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Abstract: In this paper, we consider several variants of the pattern matching with
mismatches problem. In particular, given a text T = t1t2 · · · tn and a pattern P = p1p2 · · · pm,
we investigate the following problems: (1) pattern matching with mismatches: for every
i, 1 ≤ i ≤ n −m + 1 output, the distance between P and titi+1 · · · ti+m−1; and (2) pattern
matching with k mismatches: output those positions i where the distance between P and
titi+1 · · · ti+m−1 is less than a given threshold k. The distance metric used is the Hamming
distance. We present some novel algorithms and techniques for solving these problems.
We offer deterministic, randomized and approximation algorithms. We consider variants of
these problems where there could be wild cards in either the text or the pattern or both. We
also present an experimental evaluation of these algorithms. The source code is available at
http://www.engr.uconn.edu/∼man09004/kmis.zip.

Keywords: pattern matching with mismatches; kmismatches problem; approximate
counting of mismatches

1. Introduction

The problem of string matching has been studied extensively due to its wide range of applications
from Internet searches to computational biology. String matching can be defined as follows. Given a text
T = t1t2 · · · tn and a pattern P = p1p2 · · · pm, with letters from an alphabet Σ, find all of the occurrences
of the pattern in the text. This problem can be solved in O(n+m) time by using well-known algorithms
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(e.g., KMP[1]). A variation of this problem is to search for multiple patterns at the same time. An
algorithm for this version is given in [2].

A more general formulation allows “don’t care” or “wild card” characters in the text and the pattern.
A wild card matches any character. An algorithm for pattern matching with wild cards is given in [3] and
has a runtime of O(n log |Σ| logm). The algorithm maps each character in Σ to a binary code of length
log |Σ|. Then, a constant number of convolution operations is used to check for mismatches between
the pattern and any position in the text. For the same problem, a randomized algorithm that runs in
O(n log n) time with high probability is given in [4]. A slightly faster randomized O(n logm) algorithm
is given in [5]. A simple deterministic O(n logm) time algorithm based on convolutions is given in [6].

A more challenging formulation of the problem is pattern matching with mismatches. This
formulation appears in two versions: (1) for every alignment of the pattern in the text, find the distance
between the pattern and the alignment; or (2) identify only those alignments where the distance between
the pattern and the text is less than a given threshold. The distance metric can be the Hamming distance,
edit distance, L1 metric, and so on. The problem has been generalized to use trees instead of sequences
or to use sets of characters instead of single characters (see [7]).

A survey of string matching with mismatches is given in [8]. A description of practical on-line string
searching algorithms can be found in [9].

The Hamming distance between two strings A and B, of equal length, is defined as the number of
positions where the two strings differ and is denoted by Hd(A,B).

In this paper, we are interested in the following two problems, with and without wild cards.

1. Pattern matching with mismatches: Given a text T = t1t2 . . . tn and a pattern P = p1p2 . . . pm,
output Hd(P, titi+1 . . . ti+m−1), for every i, 1 ≤ i ≤ n−m+ 1.

2. Pattern matching with k mismatches (or the k mismatches problem): Take the same input as above,
plus an integer k. Output all i, 1 ≤ i ≤ n−m+ 1, for which Hd(P, titi+1, . . . ti+m−1) ≤ k.

1.1. Pattern Matching with Mismatches

For pattern matching with mismatches, a naive algorithm computes the Hamming distance for every
alignment of the pattern in the text, in time O(nm). A faster algorithm, in the absence of wild cards,
is Abrahamson’s algorithm [10] that runs in O(n

√
m logm) time. Abrahamson’s algorithm can be

extended to solve pattern matching with mismatches and wild cards, as we prove in Section 2.2.1. The
new algorithm runs in O(n

√
g logm) time, where g is the number of non-wild card positions in the

pattern. This gives a simpler and faster alternative to an algorithm proposed in [11].
In the literature, we also find algorithms that approximate the number of mismatches for every

alignment. For example, an approximate algorithm for pattern matching with mismatches, in the absence
of wild cards, that runs inO(rn logm) time, where r is the number of iterations of the algorithm, is given
in [12]. Every distance reported has a variance bounded by (m− ci)/r2 where ci is the exact number of
matches for alignment i.

Furthermore, a randomized algorithm that approximates the Hamming distance for every alignment
within an ε factor and runs in O(n logcm/ε2) time, in the absence of wild cards, is given in [13]. Here,
c is a small constant. We extend this algorithm to pattern matching with mismatches and wild cards, in
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Section 2.3. The new algorithm approximates the Hamming distance for every alignment within an ε
factor in time O(n log2m/ε2) with high probability.

Recent work has also addressed the online version of pattern matching, where the text is received in
a streaming model, one character at a time, and it cannot be stored in its entirety (see, e.g., [14–16]).
Another version of this problem matches the pattern against multiple input streams (see, e.g., [17]).
Another interesting problem is to sample a representative set of mismatches for every alignment (see,
e.g., [18]).

1.2. Pattern Matching with K Mismatches

For the k mismatches problem, without wild cards, two algorithms that run in O(nk) time are
presented in [19,20]. A faster algorithm, that runs in O(n

√
k log k) time, is given in [11]. This algorithm

combines the two main techniques known in the literature for pattern matching with mismatches: filtering
and convolutions. We give a significantly simpler algorithm in Section 2.2.3, having the same worst case
run time. The new algorithm will never perform more operations than the one in [11] during marking
and convolution.

An intermediate problem is to check if the Hamming distance is less or equal to k for a subset of the
aligned positions. This problem can be solved with the Kangaroo method proposed in [11] at a cost of
O(k) time per alignment, using O(n + m) additional memory. We show how to achieve the same run
time per alignment using only O(m) additional memory, in Section 2.2.2.

Further, we look at the version of k mismatches where wild cards are allowed in the text and
the pattern. For this problem, two randomized algorithms are presented in [17]. The first one runs
in O(nk log n logm) time, and the second one in O (n logm(k + log n log log n)) time. Both are
Monte Carlo algorithms, i.e., they output the correct answer with high probability. The same paper
also gives a deterministic algorithm with a run time of O(nk2 log3m). Furthermore, a deterministic
O(nk log2m(log2 k+log logm)) time algorithm is given in [21]. We present a Las Vegas algorithm (that
always outputs the correct answer), in Section 2.4.3, which runs in time O(nk log2m+n log2m log n+

n logm log n log log n) with high probability.
An algorithm for k mismatches with wild cards in either the text or the pattern (but not both) is given

in [22]. This algorithm runs in O(nm1/3k1/3log2/3m) time.

