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Abstract: Recently, developing efficient processing techniques in spatio-temporal databases 

has been a much discussed topic. Many applications, such as mobile information systems, 

traffic control system, and geographical information systems, can benefit from efficient 

processing of spatio-temporal queries. In this paper, we focus on processing an important 

type of spatio-temporal queries, the K-nearest neighbor (KNN) queries. Different from the 

previous research, the locations of objects are located by the sensors which are deployed in 

a grid-based manner. As the positioning technique used is not the GPS technique, but the 

sensor network technique, this results in a greater uncertainty regarding object location. With 

the uncertain location information of objects, we try to develop an efficient algorithm to 

process the KNN queries. Moreover, we design a probability model to quantify the 

possibility of each object being the query result. Finally, extensive experiments are 

conducted to demonstrate the efficiency of the proposed algorithms. 

Keywords: spatio-temporal databases; spatio-temporal queries; K-nearest neighbor 

queries; sensor network; uncertainty 

 

1. Introduction 

The K-nearest neighbor (KNN) query is an important type of the spatio-temproal queries. Given a set 

of objects So, a query object q, and a value of K, the KNN query finds the K-nearest neighbors of  

q among So. Previous studies [1–6] focus on processing the KNN queries on moving objects whose 

locations are obtained through the GPS technique. In this paper, we take the moving objects monitored 

by the sensor network [7–9] into consideration in processing the KNN queries. Two real-world examples 
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of KNN query are presented as follows. The first example is that a fleet of warships on the sea fighting 

an enemy squadron. To immediately support a warship in case it is under attack, a KNN query may be 

used to find the friendly warships close to the warship requiring to be supported. The second example is 

that a traveler planning a trip from city A to city B. In this scenario, the traveler can issue a KNN query 

to find the nearest hotels during the trip. 

For each moving object tackled in this paper, its location cannot be obtained through the GPS 

technique. Instead, the moving object is monitored by taking advantage of another positioning technique, 

the sensor-based tracking system. As the location of each object is determined by the sensor network, 

the uncertainty of the object’s location is much higher than that of object monitored by the GPS technique. 

This would incur a higher cost of processing the KNN queries. In the following, we will discuss the 

difficulties that need to be addressed in processing the KNN queries. 

The first difficulty is how to quantify the uncertainty of moving objects. As the moving objects are 

monitored in the sensor network, the uncertainty of objects is dominated by the number of sensors.  

Due to the limited number of sensors, different deployment strategies for the sensor network will result 

in different uncertainty of object locations. As such, developing an appropriate sensor deployment is 

important to effectively reduce the uncertainty of object locations. 

The second difficulty is how to develop an efficient index for managing the objects moving in the 

sensor network. The existing index structures are well-designed for the moving objects that have precise 

location information. In this paper, we consider the moving objects with uncertainty when the KNN 

query is processed. Therefore, a new index structure is needed to manage such moving objects. 

The third difficulty is how to design an efficient KNN query processing algorithm to find the  

K-nearest neighbors of the query object. Due to the movement of objects, the query result would change 

with time (that is, the query result is dependent on the current location of the query object). This makes 

the execution of the KNN query more complicated. We will discuss the characteristic of the KNN query 

so as to develop the query processing algorithm with better performance. 

The last difficulty is how to reasonably give each moving object a probability of being the K-nearest 

neighbor (i.e., the probability of object being the query result). As the objects move with uncertain 

location, there exist some objects that are possible to be the K-nearest neighbor (that is, these objects are 

possible answers for the KNN query). When the number of possible answers increases, the situation 

becomes very hard to choose the most appropriate objects. Therefore, a probability model must be built 

to reasonably provide probabilistic answers to the KNN query. 

The main contributions of this paper are summarized as follows. 

 An efficient sensor deployment strategy is used to construct the sensor network. 

 An effective mechanism is designed to quantify the uncertainty of objects moving in such a 

sensor network. 

 A grid index with update operations is developed to manage moving objects in the  

sensor network. 

 A query processing algorithm is developed to efficiently answer the KNN query. Also, a 

reasonable probability is designed to quantify the possibility of each object being the  

query result. 
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 A comprehensive set of experiments is conducted to evaluate the efficiency of the  

proposed methods. 

The remainder of this paper is organized as follows. In Section 2, the uncertain model is introduced. 

