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Abstract:

 Aiming at improving the well-known fuzzy compactness and separation algorithm (FCS), this paper proposes a new clustering algorithm based on feature weighting fuzzy compactness and separation (WFCS). In view of the contribution of features to clustering, the proposed algorithm introduces the feature weighting into the objective function. We first formulate the membership and feature weighting, and analyze the membership of data points falling on the crisp boundary, then give the adjustment strategy. The proposed WFCS is validated both on simulated dataset and real dataset. The experimental results demonstrate that the proposed WFCS has the characteristics of hard clustering and fuzzy clustering, and outperforms many existing clustering algorithms with respect to three metrics: Rand Index, Xie-Beni Index and Within-Between(WB) Index.
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1. Introduction

Similar data belongs to a cluster, while different data belongs to different clusters [1,2,3]. The fuzzy C-means (FCM) algorithm is a classical pattern recognition method [4], and many FCM-type clustering algorithms were proposed [5,6]. However, the between-cluster separation is ignored in these clustering techniques because these algorithms partition data points only by minimizing the distances between data points and cluster centers (i.e., the within-cluster compactness). Therefore, Wu et al. proposed a fuzzy compactness and separation (FCS) algorithm [7]. The proposed FCS algorithm assigns a crisp boundary for each cluster so that hard memberships and fuzzy memberships can co-exist in the clustering results.

For high dimensional dataset clustering, features of data are assigned weights which illustrate the importance degree of features. A major problem of un-weighted clustering algorithms lies in treating all features equally in the clustering process. Therefore, many contributions attempt to weight features with various methods and to optimize the FCM-type algorithms [8,9,10,11,12,13]. Frigui and Nasraoui [8] proposed the simultaneous clustering and attribute discrimination algorithm, in which clustering and feature weighting can be performed simultaneously in an unsupervised manner; Wang et al. [9] discussed that the weight assignment can be given by learning according to the gradient descent technique; Jing et al. proposed an EWkmeans [10] which minimizes the within-cluster compactness and maximizes the negative weight entropy to stimulate more features contributing to the identification of a cluster; Wang et al. [11] presented a new fuzzy C-means algorithm with variable weighting (WFCM) for high dimensional data analysis; Wang et al. [12] put forward a feature weighting fuzzy clustering algorithm integrating rough sets and shadowed sets (WSRFCM); Deng et al. [13] introduced the between-cluster separation into the EWkmeans and proposed the enhanced soft subspace clustering (ESSC) algorithm. The WFCM and WSRFCM employ only the within-cluster compactness while updating the membership matrix and feature weights. ESSC uses a parameter ƞ to balance the within-cluster compactness and between-cluster separation. However, negative values may be produced in the membership matrix if the balancing parameter is too large. Therefore, to avoid the negative membership value, ƞ could be set zero. In this case, ESSC would degrade to the EWkmeans.

In the real world, some data points belong to a cluster strictly (i.e., hard clustering) and others belong to a cluster ambiguously (i.e., fuzzy clustering). For maximizing the between-cluster separation and minimizing the within-cluster compactness, we proposed a new feature weighting fuzzy compactness and separation (WFCS) algorithm with fusion of hard clustering and fuzzy clustering. The rest of this paper is organized as follows. Section 2 introduces both the FCS and the WFCS algorithms, addresses the flaw of FCS and discusses the adjustment of membership and feature weighting of WFCS. The proposed algorithm is evaluated in section 3. Finally, this paper is concluded and the future work is discussed in Section 4.

Table 1 illustrates the main symbols that appear in the following formulas.

Table 1. Symbols list.


	Symbol
	Description





	[image: there is no content]
	the numbers of data



	[image: there is no content]
	the numbers of clusters



	[image: there is no content]
	the numbers of features



	[image: there is no content]
	the [image: there is no content] data, [image: there is no content]



	[image: there is no content]
	the [image: there is no content] cluster center, [image: there is no content]



	[image: there is no content]
	the membership of the [image: there is no content] data belonging to the [image: there is no content] cluster



	[image: there is no content]
	the fuzzy exponent



	[image: there is no content]
	the [image: there is no content] feature weigh



	[image: there is no content]
	the feature weighting exponent



	[image: there is no content]
	the parameter to control the influence of between-cluster separation










2. The FCS and WFCS Algorithms

In this section, the FCS algorithm is reviewed and data points on the crisp boundary are discussed. Then we present the WFCS algorithm, demonstrate the formulas of the membership and feature weight and give the adjustment strategy of these formulas.

