table for the curand_uniform function is needed. Since the size of curandState is
48 bytes, in the big datasets, this could not be implemented, due to a lack of memory space. Therefore,
it was decided to use the host API of the curand library in this stage, in order to create the necessary
float and integer numbers instead of the curandState array, since they occupy much less memory space.
The pseudocode for the two approaches is given in Algorithms 8 and 9.
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Algorithm 8: Mutation, chromosome-threaded approach: each thread mutates the genes in a single
chromosome, according to a probability.

chromosome← blockDim.x ∗ blockIdx.x+ threadIdx.x;
for j ← 1 to n_courses do

if random_number < m_rate then
slot[chromosome ∗ n_courses+ j]← random_number % n_slots;

end
end

Algorithm 9: Mutation, examination-threaded approach: each thread mutates a single gene,
according to a probability

chromosome← blockDim.y;
course_id← blockDim.x ∗ blockIdx.x+ threadIdx.x;
if course_id < n_courses then

if random_number < m_rate then
slot[chromosome ∗ n_courses+ course_id]← random_number % n_slots;

end
end

5.6. Termination Criterion

Mainly three termination criteria are used in genetic algorithms. The termination of the algorithm
after a specific number of generations or after a specific time limit are two of them, while another one
is the termination of the algorithm when no progress is achieved for a specific number of generations.
In this work, the algorithm terminates after a pre-defined number of generations.

5.7. Greedy Steepest Descent Algorithm

In order to improve the results, in terms of quality, a local search algorithm was implemented that
traverses all of the genes of a chromosome one after the other and finds the best time slot that every
examination can be scheduled. The process of finding the best time slot for each examination is not
independent, because the cost of each examination should be calculated with the time slots of all
of the other examinations fixed. Taking into consideration that every block cannot have more than
1024 threads and that the maximum number of available time slots in the datasets is 42, the decision for
the configuration of threads was the following:

tpb.x = 16

tpb.y = T

blocks.x = pop/16
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In the above equations, tpb.x and tpb.y are the threads per block in the x- and y-axis, respectively, T is
the number of available time slots and pop is the population size. In this way, the limit of 1024 threads in
a block is never overcome. Each thread in a block calculates the cost of an examination with a specific
time slot, and then, the time slot with the smaller cost is found. Then, the process is repeated for all of
the examinations. The pseudocode is given in Algorithm 10.

Algorithm 10: Greedy steepest descent algorithm: every thread calculates the cost of an
examination for a specific time slot.

chromosome← blockDim.x ∗ blockIdx.x+ threadIdx.x;
slot_of_thread← threadIdx.y;
__shared__ int lcost[];
__shared__ int w_shared[];
lcost[]← 0;
if threadIdx.x = 0 then

w_shared[slot_of_thread]← w_d[slot_of_thread];
end
__syncthreads();
for course_id← 1 to n_courses do

sum_cost← 0;
for j ← 1 to n_courses do

distance← abs(slot[j]− slot_of_thread);
sum_cost + = w_shared[distance] ∗ students_in_conflict[course_id][j];

end
lcost[slot_of_thread]← sum_cost;
__syncthreads();
Find slot with best cost;
if threadIdx.y = 0 then

slot[course_id]← slot_with_best_cost;
end

end

6. Experimental Results

In order to evaluate our algorithm, a number of experiments was designed and executed. In this
section, all of the steps of the algorithm are examined in terms of performance. Moreover, the use of the
compressed sparse row format instead of the full sparse conflict matrix is analyzed. Two other issues
that are discussed are the improvement that the greedy steepest descent algorithm adds to the genetic
algorithm and the impact of the tournament selection size as the population grows, in the performance
of the algorithm. In the end, the quality results obtained are shown. From the thirteen datasets, in the
speedup figures, only four are presented, so that the figures remain easily readable. However, special
attention was given in the selection of the datasets to be presented. The datasets chosen are pur-s-93,
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due to its large size and the special design options that it requires, car-s-91, as the largest from the
remaining ones, hec-s-92, as the smallest one, but with the highest conflict density, and lse-f-91, as a
medium-size dataset with small conflict density. All of the experiments were conducted in work stations,
containing one NVIDIA graphics card GTX580 with 512 cores. The CPUs used had an Intel i7 processor
at 3.40 GHz with 16 GB RAM and a solid state disk. It should be mentioned that the serial approach
discussed here is single threaded. Given that evolutionary algorithms are stochastic processes, many runs
of the algorithm with different parameters were done, and parameters that gave good results were chosen.
Only for the speedup section, it should be mentioned that the value of 50% was chosen as a crossover
probability in order not to help the GPU achieve better time and, thus, be unfair in the comparison with
the CPU, due to divergent execution. Furthermore, it should be added that the selected values are not
necessarily the best for all of the datasets, and of course, all of the results depend on the initial seed
of the random generator. Parameter values were chosen after a parameter sweep that was performed.
Therefore, the crossover probability has been tested for values ranging from a 10% to 95%, mutation
probability for values ranging from 0.1% to 2% and tournament selection size assumed values: pop/64,
pop/32, pop/16 and pop/8. Runs showed that value pop/32 struck a balance between good results and
fast execution times. Regarding the curand library, the default pseudorandom generator, XORWOW,
and the default ordering were used.