1.3. Our Results

The contributions of this paper can be summarized as follows.
For pattern matching with mismatches:

• An algorithm for pattern matching with mismatches and wild cards that runs in O(n
√
g logm)

time, where g is the number of non-wild card positions in the pattern; see Section 2.2.1.
• A randomized algorithm that approximates the Hamming distance for every alignment, when wild

cards are present, within an ε factor in time O(n log2m/ε2) with high probability; see Section 2.3.

For pattern matching with k mismatches:
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• An algorithm for pattern matching with k mismatches, without wild cards, that runs in
O(n
√
k log k) time; this algorithm is simpler and has a better expected run time than the one

in [11]; see Section 2.2.3.
• An algorithm that tests if the Hamming distance is less than k for a subset of the alignments,

without wild cards, at a cost of O(k) time per alignment, using only O(m) additional memory; see
Section 2.2.2.
• A Las Vegas algorithm for the k mismatches problem with wild cards that runs in time
O(nk log2m+ n log2m log n+ n logm log n log log n) with high probability; see Section 2.4.3.

The rest of the paper is organized as follows. First, we introduce some notations and definitions.
Then, we describe the exact, deterministic algorithms for pattern matching with mismatches and for
k mismatches. Then, we present the randomized and approximate algorithms: first the algorithm for
approximate counting of mismatches in the presence of wild cards, then the Las Vegas algorithm for k
mismatches with wild cards. Finally, we present an empirical run time comparison of the deterministic
algorithms and conclusions.

2. Materials and Methods

2.1. Some Definitions

Given two strings T = t1t2 . . . tn and P = p1p2 . . . pm (with m ≤ n), the convolution of T and P is a
sequence C = c1, c2, . . . , cn−m+1 where ci =

∑m
j=1 ti+j−1pj , for 1 ≤ i ≤ (n−m+ 1). This convolution

can be computed in O(n logm) time using the fast Fourier transform. If the convolutions are applied
on binary inputs, as is often the case in pattern matching applications, some speedup techniques are
presented in [23].

In the context of randomized algorithms, by high probability, we mean a probability greater or equal
to (1 − n−ε) where n is the input size and ε is a probability parameter usually assumed to be a constant
greater than 0. The run time of a Las Vegas algorithm is said to be Õ(f(n)) if the run time is no more
than cεf(n) with probability greater or equal to (1 − n−ε) for all n ≥ n0, where c and n0 are some
constants and for any constant ε ≥ 1.

In the analysis of our algorithms, we will employ the following Chernoff bounds.
Chernoff bounds [24]: These bounds can be used to closely approximate the tail ends of a

binomial distribution.
A Bernoulli trial has two outcomes, namely success and failure, the probability of success being p.

A binomial distribution with parameters n and p, denoted as B(n, p), is the number of successes in n
independent Bernoulli trials.

Let X be a binomial random variable whose distribution is B(n, p). If m is any integer > np, then
the following are true:

Prob.[X > m] ≤
(np
m

)m
em−np (1)

Prob.[X > (1 + δ)np] ≤ e−δ
2np/3; and (2)
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Prob.[X < (1− δ)np] ≤ e−δ
2np/2 (3)

for any 0 < δ < 1.

2.2. Deterministic Algorithms

In this section, we present deterministic algorithms for pattern matching with mismatches. We start
with a summary of two well-known techniques for counting matches: convolution and marking (see,
e.g., [11]). In terms of notation, Ti..j is the substring of T between i and j and Ti stands for Ti..i+m−1.
Furthermore, the value at position i in array X is denoted by X[i].

Convolution: Given a string S and a character α, define string Sα, such that Sα[i] = 1 if S[i] = α,
and 0 otherwise. Let Cα = convolution(Tα, Pα). Then, Cα[i] gives the number of matches between P
and Ti where the matching character is α. Then,

∑
α∈ΣC

α[i] is the total number of matches between P
and Ti.

Marking: Given a character α, let Pos[α] be the set of positions where character α is found in P (i.e.,
Pos[α] = {i|1 ≤ i ≤ m, pi = α}). Note that, if ti = α, then the alignment between P and Ti−j+1 will
match ti = pj = α, for all j ∈ Pos[α]. This gives the marking algorithm: for every position i in the
text, increment the number of matches for alignment i − j + 1, for all j ∈ Pos[ti]. In practice, we are
interested in doing the marking only for certain characters, meaning we will do the incrementing only
for the positions ti = α where α ∈ Γ ⊆ Σ. The algorithm then takes O(nmaxα∈Γ |Posα|) time. The
pseudocode is given in Algorithm 1.

Algorithm 1: Mark(T, n,Γ)

for i← 1 to n do M [i] = 0;
for i← 1 to n do

if ti ∈ Γ then
for j ∈ Pos[ti] do

if i− j + 1 > 0 then M [i− j + 1]++ ;

return M ;

2.2.1. Pattern Matching with Mismatches

For pattern matching with mismatches, without wild cards, Abrahamson [10] gave the following
O(n
√
m logm) time algorithm. Let A be a set of the most frequent characters in the pattern: (1) using

convolutions, count how many matches each character in A contributes to every alignment; (2) using
marking, count how many matches each character in Σ− A contributes to every alignment; and (3) add
the two numbers to find for every alignment, the number of matches between the pattern and the text.
The convolutions take O(|A|n logm) time. A character in Σ−A cannot appear more than m/|A| times
in the pattern; otherwise, each character in A has a frequency greater than m/|A|, which is not possible.
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Thus, the run time for marking is O(nm/|A|). If we equate the two run times, we find the optimal
|A| =

√
m/ logm, which gives a total run time of O(n

√
m logm).

An Example: Consider the case of T = 2 3 1 1 4 1 2 3 4 4 2 1 1 3 2 and P = 1 2 3 4. Since each
character in the pattern occurs an equal number of times, we can pick A arbitrarily. Let A = {1, 2}.
In Step 1, convolution is used to count the number of matches contributed by each character in A. We
obtain an array M1[1 : 12], such that M1[i] is the number of matches contributed by characters in A to
the alignment of P with Ti, for 1 ≤ i ≤ 12. In this example, M1 = [0, 0, 1, 1, 0, 2, 0, 0, 0, 1, 0, 1]. In
Step 2, we compute, using marking, the number of matches contributed by the characters 3 and 4 to each
alignment between T and P . We get another array M2[1 : 12], such that M2[i] is the number of matches
contributed by 3 and 4 to the alignment between Ti and P , for 1 ≤ i ≤ 12. Specific to this example,
M2 = [0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1]. In Step 3, we add M1 and M2 to get the number of matches between
Ti and P , for 1 ≤ i ≤ 12. In this example, this sum yields: [0, 1, 1, 1, 0, 4, 1, 0, 0, 1, 0, 2].

