
Algorithms 2015, 8, 459-465; doi:10.3390/a8030459
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Solving the (n2 − 1)-Puzzle with 8
3
n3 Expected Moves

Ian Parberry

Department of Computer Science & Engineering, University of North Texas, Denton, TX 76203–5017,
USA; E-Mail: ian@unt.edu; Tel.: +1-940-565-2845

Academic Editor: Dimitris Fotakis

Received: 13 January 2015 / Accepted: 30 June 2015 / Published: 10 July 2015

Abstract: It is shown that the greedy algorithm for the (n2− 1)-puzzle makes 8
3
n3+O(n2)

expected moves. This analysis is verified experimentally on 10,000 random instances each
of the (n2 − 1)-puzzle for 4 ≤ n ≤ 200.

Keywords: 15-puzzle; 8-puzzle; analysis of algorithms; average case analysis; greedy
algorithm; (n2 − 1)-puzzle

1. Introduction

The (n×m)-puzzle is defined as follows. Given nm− 1 numbered tiles arranged in row-major order
in an n×m grid leaving a blank space in the last position where one tile is missing, the aim is to scramble
the puzzle and return it to the initial configuration by repeatedly sliding an adjacent tile into the blank
location. When n = m the puzzle is also called the (n2 − 1)-puzzle. For example, Figure 1 shows an
example for the 15-puzzle of the solved configuration (left) and a random configuration (right).

Figure 1. The solved 15-puzzle (left), and a random configuration (right).



Algorithms 2015, 8 460

The 15-puzzle has a long and interesting history (see, for example, Hordern [1]) that is said to date
back to the 1870s. More recently, the 15-puzzle has appeared in the form of various apps on mobile
devices and as minigames inside larger games. For example, the 15-puzzle can be found in the original
Final Fantasy (Square Enix, 1987) and The Legend of Zelda: The Windwaker (Nintendo 2003), and the
8-puzzle can be found in Machinarium (Amanita Design, 2009).

Ratner and Warmuth [2] have proved that the problem of finding the minimum number of moves for
the (n2 − 1)-puzzle is NP-hard, and they demonstrate that a polynomial time approximation algorithm
exists. Kornhauser, Miller, and Spirakis [3] show an O(n3) time algorithm for the (n2−1)-puzzle, which
therefore uses O(n3) moves in the worst case.

Parberry [4] gave worst case upper and lower bounds of 5n3 and n3, respectively, on the number of
moves required to solve the (n2−1)-puzzle using a greedy algorithm. Whilst upper bounds are certainly
interesting, a hypothetical player faced with solving a random configuration of the puzzle is likely be
more concerned about the expected number of moves than the worst case. Parberry [4] also gave lower
bounds of at least 2n3/3 for the expected number of moves, and at least 0.264n3 moves for a random
configuration with probability one.

We extend this work by showing both theoretically and experimentally that the greedy algorithm
solves the (n2 − 1)-puzzle in expected number of moves 8

3
n3 + O(n2). The main body of this paper

is divided into three sections. Section 2 contains a brief description of the greedy algorithm. Section 3
contains the average-case analysis of the number of moves required. Section 4 contains an experimental
verification of this analysis.

2. The Greedy Algorithm

The greedy algorithm for the (n2 − 1)-puzzle work as follows (for more details see, for example,
Parberry [4]). There are sequences of five moves that bring a tile one place horizontally or vertically,
and a sequence of six moves that brings a tile one place diagonally. Move the blank to the position
immediately above the first tile, then use a sequence of these moves to bring that tile to the top left
corner. Repeat this for the remaining tiles in the first row, taking care not to disturb the work that has
already been done. The last two tiles in the row require a few extra moves to flip into place. Once the
first row has been completed, do likewise for the first column. Once the first row and column are in
place, recurse on the remaining ((n− 1)2 − 1)-puzzle. The base of the recursion can be solved by brute
force, for example, the 3-puzzle can be solved in six moves, the 8-puzzle can be solved in 31 moves
(Reinefeld [5]) and the 15-puzzle can be solved in 80 moves (Brüngger et al. [6]).