6.1. Speedups

The main aim of this work was to accelerate the performance of the algorithm, utilizing the GPU as
much as possible. In the following, the speedups obtained for all of the stages, evaluation, reproduction,
mutation and local search, will be presented. The speedup is calculated by dividing the execution time of
the single-threaded serial function, running on the CPU, and the execution time of the parallel function,
running on the GPU. The results are the average of 10 runs with a mutation probability of 0.5% and a
crossover probability of 50%, and the relative error was up to 4%. In the generation time of the random
numbers with the curand host API, the first time of execution is expensive in terms of time (7 s) [60],
while the next iterations are executed in fractions of a second. Thus, in the speedup calculation of the
mutation phase, we did not use the first measurement; however, it was used in the calculation of the
whole speedup of the algorithm.

6.1.1. Evaluation

As described in the methodology section, for the evaluation stage, two parallel approaches were
implemented. The examination and the chromosome-threaded approach. Moreover, the use of the
CSR format was proposed in order to improve the performance, due to the small conflict density of
many datasets. In Figure 4, the speedup obtained with the examination-threaded approach is depicted.
This approach gives a better speedup than the chromosome-threaded approach. Moreover, it can be
observed that the datasets with the larger speedup are the ones with less courses. This happens, because
in the evaluation stage, there is a need for synchronization between the threads and for atomic operations
for the big datasets, as explained in the previous section.
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Figure 4. Speedup in the evaluation stage for the examination-threaded approach with the
use of the compressed sparse row (CSR) conflict matrix.
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6.1.2. Reproduction

In this stage, the examination-threaded approach was faster, as well. In Figure 5, the speedups
achieved for this approach with the implementation with the two different kernels, one for the selection
process and one for the reproduction process, are given. We can see here that the speedups increase
with the increase in the population size, which means that for low population sizes, the card is not fully
utilized. This does not happen in the evaluation stage, and the reason is that the number of blocks of
threads in this stage are half of the ones executed in the evaluation stage. Furthermore, the speedups that
are achieved in this stage are much greater than in the evaluation stage. This occurs due to the fact that
in the reproduction stage, threads access continuous memory locations, leading to memory coalescence,
while in the evaluation stage, this is not achieved, synchronization is needed and atomic operations are
necessary in big datasets.

Figure 5. Speedup in the reproduction stage for the examination-threaded approach with the
separation of the selection and reproduction stages in different kernels.
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6.1.3. Mutation

In this stage, both approaches give very large speedup values, but the examination-threaded approach
utilizes the card better as it achieves satisfactory speedups from small population sizes. In Figure 6, the
speedup for the examination-threaded approach is illustrated. The speedup for the pur-s-93 dataset is
up to 360×, which is very large, as the mutation phase can be fully parallelized. Although the mutation
stage takes only a very small percent of the whole execution time of the algorithm, the achieved speedup
values show that this encoding matches well with the GPU architecture.

Figure 6. Speedup in the mutation stage for the examination-threaded approach.
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6.1.4. Greedy Steepest Descent Algorithm

In Figure 7, the speedup for the steepest descent algorithm is shown. It remains almost constant for
all of the population sizes, showing that the card is well utilized. It should also be mentioned that this
function is the most time consuming, and thus, the speedup of this process is crucial for the overall
performance.