For pattern matching with mismatches and wild cards, a fairly complex algorithm is given in [11].
The run time of this algorithm is O(n

√
g logm) where g is the number of non-wild card positions in the

pattern. The problem can also be solved through a simple modification of Abrahamson’s algorithm, in
time O(n

√
m logm), as pointed out in [17]. We now prove the following result:

Theorem 1. Pattern matching with mismatches and wild cards can be solved in O(n
√
g logm) time,

where g is the number of non-wild card positions in the pattern.

Proof. Ignoring the wild cards for now, let A be the set of the most frequent characters in the pattern.
As above, count matches contributed by characters in A and Σ − A using convolution and marking,
respectively. By a similar reasoning as above, the characters used in the marking phase will not
appear more than g/|A| times in the pattern. If we equate the run times for the two phases, we obtain
O(n
√
g logm) time. We are now left to count how many matches are contributed by the wild cards.

For a string S and a character α, define S¬α as S¬α[i] = 1 − Sα[i]. Let w be the wild card character.
Compute C = convolution(T¬w, P¬w). Then, for every alignment i, the number of positions that have a
wild card either in the text, or the pattern, or both, is m−C[i]. Add m−C[i] to the previously-computed
counts and output. The total run time is O(n

√
g logm).

2.2.2. Pattern Matching with K Mismatches

For the k mismatches problem, without wild cards, anO(k(m logm+n)) time algorithm that requires
O(k(m+n)) additional space is presented in [19]. Another algorithm, that takes O(m logm+ kn) time
and uses only O(m) additional space, is presented in [20]. We define the following problem, which is
of interest in the discussion.

Problem 1. Subset k mismatches: Given a text T of length n, a pattern P of length m, a set of positions
S = {i|1 ≤ i ≤ n−m+ 1} and an integer k, output the positions i ∈ S for which Hd(P, Ti) ≤ k.

The subset k mismatches problem becomes the regular k mismatches problem if |S| = n −m + 1.
Thus, it can be solved by the O(nk) algorithms mentioned above. However, if |S| << n, then the
O(nk) algorithms are too costly. A better alternative is to use the Kangaroo method proposed in [11].
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The Kangaroo method can verify ifHd(P, Ti) ≤ k inO(k) time for any i. The method works as follows.
Build a suffix tree of T#P and enhance it to support O(1) lowest common ancestor (LCA) queries. For
a given i, perform an LCA query to find the position of the first mismatch between P and Ti. Let this
position be j. Then, perform another LCA to find the first mismatch between Pj+1..m and Ti+j+1..i+m−1,
which is the second mismatch of alignment i. Continue to “jump” from one mismatch to the next, until
the end of the pattern is reached or we have found more than k mismatches. The Kangaroo method can
process |S| positions in O(n + m + |S|k) time, and it uses O(n + m) additional memory for the LCA
enhanced suffix tree. We now prove the following result:

Theorem 2. Subset k mismatches can be solved in O(n + m + |S|k) time using only O(m)

additional memory.

Proof. The algorithm is the following. Build an LCA-enhanced suffix tree of the pattern. Scan the text
from left to right: (1) find the longest unscanned region of the text that can be found somewhere in the
pattern, say starting at position i of the pattern; call this region of the text R; therefore, R is identical to
Pi..i+|R|−1.; and (2) for every alignment in S that overlaps R, count the number of mismatches between
R and the alignment, within the overlap region. To do this, consider an alignment in S that overlaps
R, such that the beginning of R aligns with the j-th character in the pattern. We want to count the
number of mismatches between R and Pj..j+|R|−1. However, since R is identical to Pi..i+|R|−1, we can
simply compare Pi..i+|R|−1 and Pj..j+|R|−1. This comparison can be done efficiently by jumping from
one mismatch to the next, like in the Kangaroo method. Repeat from Step 1 until the entire text has
been scanned. Every time we process an alignment, in Step 2, we either discover at least one additional
mismatch or we reach the end of the alignment. This is true, because, otherwise, the alignment would
match the text for more than |R| characters, which is not possible, from the way we defined R. Every
alignment for which we have found more than k mismatches is excluded from further consideration to
ensure O(k) time per alignment. It takes O(m) time to build the LCA enhanced suffix tree of the pattern
and O(n) additional time to scan the text from left to right. Thus, the total run time is O(n+m+ |S|k)

with O(m) additional memory. The pseudocode is given in Algorithm 2.

2.2.3. An O(n
√
k log k) Time Algorithm for K Mismatches

For the k mismatches problem, without wild cards, a fairly complex O(n
√
k log k) time algorithm

is given in [11]. The algorithm classifies the inputs into several cases. For each case, it applies a
combination of marking followed by a filtering step, the Kangaroo method, or convolutions. The goal is
to not exceed O(n

√
k log k) time in any of the cases. We now present an algorithm with only two cases

that has the same worst case run time. The new algorithm can be thought of as a generalization of the
algorithm in [11], as we will discuss later. This generalization not only greatly simplifies the algorithm,
but it also reduces the expected run time. This happens because we use information about the frequency
of the characters in the text and try to minimize the work done by convolutions and marking.
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Algorithm 2: Subset k mismatches(S, T, P, k)

input : S - set of positions in the text; T1..n - text; P1..m -pattern; k - max number of mismatches;
output: M - the positions in S for which the pattern matches the text with at most k mismatches;
begin

Assume we have a suffix tree/array of the pattern;
for a ∈ S do M [a] = 0;
i = 1 ;
while i ≤ n do

Find the largest l, such that Ti..i+l−1 describes a path in the suffix tree;
This means that Ti..i+l−1 = Pj..j+l−1 for some j;
for a ∈ S where a ≤ i < a+m do

M [a] = countMismatches (M [a], i− a+ 1, j, l) ;
if ti+l 6= pj+l then M [a] = M [a] + 1;
if M [a] > k then S = S − {a};

i = i+ l + 1 ;

return {a ∈ S|M [a] ≤ k}
function countMismatches(c, s1, s2, l)

input : c - current number of mismatches; s1, s2 - starting positions of two suffixes of the
pattern; l - a maximum length;

output: compare the two suffixes on their first l positions and add to c the number of
mismatches found; if c exceeds k, return k + 1, otherwise return the updated c ;

begin
while l > 0 and c ≤ k do

d = lcp(s1, s2); // longest common prefix
if d ≥ l then return c;
c = c+ 1;
d = d+ 1;
s1 = s1 + d;
s2 = s2 + d;
l = l − d;

return c

We will now give the intuition for this algorithm. For any character α ∈ Σ, let fα be its frequency in
the pattern and Fα be its frequency in the text. Note that in the marking algorithm, a specific character α
will contribute to the runtime a cost of Fα×fα. On the other hand, in the case of convolution, a character
α costs us one convolution, regardless of how frequent α is in the text or the pattern. Therefore, we want
to use infrequent characters for marking and frequent characters for convolution. The balancing of the
two will give us the desired runtime.