3. Theoretical Analysis

Suppose n is even (the case where k is odd is similar). Consider the expected number of moves
required to solve the first half of the first row of the puzzle. For each of those n/2 tiles t ∈ {(0, k)|0 ≤
k < n/2)}, the expected number of moves required to move tile t = (i, k) to position (i, k) will be equal
to the sum over all positions p of the number of moves required to move t from position p to position
(i, k), divided by n2. We will do this in three parts, the number of moves required to move the blank into



Algorithms 2015, 8 461

place above tile t (Section 3.1), and the number of moves required to move t to position (i, k) once the
blank is in place (Section 3.2), and the total number of moves (Section 3.3).

3.1. The Blank

The sum of the number of moves required to move the blank from position (0, 0) to each of the n2

possible destinations is:

n−1∑
i=0

i+n−1∑
j=i

j = n3 − n2 (1)

For example, with n = 8, looking at Figure 2 (left) and numbering the rows from 0 to n − 1

top-to-bottom, row i has sum
∑i+n−1

j=i j. For position (0, k), 0 ≤ k < n/2, the sum is:

(n3 − n2) + nk(k − (n− 1)) =
(
n3 − n2

)
− n(n− 1)k + nk2 (2)

See, for example, Figure 2 with n = 8 and k = 0, 1, 2, 3 from left to right. The difference between the
leftmost table and the other tables is that k rightmost columns are replaced with k columns with lower
values (which are the same as columns 1 through k in the leftmost table). However, the difference in
value of each replaced cell is constant k − (n − 1). Since there are k replaced columns with n rows,
Equation (2) follows.

Figure 2. Number of moves required to move the blank to each position from the first half
of the first row of the 63-puzzle.

Therefore, summing Equation (2) for k = 1 to n/2− 1, the total number of moves for positioning the
blank above tiles {(0, k)|0 ≤ k < n/2)} is:

n

2

(
n3 − n2

)
− n(n− 1)

n/2−1∑
k=1

k + n

n/2−1∑
k=1

k2 = 5
12
n4 − 1

4
n3 − 1

6
n2 (3)

Hence, the total number of moves for moving the blank into place while solving the first row and the
first column is less than four times Equation (3) minus Equation (1) (the latter to avoid counting cell
(0, 0) twice), that is,

4
(

5
12
n4 − 1

4
n3 − 1

6
n2
)
−
(
n3 − n2

)
= 1

3

(
5n4 − 6n3 + n2

)
(4)



Algorithms 2015, 8 462

3.2. The Tiles

The sum of the number of moves required to move tile (0, 0) to position (0, 0) from all of the n2

possible sources is (see the leftmost entry of Figure 3, and Figure 4):

2

(
5

n−1∑
i=1

i2 +
n−2∑
i=1

i∑
j=1

j

)
+ 6

n−1∑
i=1

i = 11
3
n3 − 3n2 − 2

3
n (5)

Similarly, for position (0, k), 0 ≤ k < n/2, the sum is (see Figure 3):

(
11
3 n

3 − 3n2 − 2
3n
)
−(3n2−4n−4)k+(6n+4)

k−1∑
i=1

i =
(
11
3 n

3 − 3n2 − 2
3n
)
−(3n2−7n−6)k+(3n+2)k2 (6)

Figure 3. Number of moves required to move a tile from each position to the first half of the
first row of the 63-puzzle.

Therefore, the total number of moves for moving tiles {(0, k)|0 ≤ k < n/2)} into place in the first
half of the first row is:

n

2

(
11
3
n3 − 3n2 − 2

3
n
)
− (3n2 − n− 2)

n/2−1∑
k=1

k + (3n+ 2)

n/2−1∑
k=1

k2 = 19
12
n4 − 11

12
n3 − 1

3
n2 − 1

3
n (7)

and the total number of moves for moving the first row and column tiles into place is, by Equations (5)
and (7), at most:

4
(
19
12
n4 − 11

12
n3 − 1

3
n2 − 1

3
n
)
−
(
11
3
n3 − 3n2 − 2

3
n
)
= 1

3

(
19n4 − 22n3 + 5n2 − 2n

)
(8)

The astute reader will have noticed that we have under-counted by O(n) to bring the blank into
position at the start, and O(1) for the last tile in the row and column. This is more than compensated
for by the fact that we have over-counted by O(n3) when moving the blank in Section 3.1 since there is
never any need to move the blank to the last row.

Figure 4. Decomposing the leftmost entry of Figure 3 to show the structure of Equation (5).