[image: there is no content] is a dataset in an s-dimensional Euclidean space [image: there is no content], and [image: there is no content] denotes the grand mean of [image: there is no content]




2.1. FCS Algorithm [7]

The fuzzy within-cluster compactness [image: there is no content] and the fuzzy between-cluster separation [image: there is no content] are defined as:



[image: there is no content]



(1)






[image: there is no content]



(2)




Objective function is formulated as:



[image: there is no content]



(3)




where [image: there is no content]
In Equation (3), [image: there is no content] represents the crisp kernel size of [image: there is no content] cluster (2-dimensional diagram is shown in Figure 1). The parameter [image: there is no content] guarantees that no two crisp kernels will overlap [7] and can be demonstrated as:

Figure 1. Illustration of the crisp kernel.
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[image: there is no content]



(4)




where [image: there is no content] and [image: there is no content]
By minimizing [image: there is no content] we have:



[image: there is no content]



(5)






[image: there is no content]



(6)




According to Equations (5) and (6), dataset [image: there is no content] can be partitioned into [image: there is no content] clusters by iteratively updating cluster centers and membership value.

The data point in the [image: there is no content] crisp kernel belongs to the [image: there is no content] cluster strictly, which is called hard clustering. However, if a data point falls on the crisp boundary (see Figure 1), membership value [image: there is no content] will be infinite. Hence, according to Equation (6) the FCS algorithm fails.





2.2. WFCS Algorithm


2.2.1. The Principle of WFCS

Aiming at clustering data more reasonably, we introduce feature weight into the FCS. Firstly, we define the feature weighting fuzzy within-cluster matrix [image: there is no content] and between-cluster matrix [image: there is no content] as follows:



[image: there is no content]



(7)






[image: there is no content]



(8)




We extend the formula of [image: there is no content] as:



[image: there is no content]



(9)




Based on Equation (7) and Equation (8), the objective function is shown as:



[image: there is no content]



(10)




Hence, WFCS can be formulated as an optimization problem which can be expressed as:



{minJWFCSs.t.∑i=1cμij=1,∑k=1sωk=1



(11)




Equation (11) can be solved via the Lagrange multiplier. The L function can be given by:



[image: there is no content]



(12)




Let the partial derivatives of L function with respect to [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] equal to zero. Then we have:



[image: there is no content]



(13)






[image: there is no content]



(14)






[image: there is no content]



(15)




According to Equations (13)–(15), dataset [image: there is no content] can be partitioned into [image: there is no content] clusters by iteratively updating [image: there is no content], [image: there is no content] and [image: there is no content].

We note here that the objective functions of WFCS and ESSC include the within-cluster compactness and between-cluster separation. However, in ESSC the parameter [image: there is no content] will be assigned a value at the beginning of the iteration procedure and will be fixed. Furthermore, if [image: there is no content] the ESSC will degrade to the entropy weighting clustering algorithm without the between-cluster information. However, in the proposed WFCS, [image: there is no content] will be calculated automatically by the between-cluster information and will not be zero if the parameter [image: there is no content].



2.2.2. The Adjustment Strategies

(1) Adjustment of [image: there is no content]

Let



[image: there is no content]



(16)




then Equation (14) can be written as:


[image: there is no content]



(17)




If the value of [image: there is no content] is zero, this means that the [image: there is no content] feature has exactly the same effect on all clusters then [image: there is no content] should be zero.

Here, [image: there is no content] is the grand fuzzy distance between data points and crisp kernels on the [image: there is no content] feature. Hence, [image: there is no content] is non-negative when distribution of data points is balance and so is [image: there is no content]. On the contrary, [image: there is no content] is negative when distribution of data points is imbalance and [image: there is no content] could be negative. Consequently, we have to make some adjustment. Here, [image: there is no content] Therefore, the projection function may be expressed as:



[image: there is no content]



(18)




where [image: there is no content] and [image: there is no content]
After the adjustment, the feature weighting can be given by Equation (14).