A position j in the pattern where pj = α is called an instance of α. Consider every instance of
character α as an object of size 1 and cost Fα. We want to fill a knapsack of size 2k at a minimum cost
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and without exceeding a given budget B. The 2k instances will allow us to filter some of the alignments
with more than k mismatches, as will become clear later. This problem can be optimally solved by a
greedy approach, where we include in the knapsack all of the instances of the least expensive character,
then all of the instances of the second least expensive character, and so on, until we have 2k items or we
have exceeded B. The last character considered may have only a subset of its instances included, but for
the ease of explanation, assume that there are no such characters.

Note: Even though the above is described as a knapsack problem, the particular formulation can be
optimally solved in linear time. This formulation should not be confused with other formulations of the
knapsack problem that are NP-complete.

Case (1): Assume we can fill the knapsack at a cost C ≤ B. We apply the marking algorithm for the
characters whose instances are included in the knapsack. It is easy to see that the marking takes time
O(C) and creates C marks. For alignment i, if the pattern and the text match for all of the 2k positions
in the knapsack, we will obtain exactly 2k marks at position i. Conversely, any position that has less
than k marks must have more than k mismatches, so we can filter it out. Therefore, there will be at most
C/k positions with k marks or more. For such positions, we run subset k mismatches to confirm which
of them have less than k mismatches. The total runtime of the algorithm in this case is O(C).

Case (2): If we cannot fill the knapsack within the given budget B, we do the following: for the
characters we could fit in the knapsack, we use the marking algorithm to count the number of matches
that they contribute to each alignment. For characters not in the knapsack, we use convolutions to count
the number of matches that they contribute to each alignment. We add the two counts and get the exact
number of matches for every alignment.

Note that at least one of the instances in the knapsack has a cost larger than B/(2k) (if all of
the instances in the knapsack had a cost less or equal to B/(2k), then we would have at least 2k

instances in the knapsack). Furthermore, note that all of the instances not in the knapsack have a
cost at least as high as any instance in the knapsack, because we greedily fill the knapsack starting
with the least costly instances. This means that every character not in the knapsack appears in
the text at least B/(2k) times. This means that the number of characters not in the knapsack
does not exceed n/(B/(2k)). Therefore, the total cost of convolutions is O(nk/B logm). Since
the cost of marking was O(B), we can see that the best value of B is the one that equalizes the
two costs. This gives B = O(n

√
k logm). Therefore, the algorithm takes O(n

√
k logm) time.

If k < m1/3, we can employ a different algorithm that solves the problem in linear time, as
in [11]. For larger k, O(logm) = O(log k), so the run time becomes O(n

√
k log k). We call

this algorithm knapsack k mismatches. The pseudocode is given in Algorithm 3. The following
theorem results.
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Theorem 3. Knapsack k mismatches has worst case run time O(n
√
k log k).�

Algorithm 3: Knapsack k mismatches(T, P, k)

input : T1..n - text; P1..m -pattern; k - max number of mismatches;
output: S - set of positions in the text where the pattern matches with at most k mismatches;
begin

Compute Fi and fi for every i ∈ Σ ;
Sort Σ with respect to Fi ;
s = 0;
c = 0;
i = 1;
B = n

√
k log k ;

while s < 2k and c < B do
t = min(fi, 2k − s) ;
s = s+ t ;
c = c+ t× Fi ;
i = i+ 1 ;

Γ = Σ[1..i] ;
M = Mark(T, n,Γ); // M counts matches
if s = 2k then

S = {i|M [i] ≥ k} ;
return Subset k mismatches (S, T, P, k);

else
for α ∈ Σ− Γ do

C = convolution(Tα, Pα) ;
for i← 1 to n do

M [i] = M [i] + C[i] ;

S = {i|M [i] ≥ m− k};
return S;

We can think of the algorithm in [11] as a special case of our algorithm where, instead of trying to
minimize the cost of the 2k items in the knapsack, we just try to find 2k items for which the cost is less
than O(n

√
k logm). As a result, it is easy to verify the following:

Theorem 4. Knapsack k mismatches spends at most as much time as the algorithm in [11] to do
convolutions and marking.

Proof. Observation: In all of the cases presented below, knapsack k mismatches can have a run time as
low as O(n), for example if there exists one character α with fα = O(k) and Fα = O(n/k).

Case 1: |Σ| ≥ 2k. The algorithm in [11] chooses 2k instances of distinct characters to perform
marking. Therefore, for every position of the text, at most one mark is created. If the number of
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marks is M , then the cost of the marking phase is O(n + M). The number of remaining positions
after filtering is no more than M/k, and thus, the algorithm takes O(n + M) time. Our algorithm puts
in the knapsack 2k instances, of not necessarily different characters, such that the number of marks B is
minimized!Therefore, B ≤M , and the total runtime is O(n+B).

Case 2: |Σ| < 2
√
k. The algorithm in [11] performs one convolution per character to count the total

number of matches for every alignment, for a run time of Ω(|Σ|n logm). In the worst case, knapsack
k mismatches cannot fill the knapsack at a cost B < |Σ|n logm, so it defaults to the same run time.
However, in the best case, the knapsack can be filled at a cost B as low as O(n) depending on the
frequency of the characters in the pattern and the text. In this case, the runtime will be O(n).

Case 3: 2
√
k ≤ |Σ| ≤ 2k. A symbol that appears in the pattern at least 2

√
k times is called frequent.

Case 3.1: There are at least
√
k frequent symbols. The algorithm in [11] chooses 2

√
k instances of√

k frequent symbols to do marking and filtering at a cost M ≤ 2n
√
k. Since knapsack k mismatches

will minimize the marking time B, we have B ≤ M , so the run time is the same as for [11] only in the
worst case.