Section 3 describes the grid index used in query processing. In Section 4, we present the proposed 

algorithm for answering the KNN query. Section 5 presents the designed probability model. Section 6 

shows the performance evaluation. In Section 7, we discuss some related work in processing the  

spatio-temporal queries. Finally, Section 8 concludes this paper. 

2. Uncertain Model 

To monitor the moving object, we need to design a sensor deployment to construct the sensor network. 

In the constructed sensor network, each object moves with uncertain location as time progresses. In the 

following, we introduce the sensor deployment strategy, and then present the uncertain model for the 

moving objects. 

2.1. Sensor Deployment 

Different sensor deployment strategies would result in different covering regions of sensor network, 

which incurs a significant difference between the uncertainties of objects’ locations. To effectively 

reduce the cost of constructing the sensor network, we apply a grid deployment strategy to build the 

sensor network. Let us use Figure 1 to illustrate the grid deployment. In this example, the sensor network 

is constructed by 9 sensors. As each sensor has the same sensing radius r, the distance between each 

sensor is equal to r. It is easy to implement a grid-based sensor network, and thus the constructing cost 

can be effectively reduced. 

As the sensing technique of the sensor network cannot precisely monitor the moving objects, the 

locations of objects in the sensor network are uncertain. As for the uncertain extent of each object, it is 

dependent on the covering region of sensor network. Using the above grid deployment, each object is 

monitored by at least two sensors (i.e., 2 coverage), and is monitored by at most four sensors (i.e.,  

4 coverage). That is, each object belongs to one of the following cases: 2 coverage, 3 coverage and 4 

coverage (depicted as the blue regions shown in Figure 1). 

Figure 1. Grid deployment. 
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2.2. Object Uncertainty 

For each object, it is monitored by at least two sensors. However, due to the inherent uncertain 

property of sensors, the objects are imprecisely tracked. That is, we can know the possible locations of 

each object, instead of its precise location. Let us consider again the example in Figure 1. For the 2 

coverage region monitored by the sensor 5 and the sensor 6, all the points inside it could be the actual 

location of object. Similarly, the 3 and 4 coverage regions represent the possible locations of the object. 

We term the coverage regions the uncertainty regions. 

When the KNN query is processed, different locations of object would result in different query results. 

As such, all the points inside the uncertainty region need to be considered in processing the KNN query. 

However, as we can see from Figure 2a, the shape of the uncertainty regions (including the 2, 3, and 4 

coverage regions) is irregular, which makes it hard to quantify the uncertainty of object. As a result, we 

adopt a minimum rectangle to enclose the uncertainty region as shown in Figure 2b, and utilize it to 

approximate the uncertainty region in query processing. We term the minimum bounding rectangle the 

approximate region. 

Figure 2. Uncertainty model. 

 

3. Index Structure 

To efficiently manage the objects moving in the sensor network, a well-designed index structure is 

required. However, the uncertainty on object locations makes the design and the maintenance of index 

structure much harder. In this section, we design a grid index to store the location information of the 

objects. In the following, we first describe the designed grid index. Then, we illustrate how to manage 

the objects using the grid index. 

3.1. Grid Index 

In our model, the uncertainty of objects’ locations is represented as an approximate region with 

rectangular shape. We use a grid index to efficiently manage the approximate regions. The data space is 

first divided into N*N grid cells, and then each grid cell stores information of the objects, and the sensor 

inside it. Consider the example in Figure 3. There are five objects o1 to o5 moving in the sensor network. 

The entire space of network is divided into 3*3 grid cells and monitored by nine sensors s1 to s9. That is, 
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each sensor is located at the center of a grid cell and responsible for monitoring this cell. In the sequel, 

we describe the data structures used for storing information of the sensors and the objects. 

Figure 3. Grid index. 

 

3.2. Data Structures 

Two tables, To and Ts, are used to keep the information of grid index. The first table To stores the 

information of the objects in the sensor network. The information contains (1) o-id: the object id; (2)  

s-list: the sensors that monitor this object currently; (3) tc: the time point at which this object begins to 

be monitored; and (4) o-data: the basic data of this object (such as age, height, and weight). The second 

table Ts keeps the information of the sensors. The information is (1) s-id: the sensor id; (2) s-radius: the 

sensing radius of this sensor; and (3) o-list: the objects monitored by this sensor. 