(2) Adjustment of [image: there is no content]

Let



[image: there is no content]



(19)




then Equation (15) can be presented as:


[image: there is no content]



(20)




If [image: there is no content] falls on the [image: there is no content] crisp boundary, [image: there is no content]. Accordingly, the membership value of [image: there is no content] is infinite. The fact is that the membership value of [image: there is no content] is fuzzier than that of data point in the crisp kernel. Furthermore, the membership value of [image: there is no content] is greater than that of data point lying outside crisp kernel. Based on the discussions above, we have the projection function as Equation (21):



[image: there is no content]



(21)




where [image: there is no content][image: there is no content] and [image: there is no content].
After the adjustment, [image: there is no content] can be given by Equation (15).



2.2.3. The Implement of WFCS

Step 1. Choose [image: there is no content][image: there is no content][image: there is no content] and the iterative error threshold [image: there is no content] Assign a random membership partition matrix [image: there is no content] and random values between 0 and 1 to [image: there is no content]. Set the initial iteration counter as [image: there is no content]

Step 2. Update [image: there is no content] with [image: there is no content], [image: there is no content] according to Equation (13);

Step 3. Update [image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content] based on both Equations (14) and (18);

Step 4. Update [image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content] according to Equations (15) and (21);

Step 5. Compute [image: there is no content] with [image: there is no content], [image: there is no content] according to Equation (9);

Step 6. Set [image: there is no content] and return to Step 2 until convergence has been reached.





3. Performance Evaluation and Analysis

In this section, the proposed WFCS algorithm has been evaluated by a large number of experiments performed on the simulated dataset and the real dataset. The real datasets include eight UCI benchmarking datasets [14] and a CFM56-type engine dataset (named as ENGINE (ENGINE data can be provided by sending email to the corresponding author)) with measurement noise which has been collected from Air Company. In order to obtain the simulated data, an aero-engine gas path data with Gauss noise (named as LTT) was obtained by a simulation software (developed by the Laboratory of Thermal Turbo machines at the National Technical University of Athens (Downloaded from http://www.ltt.mech.ntua.gr/index.php/softwaremn/teachesmn)). The ENGINE and the LTT datasets present the aero-engine’s states, including healthy states and degrade states. In these experiments, all datasets are normalized into (0, 1) [13].

First, the datasets information, validation criteria and parameters setting are described. Then, the properties of the WFCS are investigated based on the experimental results of the Iris dataset. A detailed comparison with other three feature weighting fuzzy clustering algorithms (ESSC, WFCM, WSRFCM) and one un-weighted fuzzy clustering algorithm (FCS) is performed at last.


3.1. Datasets Information, Validation Criteria and Experimental Setting

The 10 datasets information are summarized in Table 2.

Table 2. Summary of 10 datasets.


	Datasets
	Size of Dataset
	Number of Dimensions
	Number of Clusters





	Australian
	690
	14
	2



	Balance-scale
	625
	4
	3



	Breast Cancer
	569
	30
	2



	Heart
	270
	13
	2



	Iris
	150
	4
	3



	Pima
	768
	8
	2



	Vehicle
	846
	18
	4



	Wine
	178
	13
	3



	ENGINE
	186
	3
	2



	LTT
	300
	3
	2










The rand index (RI) [15], the Xie-Beni index (XB) [16] and Within-Between index (WB) [17] are used for evaluating the performance of the proposed WFCS algorithm. The WB index is a recently proposed one. RI index is defined to evaluate the accuracy of partition—the higher the value is, the higher accuracy we get. XB and WB index are to evaluate the with-cluster compactness and between-cluster separation—the smaller the XB and WB values are, the better the clustering results is.

The parameter setting is: [image: there is no content] or [image: there is no content] [18], [image: there is no content][image: there is no content] and [image: there is no content] Parameter values in experiments are tabulated in Table 3, which is based on the best clustering results in terms of the means and standard deviations of the RI index. We conduct each algorithm 10 times. All experiments were implemented on a computer with 2.5 GHz CPU and 8 GB RAM.


Table 3. Parameter values for 10 datasets.