Case 3.2: There are A <
√
k frequent symbols. The algorithm in [11] first performs one convolution

for each frequent character for a run time of O(An logm). Two cases remain:
Case 3.2.1: All of the instances of the non-frequent symbols number less than 2k positions.

The algorithm in [11] replaces all instances of frequent characters with wild cards and applies a
O(n
√
g logm) algorithm to count mismatches, where g is the number of non-wild card positions. Since

g < 2k, the run time for this stage isO(n
√
k logm), and the total run time isO(An logm+n

√
k logm).

Knapsack k mismatches can always include in the knapsack all of the instances of non-frequent symbols,
since their total cost is no more than O(n

√
k), and in the worst case, do convolutions for the remaining

characters. The total run time is O(An logm + n
√
k). Of course, depending on the frequency of the

characters in the pattern and text, knapsack k mismatch may not have to do any convolutions.
Case 3.2.2: All of the instances of the non-frequent symbols number at least 2k positions. The

algorithm in [11] chooses 2k instances of infrequent characters to do marking. Since each character
has a frequency less than 2

√
k, the time for marking is M < 2n

√
k, and there are no more than M/k

positions left after filtering. Knapsack k mismatches chooses characters in order to minimize the time B
for marking, so again B ≤M .

2.3. Approximate Counting of Mismatches

The algorithm of [13] takes as input a text T = t1t2 . . . tn and a pattern P = p1p2 . . . pm and
approximately counts the Hamming distance between Ti and P for every 1 ≤ i ≤ (n − m + 1). In
particular, if the Hamming distance between Ti and P is Hi for some i, then the algorithm outputs hi
where Hi ≤ hi ≤ (1 + ε)Hi for any ε > 0 with high probability (i.e., a probability of ≥ (1 −m−α)).
The run time of the algorithm is O(n log2m/ε2). In this section, we show how to extend this algorithm
to the case where there could be wild cards in the text and/or the pattern.

Let Σ be the alphabet under concern, and let σ = |Σ|. The algorithm runs in phases, and in each
phase, we randomly map the elements of Σ to {1, 2}. A wild card is mapped to a zero. Under
this mapping, we transform T and P to T ′ and P ′, respectively. We then compute a vector C where



Algorithms 2015, 2 259

C[i] =
∑m

j=1(t′i+j−1 − p′j)2t′i+j−1p
′
j . This can be done using O(1) convolution operations (as in Section

2.4.1; see also [17]). A series of r such phases (for some relevant value of r) is done, at the end of
which, we produce estimates on the Hamming distances. The intuition is that if a character x in T ′ is
aligned with a character y in P ′, then across all of the r phases, the expected contribution to C from
these characters is r if x 6= y (assuming that x and y are non-wild cards). If x = y or if one or both of x
and y are a wild card, the contribution to C is zero.

Algorithm 4:
1. for i← 1 to (n−m+ 1) do C[i] = 0;
2. for `← 1 to r do

Let Q be a random mapping of Σ to {1, 2}.
In particular, each element of Σ is mapped to 1 or 2 randomly with equal probability.
Each wild card is mapped to a zero.
Obtain two strings T ′ and P ′ where t′i = Q(ti) for 1 ≤ i ≤ n

and p′j = Q(pj) for 1 ≤ j ≤ m;
Compute a vector C` where

C`[i] =
∑m

j=1(t′i+j−1 − p′j)2 t′i+j−1p
′
j for 1 ≤ i ≤ (n−m+ 1);

for i← 1 to (n−m+ 1) do C[i] = C[i] + C`[i] ;

3. for i← 1 to (n−m+ 1) do
Output hi = C[i]

r
;

Here, hi is an estimate on the Hamming distance Hi between Ti and P .

Analysis: Let x be a character in T , and let y be a character in P . Clearly, if x = y or if one or both of
x and y are a wild card, the contribution of x and y to any C`[i] is zero. If x and y are non-wild cards
and if x 6= y, then the expected contribution of these to any C`[i] is 1. Across all of the r phases, the
expected contribution of x and y to any C`[i] is r. For a given x and y, we can think of each phase as
a Bernoulli trial with equal probabilities for success and failure. A success refers to the possibility of
Q(x) 6= Q(y). The expected number of successes in r phases is r

2
. Using Chernoff bounds (Equation 2),

this contribution is no more than (1 + ε)r with probability ≥ 1− exp(−ε2r/6). The probability that this
statement holds for every pair (x, y) is ≥ 1−m2 exp(−ε2r/6). This probability will be ≥ 1−m−α/2 if
r ≥ 6(α+3) logem

ε2
. Similarly, we can show that for any pair of non-wild card characters, the contribution

of them to any C`[i] is no less than (1− ε)r with probability ≥ 1−m−α/2 if r ≥ 4(α+3) logem
ε2

.
Put together, for any pair (x, y) of non-wild cards, the contribution of x and y to any C`[i] is in the

interval (1 ± ε)r with probability ≥ (1 − m−α) if r ≥ 6(α+3) logem
ε2

. Let Hi be the Hamming distance
between Ti and P for some i (1 ≤ i ≤ (n−m+ 1)). Then, the estimate hi on Hi will be in the interval
(1± ε)Hi with probability ≥ (1−m−α). As a result, we get the following Theorem.

Theorem 5. Given a text T and a pattern P , we can estimate the Hamming distance between Ti and P ,
for every i, 1 ≤ i ≤ (n−m+1), in O(n log2m/ε2) time. If Hi is the Hamming distance between Ti and
P , then the above algorithm outputs an estimate that is in the interval (1± ε)Hi with high probability.

Observation 1. In the above algorithm, we can ensure that hi ≥ Hi and hi ≤ (1 + ε)Hi with high
probability by changing the estimate computed in Step 3 of Algorithm 4 to C[i]

(1−ε)r .
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Observation 2. As in [13], with O
(
m2 logm

ε2

)
pre-processing, we can ensure that Algorithm 4 never errs

(i.e., the error bounds on the estimates will always hold).

2.4. A Las Vegas Algorithm for K Mismatches

2.4.1. The 1 Mismatch Problem

Problem definition: For this problem, also, the inputs are two strings T and P with |T | = n, |P | = m,

m ≤ n and possible wild cards in T and P . Let Ti stand for the substring titi+1 . . . ti+m−1, for any i,
with 1 ≤ i ≤ (n−m+1). The problem is to check if the Hamming distance between Ti and P is exactly
1, for 1 ≤ i ≤ (n−m+ 1). The following Lemma is shown in [17].

Lemma 1. The 1 mismatch problem can be solved in O(n logm) time using a constant number of
convolution operations.