3.3. Index Updates 

As the objects in the sensor network move with time, the grid index needs to be updated so as to 

precisely store the object information. Here, we design an efficient mechanism to rapidly update the 

location information of objects. Consider the example in Figure 4, which shows how to process the 

updates of objects. In this example, at time 3, objects o1 and o2 move from the regions monitored by 

sensors s1 and s2 to the regions monitored by sensors s4 and s3, respectively. Due to the movement of 

objects o1 and o2, the following five tables of grid index need to be updated. 

 Updating To of object o1: when o1 moves, sensor s2 cannot monitor o1 while sensor s5 begins to 

monitor o1. Therefore, its table To is changed from (o1, {s1, s2, s4}, 0, o1-data) to (o1, {s1, s4, s5}, 

3, o1-data). 

 Updating To of object o2: once o2 moves, sensor s5 cannot monitor o2 but s6 can monitor o2. As 

such, the table To is updated from (o2, {s2, s3, s5}, 0, o2-data) to (o2, {s2, s3, s6}, 3, o2-data). 

 Updating Ts of sensor s2: due to the movement of o1, the table Ts of s2 needs to be updated. It is 

changed from (s2, 60, {o1, o2}) to (s2, 60, {o2}). 
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 Updating Ts of sensor s5: because the locations of o1 and o2 are changed, the table Ts of s5 needs 

to be updated. It is changed from (s5, 60, {o2}) to (s5, 60, {o1}). 

 Updating Ts of sensor s6: as object o2 moves, sensor s6’s table Ts is updated. It is changed from 

(s6, 60, {null}) to (s6, 60, {o2}). 

Figure 4. Update mechanism. 

 

4. Query Processing Algorithm 

In this paper, we focus on processing the KNN query for moving objects in the grid-based sensor 

network. Given a sensor s issuing the query and a value of K, the KNN query retrieves the K-nearest 

neighbors of s. We develop an efficient algorithm combined with the grid index to answer the KNN 

query. In the following, we first define the parameters used to prune the non-qualifying objects and then 

illustrate the detailed steps of the algorithm. For ease of explanation, we assume that the 1NN query is 

processed (i.e., K = 1). 

4.1. Parameters and Pruning Criteria 

Three parameters are used to design the pruning criteria. They are d(s, o), D(s, o), and d(s, s’), which 

are described as follows. 

 Distance d(s, o): it refers to the minimal distance between the sensor s and the approximate 

region of object o. As shown in Figure 5, d(s5, o1) is the minimal distance of the sensor s5 to the 

approximate region of o1. Note that the minimal distance d(s5, o3) is equal to 0 as s5 is enclosed 

in the approximate region of o3. 

 Distance D(s, o): it refers to the maximal distance between the sensor s and the approximate 

region of object o. Consider again the example in Figure 5. D(s5, o5) is the maximal distance 

between the sensor s5 and the approximate region o5. 

 Distance d(s, s’): it refers to the minimal distance from the sensor s to the grid cell monitored by 

the sensor s’. For example, d(s5, s3) is the minimal distance between s5 and the grid cell 

monitored by s3. 
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Having defined the three parameters, we develop the following pruning criteria to efficiently prune 

the objects that are impossible to be the KNN results. 

 Pruning criterion 1: if the maximal distance D(s, o) of sensor s to object o is less than the minimal 

distance d(s, o’) of sensor s to object o’, then o’ cannot be the NN and thus is pruned. 

 Pruning criterion 2: if the maximal distance D(s, o) of sensor s to object o is less than the minimal 

distance d(s, s’) of sensor s to the grid cell monitored by another sensor s’, then the objects 

monitored by sensor s’ can be pruned as their distances to sensor s must be greater than that of 

object o. 

Figure 5. Illustration of parameters. 

 

4.2. Detailed Steps 

The query processing algorithm consists of three steps. Here, we describe them as follows. 

 Step 1: starting from the grid cell monitored by the sensor s issuing the query, each grid cell is 

visited according to its distance to the sensor s. When a grid cell is visited, d(s, o) and D(s, o) of 

objects enclosed by this grid cell are computed. This step proceeds until d(s, s’) of the visited 

grid cell is greater than D(s, o) of an object. That is, all the unvisited cells are pruned. 

 Step 2: sorting D(s, o) of the objects kept from Step 1 so as to derive a smallest D(s, o), defined 

as the pruning distance. For each object, if its d(s, o) is greater than the pruning distance, then 

it can be pruned. As such, in this step, d(s, o) of each object is compared against the pruning 

distance. Only the objects whose d(s, o) is less than or equal to the pruning distance are kept for 

the next step. 