	
Datasets

	
WFCS

	
ESSC

	
WSRFCM

	
WFCM

	
FCS




	
β

	
α

	
γ

	
η

	
α

	
α

	
β






	
Australian

	
1

	
−7

	
1000

	
0.9

	
−2

	
−7

	
1




	
Breast Cancer

	
1

	
−9

	
5

	
0.5

	
−10

	
−10

	
1




	
Balance-scale

	
0.01

	
4

	
100

	
0.7

	
−6

	
−5

	
0.05




	
Heart

	
0.005

	
2

	
100

	
0

	
−5

	
−10

	
0.5




	
Iris

	
1

	
2

	
1

	
0.01

	
2

	
2

	
1




	
Pima

	
0.5

	
−9

	
100

	
0.2

	
−6

	
−9

	
1




	
Vehicle

	
1

	
2

	
50

	
0.01

	
4

	
−10

	
1




	
Wine

	
1

	
−1

	
50

	
0.01

	
−1

	
−1

	
1




	
ENGINE

	
1

	
2

	
1

	
0

	
−10

	
2

	
1




	
LTT

	
1

	
−2

	
1

	
0

	
−1

	
−10

	
1













3.2. Property Analysis of WFCS

Figure 2 demonstrates the original distribution of Iris dataset and the clustering results of the five algorithms. As shown in Figure 2a, Iris dataset contains three clusters of 50 data points each, where each cluster refers to a type of iris plant. It is obvious that Cluster1 is linearly separable from the other two while the latters are overlapped. Hence, it is more reasonable for data points in Cluster1 to be hard clustered than to be fuzzy clustered.

Figure 2. (a) The original data distribution; (b) The clustering results of weighting fuzzy compactness and separation algorithm (WFCS); (c) The clustering results of enhanced soft subspace clustering algorithm (ESSC); (d) The clustering results of the feature weighting fuzzy clustering algorithm integrating rough sets and shadowed sets (WSRFCM); (e) The clustering results of the feature weighting fuzzy c-means algorithm (WFCM); (f) The clustering results of the fuzzy compactness and separation algorithm (FCS).



[image: Algorithms 08 00128 g002 1024]





(1) Clustering performance

Figure 2 shows that clustering results of feature weighted clustering algorithms (WFCS, ESSC, WFCM and WSRFCM) are similar to the distribution of original data (shown in Figure 2 (a)). Data points in Cluster1 can be recognized very well by the five algorithms. Moreover, most data points in Cluster2 and Cluster3 can be recognized by the four feature weighted algorithms. In Figure 2 (f), it is obvious that some data in Cluster3 are misclassified into Cluster2 by FCS.

The cluster centers of five algorithms are different from each other. Furthermore, the distance between Cluster1, Cluster2 and Cluster3 center obtained by the five algorithms are shown in Figure 3.

Figure 3. The distance between three cluster centers.



[image: Algorithms 08 00128 g003 1024]





With regard to WFCS, ESSC and FCS integrating the within-cluster compactness and between-cluster separation, the distances between the overlapped Cluster2 and Cluster3 center are larger than that of WSRFCM and WFCM. However, FCS can’t partition the data points belonging to Cluster2 or Cluster3 correctly for it has not included the feature weight though the biggest value of distance is obtained.





Since different clustering algorithms have different objective functions, we introduce the iteration function [image: there is no content] in order to evaluate the convergence of algorithm.

Figure 4 shows the convergence curves of the five algorithms.

Figure 4. Convergence of the five algorithms.



[image: Algorithms 08 00128 g004 1024]







As shown in Figure 4, the five convergence curves descend fast in the first two iterations, and the convergence curves vary slowly after three iterations. Furthermore, the smaller iteration number means the higher convergence speed. Overall, WFCS has a higher speed of convergence. The convergence speed of WFCM is lower than that of WFCS and ESSC, while the FCS has the lowest convergence speed.

(2) Hard clustering

Figure 5 shows the fuzzy membership values for Cluster1 of 150 data points in WFCS when [image: there is no content] is 1, 0.5, 0.05 and 0.005 respectively. When membership value is equal to 1, data point is hard clustered into Cluster1. When membership value is 0, data point is hard clustered into the other two clusters.

Figure 5. Fuzzy membership value on the first cluster with different [image: there is no content] (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content].



[image: Algorithms 08 00128 g005 1024]





In Figure 5a–c, there are 50, 31 and 12 data points hard clustered into Cluster1 respectively. In Figure 5d, all data point membership values are smaller than 1, then all data points are fuzzy clustered into Cluster1. As seen in Figure 5, the membership value becomes fuzzier when [image: there is no content] is smaller. Hence, WFCS has the characteristics of both hard clustering and fuzzy clustering.



3.3. Clustering Evaluation

The best RI indexes of the five algorithms are presented in Table 4.


Table 4. The best clustering results obtained for the 10 datasets with rand index (RI).