Figure 7. Speedup in the greedy steepest descent algorithm stage.
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6.1.5. Total Speedup

The total speedup of the algorithm for the four datasets is shown in Table 2 for the
examination-threaded approach. The transfers of all of the data to and from the GPU are taken into
account. The speedup is much larger in population size, 8192, which can be explained by the fact that
in small population sizes, the total execution time is dominated by the memory transfers and not the
computation and that not a significant number of threads are launched, so that the GPU can be efficient.
From Figures 4–7 and from Table 2, it is shown that the speedup is not increasing much for populations
greater than 8192. This can be accredited to the fact that the number of blocks and the number of the
total threads increase so much at this point, that the GPU processes them sequentially.

Table 2. Total speedup for the examination-threaded approach.

Dataset pop = 256 pop = 2048 pop = 8192 pop = 16, 384

car-s-91 4.37 4.54 21.97 23.96
hec-s-92 3.26 4.73 25.372 26.17
lse-f-91 3.09 4.32 22.54 23.25
pur-s-93 4.34 4.31 22.11 21.37

6.2. Compressed Sparse Row Format

In Table 3, the exact execution time on the GPU of the evaluation stage for one generation and
population size 256, for the four datasets used and for the implementations, with the full conflict matrix
and with the CSR format are presented, along with the achieved speedup and the conflict density.
The speedups are the same for all of the population sizes, something expected because the use of the
CSR format is only related to the conflict density of the specific dataset. It can be observed that the
dataset with the highest conflict density (hec-s-92) has the smallest speedups, while the dataset with the
smallest conflict density (pur-s-93) has the biggest speedups. The results shown here were obtained from
the previous set of measurements.

Table 3. GPU evaluation execution time and speedup between the full conflict matrix and
the compressed sparse row format implementation.

Dataset Full Conflict Matrix (ms) CSR Conflict Matrix (ms) Speedup Conflict Density

car-s-91 20.80 3.97 5.24 0.13
hec-s-92 0.12 0.09 1.29 0.42
lse-f-91 5.52 0.41 13.44 0.06
pur-s-93 377.09 11.50 32.78 0.03

6.3. Improvement with the Greedy Steepest Descent Algorithm

In this subsection, the improvement of the quality of the solutions that occurs with the additional step
of the greedy steepest descent algorithm, is examined. In Table 4, the average distance (%) from the



Algorithms 2014, 7 318

best reported solutions in the literature, for all of the datasets with the genetic algorithm, is illustrated.
In Table 5, the respective values for the hybrid evolutionary algorithm are given. The results are from
five runs for three population sizes with different seeds and a small number of initial solutions. The only
dataset with no initial solutions was pur-s-93. The mutation probability was 0.8% and the crossover
probability 30%. The distance from the best solution with the steepest descent algorithm is smaller for
all of the datasets. In the next Tables when the algorithm failed to provide a feasible solution with the
selected parameters it is denoted using INF which stands for infeasible.

Table 4. Average distance (%) from the best reported solution in the bibliography with the
genetic algorithm.

Dataset pop = 256 pop = 2048 pop = 16, 384

car-f-92 89.68 89.41 58.46
car-s-91 110.67 110.67 80.40
ear-f-83 74.85 64.78 56.94
hec-s-92 91.06 80.73 74.10
kfu-s-93 91.80 58.66 38.87
lse-f-91 113.42 70.32 59.98
pur-s-93 INF INF INF
rye-s-93 153.7 149.91 94.54
sta-f-83 19.43 19.43 19.23
tre-s-92 57.04 48.06 42.17
uta-s-92 81.56 81.56 65.40
ute-s-92 35.83 25.88 19.85
yor-f-83 41.41 37.12 30.41

Table 5. Average distance (%) from the best reported solution in the bibliography with the
hybrid evolutionary algorithm.

Dataset pop = 256 pop = 2048 pop = 16, 384

car-f-92 42.21 29.40 26.77
car-s-91 44.84 30.27 24.95
ear-f-83 43.16 33.77 28.88
hec-s-92 30.87 27.02 20.78
kfu-s-93 24.17 16.15 12.53
lse-f-91 43.20 29.03 27.43
pur-s-93 263.7 153.23 126.06
rye-s-93 54.01 36.38 33.36
sta-f-83 16.83 16.69 16.64
tre-s-92 22.88 19.42 13.85
uta-s-92 43.95 30.13 25.57
ute-s-92 7.52 5.43 4.53
yor-f-83 17.64 13.40 11.31
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6.4. Tournament Selection Size