The algorithm: Assume that each wild card in the pattern as well as the text is replaced with a zero.
Furthermore, assume that the characters in the text, as well as the pattern are integers in the range [1 : |Σ|]
where Σ is the alphabet of concern. Let ei,j stand for the “error term” introduced by the character ti+j−1

in Ti and the character pj in P , and its value is (ti+j−1 − pj)2ti+j−1pj . Furthermore, let Ei =
∑m

j=1 ei,j .
There are four steps in the algorithm:

1. Compute Ei for 1 ≤ i ≤ (n − m + 1). Note that Ei will be zero if Ti and P match (assuming
that a wild card can be matched with any character). Ei =

∑m
j=1(ti+j−1 − pj)

2ti+j−1pj =∑m
j=1 t

3
i+j−1pj +

∑m
j=1 ti+j−1p

3
j − 2

∑m
j=1 t

2
i+j−1p

2
j . Thus, this step can be completed with three

convolution operations.
2. Compute E ′i for 1 ≤ i ≤ (n − m + 1), where E ′i =

∑m
j=1(i + j − 1)(ti+j−1 − pj)

2pjti+j−1

(for 1 ≤ i ≤ (n − m + 1)). Like Step 1, this step can also be completed with three
convolution operations.

3. Let Bi = E ′i/Ei if Ei 6= 0, for 1 ≤ i ≤ (n−m + 1). Note that if the Hamming distance between
Ti and P is exactly one, then Bi will give the position in the text where this mismatch occurs.

4. If for any i (1 ≤ i ≤ (n − m + 1)), Ei 6= 0 and if (tBi
− pBi−i+1)2tBi

pBi−i+1 = Ei, then we
conclude that the Hamming distance between Ti and P is exactly one.

Note: If the Hamming distance between Ti and P is exactly 1 (for any i), then the above algorithm
will not only detect it, but also will identify the position where there is a mismatch. Specifically, it will
identify the integer j, such that ti+j−1 6= pj .

An example. Consider the case where Σ = {1, 2, 3, 4, 5, 6}, T = 5 6 4 6 2 ∗ 3 3 4 5 1 ∗ 1 2 5 5 5 6 4 3

and P = 2 5 6 3. Here, ∗ represents the wild card.
In Step 1, we computeEi, for 1≤ i≤ 17. For example, E1 = (5−2)2×5×2+(6−5)2×6×5+(4−

6)2×4×6+(6−3)2×6×3 = 378;E2 = (6−2)2×6×2+(4−5)2×4×5+(6−6)2×6×6+(2−3)2×2×3 =

218; E3 = 254; E5 = (2− 2)2× 2× 2 + 0 + (6− 3)2× 6× 3 + (3− 3)2× 3× 3 = 162. Note that since
t5 is a wild card, it matches with any character in the pattern. Furthermore, E9 = 182.
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In Step 2, we compute E ′i, for 1 ≤ i ≤ 17. For instance, E ′1 = 1× (5− 2)2 × 5× 2 + 2× (6− 5)2 ×
6× 5 + 3(4− 6)2 × 4× 6 + 4× (6− 3)2 × 6× 3 = 1410; E ′5 = 5× (2− 2)2 × 2× 2 + 0 + 7× (6−
3)2 × 6× 3 + 8× (3− 3)2 × 3× 3 = 1134.

In Step 3, the value of Bi = E ′i/Ei is computed for 1 ≤ i ≤ 17. For example, B1 = E ′1/E1 =

1410/378 ≈ 3.73; B5 = E ′5/E5 = 1134/162 = 7.
In Step 4, we identify all of the positions in the text corresponding to a single mismatch. For instance,

we note that E5 6= 0 and (t7 − p3)2 × t7 × p3 = E5. As a result, Position 5 in the text corresponds
to 1 mismatch.

2.4.2. The Randomized Algorithms of [17]

Two different randomized algorithms are presented in [17] for solving the k mismatches problem.
Both are Monte Carlo algorithms. In particular, they output the correct answers with high
probability. The run times of these algorithms areO(nk logm log n) andO(n logm(k+log n log log n)),
respectively. In this section, we provide a summary of these algorithms.

The first algorithm has O(k log n) sampling phases, and in each phase, a 1 mismatch problem is
solved. Each phase of sampling works as follows. We choose m/k positions of the pattern uniformly at
random. The pattern P is replaced by a string P ′ where |P ′| = m, the characters in P ′ in the randomly
chosen positions are the same as those in the corresponding positions of P , and the rest of the characters
in P ′ are set to wild cards. The 1 mismatch algorithm of Lemma 1 is run on T and P ′. In each phase of
random sampling, for each i, we get to know if the Hamming distance between Ti and P ′ is exactly 1,
and, if so, identify the j, such that ti+j−1 6= p′j .

As an example, consider the case when the Hamming distance between Ti and P is k (for some
i). Then, in each phase of sampling, we would expect to identify exactly one of the positions (i.e., j)
where Ti and P differ (i.e., ti+j−1 6= pj). As a result, in an expected k phases of sampling, we will
be able to identify all of the k positions in which Ti and P differ. It can be shown that if we make
O(k log n) sampling phases, then we can identify all of the k mismatches with high probability [17]. It
is possible that the same j might be identified in multiple phases. However, we can easily keep track of
this information to identify the unique j values found in all of the phases.

Let the number of mismatches between Ti and P be qi (for 1 ≤ i ≤ (n − m + 1). If qi ≤ k, the
algorithm of [17] will compute qi exactly. If qi > k, then the algorithm will report that the number of
mismatches is > k (without estimating qi), and this answer will be correct with high probability. The
algorithm starts off by first computing Ei values for every Ti. A list L(i) of all of the mismatches found
for Ti is kept, for every i. Whenever a mismatch is found between Ti and P (say in position (i+ j − 1)

of the text), the value of Ei is reduced by ei,j . If at any point in the algorithm, Ei becomes zero for
any i, this means that we have found all of the qi mismatches between Ti and P , and L(i) will have the
positions in the text where these mismatches occur. Note that if the Hamming distance between Ti and
P is much larger than k (for example, close or equal to m), then the probability that in a random sample
we isolate a single mismatch is very low. Therefore, if the number of sample phases is only O(k log n),
the algorithm can only be Monte Carlo. Even if qi is less or equal to k, there is a small probability that
we may not be able to find all of the qi mismatches. Call this algorithm Algorithm 5. If for each i, we
either get all of the qi mismatches (and hence, the corresponding Ei is zero) or we have found more than
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k mismatches between Ti and P , then we can be sure that we have found all of the correct answers (and
the algorithm will become Las Vegas).