 Step 3: for each object kept from Step 2, its probability of being the query result is computed 

(which will be discussed later). 
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Algorithm 1: Query Processing Algorithm 

Input: A sensor s issuing the query and a value of K 

Output: The K-nearest neighbors of s 

foreach grid cell monitored by sensor s’ do 

compute d(s, s’); 

if d(s, s’) ≤ D(s, o) of K objects then 

compute d(s, o) and D(s, o) of objects enclosed by the grid cell and insert the objects into set O; 

sort objects in O in ascending order of D(s, o) and set pruning distance to K-th smallest D(s, o); 

foreach object o є O do 

if D(s, o) is greater than the pruning distance then remove o from O; 

foreach object o є O do compute its probability; 

return the K objects with highest probabilities. 

Let us use Figure 6 to illustrate how the query processing algorithm works. Assume that the sensor s5 

issues the NN query. The network expansion starts from the grid cell monitored by sensor s5.  

As the object o3 is monitored by s5, its d(s5, o3) and D(s5, o3) are computed. Then, the grid cells monitored 

by the other eight sensors are visited because their d(s5, s’) is less than D(s5, o3). When Step 1 is finished, 

objects o1 to o5 are kept with their distances d(s5, o) and D(s5, o). By comparing the distance D(s5, o) of 

objects o1 to o5, the pruning distance is set to D(s5, o3). As the distance d(s5, o) of each object is less than 

or equal to the pruning distance, it is possible to be the NN. Thus, objects o1 to o5 are kept for executing 

Step 3. 

Figure 6. Example of K-nearest neighbor (KNN) query. 
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5. Probability Model 

The probability model is designed to reasonably give each object a probability that quantifies the 

possibility of being the query result. Based on the probability, the server can provide more useful 

information for the user to decide the most appropriate result. The following parameter, P(o), is designed 

to compute the probability of the object o being the query result. 

 P(o) = (A1(o) + A2(o) + … + An(o))/A(o), where Ai(o) (1 ≤ i ≤ n) is the area of the ith region of 

object o that overlaps the circle whose radius is equal to the length of the pruning distance (here, 

the circle is denoted as C), and A(o) refers to the area of the approximate region of  

object o. 

Let us use Figure 7, which continues the example in Figure 6, to illustrate how the probabilities of 

the objects are computed. In this example, the probabilities of the five objects o1 to o5 are computed.  

For the object o3, as there are four regions A1(o3), A2(o3), A3(o3), and A4(o3) that overlap the circle C, 

its probability P(o3) is computed as (A1(o3) + A2(o3) + A3(o3) + A4(o3))/A(o3). The probabilities of the 

other four objects o1, o2, o4, and o5 can be computed in a similar way. The final result is also shown in 

Figure 7. 

6. Performance Evaluation 

We conduct several experiments for the proposed algorithm in this section. We evaluate the 

performance by considering the CPU time and the number of accessed grid cells for processing the KNN 

query under various important parameters. 

Figure 7. Probability calculation. 

 

6.1. Experimental Settings 

All experiments are performed on a PC with AMD Athlon 64 X2 5200 CPU and 2GB RAM. The 

algorithms are implemented in C++. In the simulation, 128 × 128 sensors are used to construct the sensor 

network, in which objects (varying from 0.1 K to 200 K) would change their locations after every  

Tu time units. In the experimental space, we also randomly generate 30 query points. Each of these query 

points issues a KNN query, where the default value of K is set to 10. The performance is measured by 

the average CPU time and the average number of accessed cells in performing workloads of the  
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30 queries. We compare the proposed algorithm (termed as KNN) with a PNNQ approach (termed as 

PNNQ) [10] which is performed without the grid index support. Table 1 summarizes the parameters 

under investigation, along with their default values and ranges. 

Table 1. System parameters. 

Parameter Default Range 

Object distribution uniform uniform, Gaussian, zipf 
Object number (K) 100 0.1, 1, 10, 100, 200 

Tu 15 5, 10, 15, 20, 25 
K 10 1, 5, 10, 15, 20 

6.2. Efficiency Evaluation 

In this subsection, we measure the performance of the proposed KNN algorithm and the PNNQ 

approach in terms of the CPU time and the number of accessed cells of grid index. Four experiments are 

conducted to investigate the effects of four important factors on the performance of processing the KNN 

query. These important factors include the distribution of objects, the number of object, the time Tu at 

which object changes its location, and the value of K. 