	
Dataset

	
WFCS

	
ESSC

	
WSRFCM

	
WFCM

	
FCS






	
Australian




	
mean

	
0.7336

	
0.7162

	
0.7302

	
0.7265

	
0.6995




	
std

	
0.0000

	
0.1134

	
0.0033

	
0.0569

	
0.0125




	
Breast Cancer




	
mean

	
0.8721

	
0.8779

	
0.8630

	
0.8600

	
0.8627




	
std

	
0.0009

	
0.0057

	
0

	
0.0000

	
0.0000




	
Balance-scale




	
mean

	
0.6427

	
0.6389

	
0.6101

	
0.6099

	
0.6201




	
std

	
0.0758

	
0.0287

	
0.0586

	
0.0578

	
0.0662




	
Heart




	
mean

	
0.7163

	
0.7114

	
0.7120

	
0.6939

	
0.6833




	
std

	
0.0000

	
0.0019

	
0.0023

	
0.0000

	
0.0000




	
Iris




	
mean

	
0.9495

	
0.9195

	
0.9495

	
0.9495

	
0.8679




	
std

	
0.0000

	
0.0000

	
0.0081

	
0.0000

	
0.0000




	
Pima




	
mean

	
0.5841

	
0.5564

	
0.5698

	
0.5837

	
0.5576




	
std

	
0.0000

	
0.0005

	
0.0044

	
0.0009

	
0.0000




	
Vehicle




	
mean

	
0.6654

	
0.6539

	
0.6778

	
0.6581

	
0.6528




	
std

	
0.0025

	
0.0028

	
0.0006

	
0.0038

	
0.0000




	
Wine




	
mean

	
0.9551

	
0.9398

	
0.9324

	
0.9398

	
0.9551




	
std

	
0.0000

	
0.0095

	
0.0000

	
0.0000

	
0.0000




	
ENGINE




	
mean

	
0.8600

	
0.7823

	
0.7693

	
0.8600

	
0.7903




	
std

	
0.0000

	
0.0005

	
0.0067

	
0.0000

	
0.0000




	
LTT




	
mean

	
0.9671

	
0.96

	
0.9543

	
0.9671

	
0.9607




	
std

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000











It is evident in Table 4 that WFCS demonstrates the best performance except for Breast-cancer, Vehicle and ENGINE datasets. The performance of WFCM and WSRFCM are mostly comparable or better than that of ESSC and FCS. Even if FCS is not a feature weighted clustering algorithm, it is able to achieve the best clustering result performance for the dataset Wine. Table 5 and Table 6 list the XB and WB index values of the five algorithms respectively. By comparing Table 4, Table 5 and Table 6, we found that the best clustering performance as indicated through RI is not always the smallest value as indicated through XB or WB index. Therefore, no single algorithm can always be superior to the others for all datasets.


Table 5. Xie-Beni (XB) index of algorithms.