Another interesting point that occurred during the development of the algorithm is the size of the
tournament selection of the genetic algorithm as the population size increases. It is obvious that as the
population size increases, a small tournament selection size results in small improvement of the quality
of the solutions. Thus, it was decided to increase the tournament selection size as the population size
increases. For this reason, we chose the tournament selection size to be a fraction of the population
size. However, the bigger the size of the tournament selection, the more computational time that is
required. A balance was obtained for pop/32. In Tables 6 and 7, the average distance from the best
reported solution in the literature for a constant tournament selection size (10) and for a fraction of
population size (pop/32) is illustrated. The experiments were run five times for all thirteen datasets for
three population sizes, with different seeds, but the same initial solutions, and the mutation probability
was 0.3% and the crossover probability 75%. Furthermore, the steepest descent algorithm was excluded
from these measurements, so that it could not impact the quality of the solutions. It is clearly seen that
with a larger tournament selection size, the algorithm obtains better solutions in population sizes of 2048
and 16,384. For a population size of 256, the tournament selection size (10) is greater than the fraction
of the population size (256/32 = 8). It is worth mentioning that in general, it is here illustrated that bigger
population sizes give better solutions.

Table 6. Average difference (%) from the best reported solution in the bibliography with the
genetic algorithm and a tournament selection size of 10.

Dataset pop = 256 pop = 2048 pop = 16, 384

car-f-92 77.73 66.69 63.97
car-s-91 90.09 82.24 78.27
ear-f-83 67.90 58.75 61.48
hec-s-92 66.13 59.39 58.09
kfu-s-93 52.36 46.04 45.46
lse-f-91 67.17 64.63 63.47
pur-s-93 INF INF INF
rye-s-93 119.01 106.42 94.77
sta-f-83 19.43 19.43 19.42
tre-s-92 53.26 49.31 41.63
uta-s-92 80.02 73.28 71.11
ute-s-92 30.02 33.75 31.53
yor-f-83 37.82 35.69 34.25
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Table 7. Average difference (%) from the best reported solution in the bibliography with the
genetic algorithm and a tournament selection size of population size/32.

Dataset pop = 256 pop = 2048 pop = 16, 384

car-f-92 81.40 61.34 46.17
car-s-91 94.92 60.79 50.19
ear-f-83 65.67 56.00 49.19
hec-s-92 71.63 54.45 54.68
kfu-s-93 57.49 41.70 38.46
lse-f-91 77.11 53.93 50.95
pur-s-93 INF INF INF
rye-s-93 123.55 81.60 83.19
sta-f-83 19.43 19.43 18.84
tre-s-92 48.74 39.40 35.03
uta-s-92 80.55 61.57 48.31
ute-s-92 31.05 25.25 17.71
yor-f-83 38.58 32.22 27.03

6.5. Quality of Solutions

Regarding the quality of the solutions achieved, in this section, a statistical analysis based on the
results is given. Given that in this work, the computational power of a GPU is utilized, large population
sizes are used. In Table 8, the minimum, the maximum and the average costs of the solutions achieved
for all of the datasets and a population size of 256 are given. In Table 9, the same metrics are given for a
population size of 16,384. Furthermore, Figures 8 and 9 show descriptive statistics for the measurements.
There was a need for normalization, since the costs were not of the same magnitude. Thus, the average
cost has taken the value of 100 for all of the datasets, and the remaining statistics were calculated. For the
sta-f-83 dataset in Figures 8 and 9, there is no box, as the initial and the best solution are very close and
with a high cost (157–160). The measurements were done with identical seeds (1–100) to the rand

function of the C programming language. The mutation probability was 0.6%, the crossover probability
50% and the number of generations 200 for all of the experiments. It can be seen that all of the results
gained for the bigger population size are better. This is something expected, since by having a larger
population size, a bigger part of the solution space is explored.

Table 8. Minimum, maximum and average cost with a population size of 256.

Dataset Minimum Cost Maximum Cost Average Cost

car-f-92 I 4.86 5.32 5.04
car-s-91 I 5.72 6.33 5.92
ear-f-83 I 39.05 42.52 40.24
hec-s-92 I 11.34 12.91 12.27
kfu-s-93 I 15.45 16.98 16.14
lse-f-91 I 12.06 13.37 12.68
pur-s-93 I 10.75 33.64 21.51
rye-s-93 I 9.20 10.48 9.63
sta-f-83 I 157.38 157.70 157.47
tre-s-92 I 9.15 9.75 9.51
uta-s-92 I 4.05 4.33 4.20
ute-s-92 I 25.43 27.18 26.19
yor-f-83 I 39.52 42.41 41.32
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Table 9. Minimum, maximum and average cost with a population size of 16,384.