The first experiment studies how the distribution of objects affects the performance of KNN and 

PNNQ by considering three types of object distributions. These object distributions are the uniform 

distribution, the Gaussian distribution (with variance 0.05 and a mean being the coordinate of the center), 

and the Zipf distribution (with skew coefficient 0.8). Note that hereafter all figures use a logarithmic 

scale for the y-axis. As shown in Figure 8a, the CPU time of both approaches for the uniform distribution 

is slightly lower than that for the Gaussian and Zipf distributions. This is because for the Gaussian and 

Zipf distributions, the objects are closer to each other (compared to the uniform distribution) so that 

more CPU time is required to find the KNN result. As for the number of accessed cells, Figure 8b 

indicates that when the objects follow the Zipf distribution, the KNN approach requires a little more 

accessed cells (comparing to the uniform and Gaussian distributions). For the PNNQ approach, the 

number of accessed cells remains constant regardless of the object distribution. The main reason is that 

PNNQ is performed without the grid index support so that all the grid cells need to be accessed. From 

the above experimental results, we know that the KNN approach significantly outperforms the  

PNNQ approach. 

Figure 9 illustrates the performance of the KNN and PNNQ approaches as a function of the number 

of objects (ranging from 0.1 K to 200 K), in terms of the CPU overhead and the number of accessed 

cells. As shown in Figure 9a, the CPU time for both approaches increases with the increase of object 

number because more distance computations of objects are required for finding the KNN result. 

Nevertheless, the KNN approach significantly outperforms the PNNQ approach in all cases. This is 

mainly because for the PNNQ approach the distances of all objects have to be computed which incurs 

high computation cost as the object number increases, whereas for the KNN approach the unnecessary 

distance computation of these objects can be avoided by applying the designed pruning criteria and the 

support of grid index. The experimental result in Figure 9b illustrates that the number of accessed for 

the PNNQ approach remains constant in all cases. This is because no matter what the object quantity is, 

for the PNNQ approach all cells need to be accessed. An interesting observation from Figure 9b is that 
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a larger number of objects results in a lower number of cells that need to be accessed in processing the 

KNN query. The main reason is that when the sensor network is sparse (e.g., object number is 0.1 K or 

1 K), more cells have to be accessed so as to find the Kth NN, while a dense network (e.g., object number 

is 200 K) may lead to early termination of finding the Kth NN so that fewer cells are accessed. 

Figure 8. Effect of object distribution. 

 

Figure 9. Effect of number of objects. 

 

In the following, we demonstrate the efficiency of the proposed algorithm by studying the effect of 

the update interval (i.e., the value of Tu) on the query performance. Figure 10a and Figure 10b investigate 

the impacts of various update intervals (i.e., varying Tu) on the CPU time and the number of accessed 

cells for the proposed approaches (that is, the KNN approach and the PNNQ approach), respectively. In 

the experiments, we vary Tu from 5 to 25 time units and measure the performance for the two approaches. 

As shown in Figure 10a, for the larger Tu (e.g., Tu = 20 or 25 time units), the frequency of object’s 

location being changed is lower so that the degradation of the CPU time for the PNNQ approach is not 

significant. However, as Tu decreases (i.e., more location changes occur), the PNNQ approach performs 

significantly worse than the KNN approach. In Figure 10b, we measure the number of accessed cells for 

the KNN and PNNQ approaches as a function of Tu. The experimental result shows that the number of 

accessed cells is basically constant for different Tu, which implies that the performance of the proposed 

approaches is insensitive to the value of Tu. The result also confirms again that applying the KNN 

approach can greatly improve the performance of processing the KNN query. 

(a) (b)

100

1,000

10,000

Uniform Gaussian Zipf

C
P
U
t
m
e
(m

s)

Object distribut on

KNN

PNNQ

10

100

1,000

10,000

100,000

Uniform Gaussian Zipf

N
u
m
b
e
r
o
f
a
cc
e
ss
e
d
ce
ll
s

Object distribut on

KNN

PNNQ

(a) (b)

10

100

1,000

10,000

100,000

0.1 K 1 K 10 K 100 K 200 K

C
P
U
t
m
e
(m

s)

Number of objects

KNN

PNNQ

10

100

1,000

10,000

100,000

0.1 K 1 K 10 K 100 K 200 K

N
u
m
b
e
r
o
fa
cc
e
ss
e
d
ce
ll
s

Number of objects

KNN

PNNQ



Algorithms 2014, 7 593 

 

 

Figure 10. Effect of Tu. 