An example. Consider the example of Σ = {1, 2, 3, 4, 5, 6}, T = 5 6 4 6 2 ∗ 3 3 4 5 1 ∗ 1 2 5 5 5 6 4 3

and P = 2 5 6 3. Here, ∗ represents the wild card.
As has been computed before, E5 = 162 and E9 = 182. Let k = 2. In each phase, we choose 2

random positions of the pattern.
In the first phase let the two positions chosen be 2 and 3. In this case, P ′ = ∗ 5 6 ∗. We run the

1 mismatch algorithm with T and P ′. At the end of this phase we realize that t3 6= p2; t5 6= p2; t7 6=
p3; t11 6= p2; t11 6= p3; t13 6= p3; t16 6= p3; and t17 6= p3. The correspondingEi values will be decremented
by ei,j values. Specifically, if ti 6= pj , then Ei−j+1 is decremented by ei,j . For example, since t7 6= p3,
we decrement E5 by e7,3 = (6 − 3)2 × 6 × 3 = 162. E5 becomes zero, and hence, T5 is output as a
correct answer. Likewise, since t11 6= p3, we decrement E9 by e11,3 = (1− 6)2 × 1× 6 = 150. Now, E9

becomes 32.
In the second phase, let the two positions chosen be 1 and 2. In this case P ′ = 2 5 ∗ ∗. At the end of

this phase, we learn that t7 6= p2; t9 6= p1; t11 6= p1; t13 6= p2; t15 6= p1; t16 6= p1. Here, again, relevant Ei
values are decremented. For instance, since t9 6= p1, E9 is decremented by e9,1 = (4− 2)2× 4× 2 = 32.
The value of E9 now becomes zero, and hence, T9 is output as a correct answer; and so on.

If the distance between Ti and P (for some i) is ≤ k, then out of all of the phases attempted, there is
a high probability that all of these mismatches between Ti and P will be identified.

The authors of [17] also present an improved algorithm whose run time is O(n logm(k +

log n log log n)). The main idea is the observation that if qi = k for any i, then in O(k log n)

sampling steps, we can identify ≥ k/2 mismatches. There are several iterations where in each iteration
O(k + log n), sampling phases are done. At the end of each iteration, the value of k is changed to k/2.
Let this algorithm be called Algorithm 6.

2.4.3. A Las Vegas Algorithm

In this section, we present a Las Vegas algorithm for the k mismatches problem when there are
wild cards in the text and/or the pattern. This algorithm runs in time Õ(nk log2m + n log2m log n +

n logm log n log log n). This algorithm is based on the algorithm of [17]. When the algorithm
terminates, for each i (1 ≤ i ≤ (n −m + 1)), either we would have identified all of the qi mismatches
between Ti and P or we would have identified more than k mismatches between Ti and P .

Algorithm 5 will be used for every i for which qi ≤ 2k. For every i for which qi > 2k, we use the
following strategy. Let 2`k < qi ≤ 2`+1k (where 1 ≤ ` ≤ log

(⌊
m
2k

⌋)
). Let w = log

(⌊
m
2k

⌋)
. There will

be w phases in the algorithm, and in each phase, we perform O(k) sampling steps. Each sampling step
in phase ` involves choosing m

2`+1k
positions of the pattern uniformly at random (for 1 ≤ ` ≤ w). As we

show below, if for any i, qi is in the interval [2`, 2`+1], then at least k mismatches between Ti and P will
be found in phase ` with high probability. The pseudocode for the algorithm is given in Algorithm 7.

Theorem 6. Algorithm 7 runs in time Õ(nk log2m + n log2m log n +n logm log n log log n) if
Algorithm 6 is used in Step 1. It runs in time Õ(nk logm log n + nk log2m + n log2m log n) if Step
1 uses Algorithm 5.
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Algorithm 7:
while true do

1. Run Algorithm 5 or Algorithm 6;
2. for `← 1 to w do

for r ← 1 to ck (c being a constant) do
Uniformly randomly choose m

2`+1k
positions of the pattern;

Generate a string P ′, such that |P ′| = |P | and P ′ has the same characters as P in these
randomly chosen positions and zero everywhere else;
Run the 1 mismatch algorithm on T and P ′;
As a result, if there is a single mismatch between Ti and P ′, then add the position of
mismatch to L(i) and reduce the value of Ei by the right amount, for
1 ≤ i ≤ (n−m+ 1);

3. if either Ei = 0 or |L(i)| > k for every i, 1 ≤ i ≤ (n−m+ 1) then quit;

Proof. As shown in [17], the run time of Algorithm 5 is O(nk logm log n), and that of Algorithm 6 is
O(n logm(k + log n log log n)). The analysis will be done with respect to an arbitrary Ti. In particular,
we will show that after the specified amount of time, with high probability, we will either know qi or
realize that qi > k. It will then follow that the same statement holds for every Ti (for 1 ≤ i ≤ (n−m+1).

Consider phase ` of Step 2 (for an arbitrary 1 ≤ ` ≤ w). Let 2`k < qi ≤ 2`+1k for some i. Using
the fact that

(
a
b

)
≈
(
ae
b

)b, the probability of isolating one of the mismatches in one run of the sampling
step is: (

m−qi
m/(2`+1k)−1

)
qi(

m
m/(2`+1k)

) ≥

(
m−2`+1k

m/(2`+1k)−1

)
2`k(

m
m/(2`+1k)

) ≥ 1

2e

As a result, using Chernoff bounds (Equation (3) with δ = 1/2, for example), it follows that if 13ke

sampling steps are made in phase `, then at least 6k of these steps will result in the isolation of single
mismatches (not all of them need be distinct) with high probability (assuming that k = Ω(log n)).
Moreover, we can see that at least 1.1k of these mismatches will be distinct. This is because the

probability that ≤ 1.1k of these are distinct is ≤
(
qi

1.1k

)
/
(

1.1k
qi

)6k

≤ 2−2.64k using the fact that qi ≥ 2k.
This probability will be very low when k = Ω(log n).

In the above analysis, we have assumed that k = Ω(log n). If this is not the case, in any phase of
Step 2, we can do cα log n sampling steps, for some suitable constant c. In this case, also we can perform
an analysis similar to that of the above case using Chernoff bounds. Specifically, we can show that with
high probability, we will be able to identify all of the mismatches between Ti and P . As a result, each
phase of Step 2 takes O(n logm(k+ log n)) time. We have O(logm) phases. Thus, the run time of Step
2 is O(n log2m(k+ log n)). Furthermore, the probability that the condition in Step 3 holds is very high.