Algorithms 2015, 8 463

3.3. Tiles and Blank Together

The total number of moves used to solve the first row and column is at most the sum of the results of
Equations (4) and (8). That is,

1
3

(
5n4 − 6n3 + n2

)
+ 1

3

(
19n4 − 22n3 + 5n2 − 2n

)
= 8n4 − 28

3
n3 + 2n2 − 2

3
n (9)

The expected number of moves to solve the first row and column is the total number of moves from
Equation (9) divided by the number of tiles (which is n2), that is, 8n2 + O(n). The argument so far
has assumed that n is even. One can prove similarly the expected number of moves for odd n is also
8n2 +O(n).

Having put the first row and column of the n× n puzzle into place, the remaining (n− 1)× (n− 1)

sub-puzzle is then solved recursively, Note that if every even permutation of the n2− 1 tiles in the n× n

puzzle is equally likely, then since the moves made to put the first row and column into place depend
only on the position of those tiles in the permutation (and not, for example, on the values of any of the
tiles), the resulting even permutation of the (n − 1)2 − 1 tiles in the (n − 1) × (n − 1) sub-puzzle on
which we recurse is equally likely to be any even permutation of the remaining n2− 2n tiles. Therefore,
the expected number of moves to solve the whole puzzle is bounded above by:

8
n∑

i=2

i2 +O(n2) = 8
3
n3 +O(n2).

4. Experimental Analysis

We generated 10,000 random instances of the (n2 − 1)-puzzle for all n such that 4 ≤ n ≤ 200

using the standard algorithm for generating a random even permutation based on the Mersenne Twister
(Matsumoto and Nishimura [7]). We then solved each instance using the greedy algorithm and measured
the average number of moves required to solve each size, which should approximate the expected value
if the sample size is large enough. We found that the average number of moves tends to 2.6666n3+O(n)

with an R2 value of 1.000 (see Figure 5). In fact, the number of moves divided by n3 is less than 2.66

for 4 ≤ n ≤ 200 (see Figure 6). Consider that the theoretical bound is the expected number of moves,
while the experimental bound is the average number of moves over a relatively small (compared to the
solution space) random sample. The fact that the theoretical and experimental results agree so closely in
this case is quite remarkable.



Algorithms 2015, 8 464

Figure 5. The average number of moves required to solve 10,000 random instances of the
(n2 − 1)-puzzle for 4 ≤ n ≤ 200.

Figure 6. The average number of moves required to solve 10,000 random instances of the
(n2 − 1)-puzzle divided by n3 for 4 ≤ n ≤ 200.

5. Conclusion and Open Problems

We have shown both theoretically and experimentally that the real-time algorithm from [4] solves the
(n2 − 1)-puzzle in expected number of moves 8

3
n3 + O(n2). However, the best known lower bound for

the expected number of moves is 2n3/3 from Parberry [4]. We conjecture that there is almost certainly
an algorithm with a smaller expected number of moves, and that the lower bound is also almost certainly
not tight.



Algorithms 2015, 8 465

Supplementary Materials

Supplementary materials can be accessed at: http://www.mdpi.com/1999-4893/8/3/459/s1.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Hordern, L.E. Sliding Piece Puzzles; Oxford University Press: Oxford, UK, 1986.
2. Ratner, D.; Warmuth, M. The (n2 − 1)-puzzle and Related Relocation Problems.

J. Symb. Comput. 1990, 10, 111–137.
3. Kornhauser, D.M.; Miller, G.; Spirakis, P. Coordinating Pebble Motion on Graphs, the Diameter

of Permutation Groups, and Applications. In Proceedings of the 25th Annual Symposium on
Foundations of Computer Science, Singer Island, FL, USA, 24–26 October 1984; pp. 241–250.

4. Parberry, I. A Real-Time Algorithm for the (n2 − 1)-Puzzle. Inf. Proc. Lett. 1995, 56, 23–28.
5. Reinefeld, A. Complete Solution of the Eight-Puzzle and the Benefit of Node Ordering in IDA*.

In Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chambéry,
France, 28 August–3 September 1993; pp. 248–253.

6. Brüngger, A.; Marzetta, A.; Fukuda, K.; Nievergelt, J. The parallel search bench ZRAM and its
applications. Ann. Oper. Res. 1999, 90, 45–63.

7. Matsumoto, M.; Nishimura, T. Mersenne Twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans. Model. Comput. Simulat. 1998, 8, 3–30.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	The Greedy Algorithm
	Theoretical Analysis
	The Blank
	The Tiles
	Tiles and Blank Together

	Experimental Analysis
	Conclusion and Open Problems