 

The last experiment evaluates the effect of the number of nearest neighbors (i.e., K) on the CPU time 

and the number of accessed cells of the KNN approach and the PNNQ approach. As shown in  

Figure 11a, when the value of K increases, the CPU overhead for both the KNN approach and the PNNQ 

approach grows. The reason is that as K becomes greater, the number of qualifying objects inevitably 

increases so that more distance computations of these objects are required. Nevertheless, in terms of 

CPU time, the KNN approach outperforms the PNNQ approach by a factor of up 10 in all cases. As for 

the effect of K on the number of accessed cells shown in Figure 11b, the curve for the KNN (PNNQ) 

approach has the increasing (constant) trend. The increasing trend for the KNN approach is because as 

K increases, the Kth NN becomes farther from the query point and hence more cells would be accessed. 

Nevertheless, the KNN approach reduces the number of accessed cells by almost two orders of 

magnitude compared to the PNNQ approach. 

Figure 11. Effect of K. 

 

7. Related Work 

Sistla et al. [11] first identify the importance of the spatio-temporal queries and describe modeling 

methods and query languages for the expression of these queries. They further attempt to build a database 

of moving objects, called the DOMINO [12], on top of existing DBMS. The main focus of DOMINO is 

to support new kinds of spatio-temporal attributes and query language for moving objects. However, the 

issues of processing the spatio-temporal queries are not exclusively addressed by the above works. 
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Recently, several methods have been designed to efficiently process the spatio-temporal queries over 

moving objects. 

Kalashnikov et al. [3] propose a method operated with R-tree and Quadtree to efficiently process 

range query. Tao et al. [4] propose a repetitive query processing approach with a TPR-tree for answering 

the range and KNN queries. Benetis et al. [13] develop an approach to find the nearest neighbor through 

a depth-first traversal of TPR-tree. To adapt to moving objects and reduce computational cost, 

Raptopoulou et al. [14] propose efficient methods that process the KNN query by tracing the change of 

the Kth NN. Iwerks et al. [15] answer a KNN query through a method that a range query is first processed 

and then KNN result are determined among the objects qualifying the range query. If the number of 

objects that satisfy the range query is greater than K, the answer to KNN query can be obtained from 

these objects. Song et al. [16] propose an approach in which the snapshot KNN query is re-evaluated at 

each time instant. Their approach is restricted in processing the KNN query over static objects. Nehme 

et al. [17] extend the approach in [16] to adapt to moving object datasets. They utilize the concepts of 

shared execution and incremental evaluation to process range query on moving objects. Recently, the 

technique of incremental evaluation has been further adopted by Mouratidis et al. [6], Xiong et al. [18] 

and Yu et al. [19] to answer the KNN query. 

The above KNN methods are developed for the moving objects, in which the locations of objects are 

obtained through the GPS technique, instead of the sensor network technique. Moreover, all the 

mentioned methods focus on processing the KNN query under the situation that moving objects have 

precise locations. This means that these methods are inapplicable to the KNN query with uncertainty as 

proposed in this paper (where a probabilistic method is needed). Cheng et al. [10] propose a PNNQ 

approach for processing the KNN query over objects with uncertainty, which is similar to the problem 

tackled in this paper. However, there are significant differences compared to our work, which are 

described as follows: (1) the uncertainty model in [10] is a circle or a line segment; (2) no grid index is 

used in [10]; and (3) the probability model in [10] is based on numerical integration. 

8. Conclusions 

In recent years, many studies focused on query processing techniques in spatio-temporal databases. 

In this paper, we tried to apply the query processing techniques to the environment of sensor network, 

in which objects are monitored by sensors and move with uncertainty. We first designed an effective 

mechanism to quantify the uncertainty of the objects moving in the sensor network. Then, we developed 

a grid index to efficiently manage the objects with uncertainty. We also proposed an efficient algorithm 

to answer the KNN query. Finally, a reasonable probability model was designed to quantify the 

possibility of each object being the query result. 
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