	
Dataset

	
WFCS

	
ESSC

	
WSRFCM

	
WFCM

	
FCS






	
Australian




	
mean

	
0.0400

	
0.7194

	
1.4636

	
1.2056

	
0.1995




	
std

	
0.0007

	
0.3455

	
0.8407

	
1.0488

	
0.0267




	
Breast Cancer




	
mean

	
0.3216

	
0.2961

	
0.4288

	
0.3270

	
0.1094




	
std

	
0.0021

	
0.0344

	
0.0903

	
0.0003

	
0.0000




	
Balance-scale




	
mean

	
0.4435

	
0.7051

	
0.6970

	
0.7392

	
2.8475




	
std

	
0.0000

	
0.0248

	
0.0287

	
0.0725

	
0.0979




	
Heart




	
mean

	
0.1593

	
0.4033

	
0.7942

	
0.6348

	
0.2267




	
std

	
0.0081

	
0.0982

	
0.7522

	
0.5030

	
0.0000




	
Iris




	
mean

	
0.0844

	
0.0861

	
0.2700

	
0.1964

	
0.2922




	
std

	
0.0019

	
0.0059

	
0.0226

	
0.0000

	
0.0000




	
Pima




	
mean

	
0.1443

	
0.4942

	
0.7610

	
0.5955

	
0.4759




	
std

	
0.0002

	
0.0235

	
0.1977

	
0.0406

	
0.0000




	
Vehicle




	
mean

	
0.2532

	
0.2601

	
0.8538

	
0.5480

	
3.2949




	
std

	
0.0000

	
0.0917

	
0.0372

	
0.0047

	
0.0097




	
Wine




	
mean

	
0.2577

	
0.3970

	
0.6775

	
0.4987

	
0.4061




	
std

	
0.0034

	
0.0009

	
0.0640

	
0.0000

	
0.0000




	
ENGINE




	
mean

	
0.1699

	
0.1836

	
0.3755

	
0.2130

	
0.1267




	
std

	
0.0030

	
0.0685

	
0.0295

	
0.0217

	
0.0000




	
LTT




	
mean

	
0.1019

	
0.1075

	
0.3299

	
0.2131

	
0.2105




	
std

	
0.0014

	
0.0983

	
0.0029

	
0.0000

	
0.0000










Table 6. Within-Between(WB) index of algorithms.



	
Dataset

	
WFCS

	
ESSC

	
WSRFCM

	
WFCM

	
FCS






	
Australian




	
mean

	
0.0551

	
0.1730

	
0.6312

	
0.7261

	
0.5971




	
std

	
0.0000

	
0.1313

	
0.0011

	
0.4054

	
0.2144




	
Breast Cancer




	
mean

	
0.3849

	
0.3843

	
0.5388

	
0.6035

	
0.4510




	
std

	
0.0010

	
0.0084

	
0.0000

	
0.0000

	
0.0000




	
Balance-scale




	
mean

	
2.1924

	
3.6567

	
5.8354

	
6.1232

	
5.6191




	
std

	
0.7932

	
0.1983

	
0.0911

	
0.1686

	
0.7135




	
Heart




	
mean

	
1.1191

	
1.1191

	
2.3297

	
3.3005

	
1.8087




	
std

	
0.0000

	
0.0991

	
0.0012

	
0.0000

	
0.0000




	
Iris




	
mean

	
0.0729

	
0.3300

	
0.8423

	
0.6224

	
0.5366




	
std

	
0.0079

	
0.0097

	
0.6452

	
0.0311

	
0.0000




	
Pima




	
mean

	
0.2828

	
0.6195

	
1.0043

	
0.4897

	
0.4832




	
std

	
0.0012

	
0.0003

	
0.0627

	
0.0073

	
0.0000




	
Vehicle




	
mean

	
0.1908

	
0.2850

	
0.5000

	
0.4128

	
0.6351




	
std

	
0.0010

	
0.0087

	
0.0149

	
0.0000

	
0.0000




	
Wine




	
mean

	
0.9821

	
0.9934

	
2.0174

	
1.4317

	
0.8599




	
std

	
0.0038

	
0.0350

	
0.0028

	
0.0000

	
0.0000




	
ENGINE




	
mean

	
0.4866

	
0.8500

	
1.6315

	
1.6072

	
0.8484




	
std

	
0.0079

	
0.0060

	
0.0056

	
2.3408

	
0.0000




	
LTT




	
mean

	
0.9206

	
1.6253

	
3.0179

	
1.9023

	
1.8894




	
std

	
0.0075

	
0.0281

	
0.0106

	
0.0002

	
0.0000









The average performances of the five algorithms are shown in Figure 6.

Figure 6. The average performances of the five algorithms.



[image: Algorithms 08 00128 g006 1024]











In Figure 6, we can see that WFCS obtained the best mean values of RI (0.7946) and XB (0.1976) with the least standard variation (0.0079, 0.0021 respectively) for the 10 datasets. WFCM, WSRFCM and ESSC perform similarly in terms of RI. It can be seen that the feature weighting clustering algorithms are superior to the un-weighted clustering one. The average XB and WB index values of WFCS, ESSC and FCS are smaller than those of WFCM and WSRFCM, which demonstrate that these three algorithms integrating between-cluster separation and within-cluster compactness can partition data points more reasonably.






4. Conclusions

In this paper, a fuzzy clustering algorithm is proposed based on FCS by maximizing the between-cluster matrix and minimizing the within-cluster matrix with weighted features. Two adjustment formulations are derived for adjusting the values of [image: there is no content] and the [image: there is no content] respectively. Through the proposed WFCS, problem for the membership of the data point lying on the crisp boundary can be solved. Experimental results show that the proposed WFCS generally outperforms the four existing clustering algorithms (FCS, WFCM, WSRFCM and ESSC).

The proposed algorithm can handle linear datasets, whereas, the high-dimensional nonlinear data has not been considered in this paper. In the future, we will employ the kernel methodology [19,20,21] to analyze the high-dimensional nonlinear data.
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