Dataset Minimum Cost Maximum Cost Average Cost

car-f-92 I 4.77 5.06 4.92
car-s-91 I 5.32 5.84 5.60
ear-f-83 I 37.27 39.82 38.65
hec-s-92 I 10.88 12.14 11.39
kfu-s-93 I 14.48 16.00 15.33
lse-f-91 I 11.22 12.62 11.93
pur-s-93 I 5.25 14.99 8.36
rye-s-93 I 8.64 9.32 8.98
sta-f-83 I 157.20 157.45 157.39
tre-s-92 I 8.72 9.61 9.17
uta-s-92 I 3.64 4.13 3.90
ute-s-92 I 25.11 26.71 25.58
yor-f-83 I 38.80 41.21 40.05

Figure 8. Descriptive statistics chart for population size 256.

Figure 9. Descriptive statistics chart for a population size of 16,384.
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The approach of this paper achieved competitive results for many of the Carter/Toronto datasets.
In Table 10, the best costs from this work, from other evolutionary techniques and the best available
in the literature are shown. IGA stands for Informed Genetic Algorithm, MMAS for Max Min Ant
System and hMOEA for hybrid Multi-Objective Evolutionary Algorithm. In bold characters are the best
values among the evolutionary approaches. The table shows that in four datasets, this work achieves a
better cost than alternative evolutionary approaches. Another conclusion drawn from this table is that
evolutionary approaches do not manage to get the best cost in any of the datasets of this problem.

Table 10. A comparison with other evolutionary approaches and the best solution reported.

Dataset This Work IGA [38] hMOEA [35] MMAS [34] Ersoy [39] Best

car-f-92 4.47 4.2 4.2 4.8 - 3.74 [61]
car-s-91 5.24 4.9 5.4 5.7 - 4.42 [61]
ear-f-83 34.41 35.9 34.2 36.8 - 29.3 [30]
hec-s-92 10.39 11.5 10.4 11.3 11.6 9.2 [30]
kfu-s-93 13.77 14.4 14.3 15.0 15.8 12.81 [62]
lse-f-91 11.06 10.9 11.3 12.1 13.2 9.6 [30]
pur-s-93 5.25 4.7 - 5.4 - 3.7 [30]
rye-s-93 8.61 9.3 8.8 10.2 - 6.8 [30]
sta-f-83 157.05 157.8 157.0 157.2 157.7 134.70 [28]
tre-s-92 8.51 8.4 8.6 8.8 - 7.72 [62]
uta-s-92 3.63 3.4 3.5 3.8 - 3.06 [61]
ute-s-92 24.87 27.2 25.3 27.7 26.3 24.21 [63]
yor-f-83 37.15 39.3 36.4 39.6 40.7 34.78 [62]

normalized
16.51% 17.14% 21.11% 25.23% - -

average distance

6.6. Limitations and Advantages

The main limitation in this problem was that most datasets were too large to fit in the small shared
memory of the multiprocessors of the GPU. However, this approach could be beneficial for other
timetabling problems, as well. Despite the fact that many papers exist for the acceleration of genetic
algorithms with the use of GPUs, to our knowledge, there is no work dealing with this kind of problem
and the use of GPUs. Moreover, it should be mentioned that the speedup gained from a GPU is dependent
on the computations that need to be performed. Given that the objective function of our problem is not
too complicated, greater speedups can be expected in problems with more complex objective functions.

7. Conclusions and Future Work

In this paper, the examination timetabling problem is studied and solved on a GPU platform.
The proposed solution is the use of a hybrid evolutionary algorithm in conjunction with a GPU to
accelerate the performance of the algorithm and the ability that GPUs give in order to explore bigger
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parts of the solution space faster. The algorithm was evaluated by using the well-known Carter/Toronto
benchmarks. The results obtained were competitive with the best available in terms of quality, and the
speedup achieved was up to 26×. Furthermore, the tournament selection size is analyzed, and it was
shown that it should be dependent on the population size. The steepest descent algorithm helps the
genetic algorithm to further improve the quality of solutions, while the use of the compressed sparse row
format is also beneficial in terms of speed, as the conflict matrix in most datasets is extremely sparse.

The results of this paper give a clear motivation and direction for future work. The solution of the
examination timetabling problem with methods based on populations can be significantly improved by
incorporating the use of GPUs and the proposed encoding.
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