Therefore, the run time of the entire algorithm is Õ(nk log2m + n log2m log n

+n logm log n log log n) if Algorithm 6 is used in Step 1 or Õ(nk logm log n + nk log2m +

n log2m log n) if Algorithm 5 is used in Step 1.



Algorithms 2015, 2 264

3. Results

The above algorithms are based on symbol comparison, arithmetic operations or a combination of
both. Therefore, it is interesting to see how these algorithms compare in practice.

In this section, we compare deterministic algorithms for pattern matching. Some of these algorithms
solve the pattern matching with mismatches problem, and others solve the k mismatches problem. For
the sake of comparison, we treated all of them as algorithms for the k mismatches problem, which is a
special case of the pattern matching with mismatches problem.

We implemented the following algorithms: the naive O(nm) time algorithm, Abrahamson’s
algorithm [10], subset k mismatches (Section 2.2.2) and knapsack k mismatches (Section 2.2.3). For
subset k mismatches, we simulate the suffix tree and LCA extensions by a suffix array with an LCP
(longest common prefix; [25]) table and data structures to perform RMQ queries (range minimum
queries; [26]) on it. This adds a O(log n) factor to preprocessing. For searching in the suffix array,
we use a simple forward traversal with a cost of O(log n) per character. The traversal uses binary search
to find the interval of suffixes that start with the first character of the pattern. Then, another binary search
is performed to find the suffixes that start with the first two characters of the pattern, and so on. However,
more efficient implementations are possible (e.g., [27]). For subset k mismatches, we also tried a simple
O(m2) time pre-processing using dynamic programming to precompute LCPs and hashing to quickly
determine whether a portion of the text is present in the pattern. This method takes more preprocessing
time, but it does not have the O(log n) factor when searching. Knapsack k mismatches uses subset k
mismatches as a subroutine, so we have two versions of it, as well.

We tested the algorithms on protein, DNA and English inputs generated randomly. We randomly
selected a substring of length m from the text and used it as the pattern. The algorithms were tested
on an Intel Core i7 machine with 8 GB of RAM, Linux Mint 17.1 Operating System and gcc 4.8.2. All
convolutions were performed using the fftw[28] library Version 3.3.3. We used the suffix array algorithm
RadixSAof [29].

Figure 1 shows run times for varying the length of the text n. All algorithms scale linearly
with the length of the text. Figure 2 shows run times for varying the length of the pattern m.
Abrahamson’s algorithm is expensive, because, for alphabet sizes smaller than

√
m/ logm, it computes

one convolution for every character in the alphabet. The convolutions proved to be expensive in practice,
so Abrahamson’s algorithm was competitive only for DNA data, where the alphabet is small. Figure 3
shows runtimes for varying the maximum number of mismatches k allowed. The naive algorithm and
Abrahamson’s algorithm do not depend on k; therefore, their runtime is constant. Subset k mismatch,
with its O(nk) runtime, is competitive for relatively small k. Knapsack k mismatch, on the other
hand, scaled very well with k. Figure 4 shows runtimes for varying the alphabet from four (DNA)
to 20 (protein) to 26 (English). As expected, Abrahamson’s algorithm is the most sensitive to the
alphabet size.
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Figure 1. Run times for pattern matching on DNA, protein and English alphabet data,
when the length of the text (n) varies. The length of the pattern is m = 1000. The
maximum number of mismatches allowed is k = 100. Our algorithms are subset k
mismatch with hashing-based preprocessing (Section 2.2.2), subset k mismatch with suffix
array preprocessing (Section 2.2.2), knapsack k mismatch with hashing-based preprocessing
(Section 2.2.3) and knapsack k mismatch with suffix array preprocessing (Section 2.2.3).

Overall, the naive algorithm performed well in practice, most likely due to its simplicity and cache
locality. Abrahamson’s algorithm was competitive only for small alphabet size or for large k. Subset
k mismatches performed well for relatively small k. In most cases, the suffix array version was slower
than the hashing-based one with O(m2) time pre-processing because of the added O(log n) factor when
searching in the suffix array. It would be interesting to investigate how the algorithms compare with
a more efficient implementation of the suffix array. Knapsack k mismatches was the fastest among
the algorithms compared, because in most cases, the knapsack could be filled with less than the given
“budget”, and thus, the algorithm did not have to perform any convolution operations.
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Figure 2. Run times for pattern matching on DNA, protein and English alphabet data, when
the length of the pattern (m) varies. The length of the text is n = 10 millions. The maximum
number of mismatches allowed is k = 10% of the pattern length. Our algorithms are subset
k mismatch with hashing-based preprocessing (Section 2.2.2), subset k mismatch with suffix
array preprocessing (Section 2.2.2), knapsack k mismatch with hashing-based preprocessing
(Section 2.2.3) and knapsack k mismatch with suffix array preprocessing (Section 2.2.3).
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Figure 3. Run times for pattern matching on DNA, protein and English alphabet data,
when the maximum number of mismatches allowed (k) varies. The length of the text is
n = 10 millions. The length of the pattern is m = 2000. Our algorithms are subset k
mismatch with hashing-based preprocessing (Section 2.2.2), subset k mismatch with suffix
array preprocessing (Section 2.2.2), knapsack k mismatch with hashing-based preprocessing
(Section 2.2.3) and knapsack k mismatch with suffix array preprocessing (Section 2.2.3).
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Figure 4. Run times for pattern matching when the size of the alphabet varies from four
(DNA) to 20 (protein) to 26 (English). The length of the text is n = 10 millions. The length
of the pattern is m = 200 in the first graph and m = 1000 in the second. The maximum
number of mismatches allowed is k = 20 in the first graph and k = 100 in the second.
Our algorithms are subset k mismatch with hashing-based preprocessing (Section 2.2.2),
subset k mismatch with suffix array preprocessing (Section 2.2.2), knapsack k mismatch
with hashing-based preprocessing (Section 2.2.3) and knapsack k mismatch with suffix array
preprocessing (Section 2.2.3).

4. Conclusions

We have introduced several deterministic and randomized, exact and approximate algorithms for
pattern matching with mismatches and the k mismatches problems, with or without wild cards. These
algorithms improve the run time, simplify or extend previous algorithms wild cards. We have also
implemented the deterministic algorithms. An empirical comparison of these algorithms showed that
the algorithms based on character comparison outperform those based on convolutions.
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