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Abstract: Pattern recognition uses measurements from an input domain, X, to predict their 

labels from an output domain, Y. Image analysis is one setting where one might want to 

infer whether a pixel patch contains an object that is “manmade” (such as a building) or 

“natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for 

a nearby pixel patch is then more likely to be “manmade” there is structure in the output 

domain that can be exploited to improve pattern recognition performance. Modeling P(X) 

is difficult because features between parts of the model are often correlated. Therefore, 

conditional random fields (CRFs) model structured data using the conditional distribution 

P(Y|X = x), without specifying a model for P(X), and are well suited for applications with 

dependent features. This paper has two parts. First, we overview CRFs and their 

application to pattern recognition in structured problems. Our primary examples are image 

analysis applications in which there is dependence among samples (pixel patches) in the 

output domain. Second, we identify research topics and present numerical examples. 
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1. Introduction 

In pattern recognition problems, there can be dependence among samples in the input domain, or 

between classification labels of samples in the output domain. For example, fraud detection in credit 

card transactions relies partly on pattern recognition methods that exploit relations among the samples 

(transactions), both in the input and output domains [1]. Pattern recognition is commonly applied to 

unstructured data for which the samples are independent with respect to both the input and output 

domains, as in Fisher’s well-known iris data [2], consisting of measurements of sepal and petal length 

and width, from each of many iris plants as input to be used to predict the output (species). In contrast, 

when there is structure in the input and output domain, i.e., sample input and sample labels are not 

independent, the problem is referred to as structured machine learning or structured prediction. Several 

similar terms, including classification, pattern recognition, prediction, and machine learning are used 

in various technical fields (statistical science, computer science, information science, and various 

engineering fields) to describe the task of using predictor features (also known as predictors or 

independent variables) to predict a response. Some examples of structured machine learning include 

fraud detection in credit card transactions and object recognition in images i.e., labeling pixels or pixel 

patches (also known as superpixels) in images. 

A broad category of models, known as probabilistic graphical models (PGMs) is being increasingly 

used to model problems having a structured domain [3]. PGMs are represented by two main categories 

of models. Directed graphical models are known as Bayesian Networks (BNs) and undirected 

graphical models are known as Markov random fields (MRFs) and conditional random fields (CRFs). 

PGMs are used to express dependencies between the input and output domains, as well as 

dependencies within domains, and to enable probabilistic inferences such as answering queries about 

the output variables using the probabilistic model (e.g., a model based on a CRF, a MRF or a BN) of 

the problem. A key task is to compute the probability distribution over the variables of interest (for a 

test sample called the query), given the observed values of other random variables (the evidence). 

CRFs were introduced by Lafferty et al. [4] for modeling structured data. Since then CRFs have 

been successfully applied in a broad range of applied domains such as bioinformatics [5–7], computer 

vision [6–16], assessment of climate change impact [17], active learning [18,19], and natural language 

processing [4,20–22]. A good introduction on CRFs is given in [23]. In addition to describing research 

directions, this paper reviews recent work, outlines the main challenges in learning CRFs, and provides 

examples of approximate inference, with a focus on a decomposition approach that uses spanning tree 

based approximations of the original graph model. 

While a Markov Random field (MRF) models the joint probability distribution, P(Y,X), and 

includes a model for P(X), a CRF directly models a conditional distribution, P(Y|X = x), without 

specifying a model for P(X). In general, modeling P(X) is difficult because feature functions between 

parts of the model are often correlated. As a result of direct modeling of conditional distributions, 

CRFs have been found well-suited to process rich, dependent features without having to model P(X). 

Figure 1 illustrates results of object recognition using MRFs and CRFs for man-made object  

detection [8]. Figure 2 illustrates the Y and X values for an image similar to the image in Figure 1. We 

used the dataset that was presented in Kumar and Hebert [8,9]. The dataset contains 108 training and 

129 testing images, each of size 256 × 384 pixels, from the Corel image database. Each image was 
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divided into non-overlapping patches of 16 × 16 pixels. The goal was to label each patch as structured 

(man-made) or non-structured (natural background). The X and Y values corresponding to these 

images, are available from [8], but the meaning of X and Y are reversed in [8] from that used here. We 

use X to denote the input predictors, which in this example includes intensity gradients in different 

spatial orientations. Figure 2 illustrates the reference labeling and feature vectors corresponding to  

16 × 16 pixel patches. 

 
(a) (b) 

Figure 1. Example of man-made objects in a natural scene. Pixel patches (16 × 16 pixels) 

containing man-made structures are outlined. (a) MRF result; (b) CRF result. 

 
(a) (b) 

Figure 2. Illustration of reference labeling and corresponding feature values. The image is 

16 × 24 elements, where each element represents a 16 × 16 pixel patch in the original 

image of 256 × 384 pixels from [8]. (a) The Y labels (0 = red for natural, 1 = white for 

manmade); (b) The corresponding X values represented using a scalar (projection of X onto 

the first eigenvector of the covariance matrix of X; i.e., the first principle component 

scores; see Section 3). (a) Y values by pixel: Red is “natural” (0) White is “manmade” (1); 

(b) Scalar representation of X values at the same pixels as in plot (a). 

This paper has two main parts. First, we provide an overview of CRFs and their application to 

pattern recognition. Our primary examples are image analysis applications in which there is 

dependence among samples (pixels or pixel patches) in the output domain since nearby samples tend to 

have similar labels such as “natural” or “manmade”. Second, we point out successful applications of 

CRFs, identify open research topics, and present numerical performance examples. The paper is 

organized as follows: Section 2 describes CRFs, including their assumptions, and options for learning 

(estimating) model parameters; Section 3 describes applications of CRFs, and challenges in CRF 
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applications; Section 4 gives examples to illustrate pattern recognition performance using CRFs; and 

Section 5 describes open research topics related to CRFs. Section 6 is a summary. 

2. Conditional Random Fields 

In the CRF model, the conditional probability distribution is factored according to a graph 

consisting of a set of nodes, Y, and a set of edges, E. The nodes represent random variables, , that 

take values in a finite set of classification labels. Inter-node edges encode dependency relations  

among the random variables. The corresponding observation variable, , could be, for example,  

average intensity or color vector (red, green, blue) of the pixel patch at the position i, and the variable = 0,1  could represent whether the pixel patch contains man-made structures. It should be noted 

that the CRF-based approach relaxes the assumption of conditional independence of the observed data; 
thus, the observation variables  and  can include components, which are dependent. For example, 

the observation variable  could include average intensities and/or intensity gradients over the pixel 

patch, i, and over neighboring pixel patches. In contrast to the MRF model, the CRF model relaxes the 

restrictive assumption of conditional independence of the observations in MRFs. This allows a 

convenient factorization that makes efficient modeling possible. 

By the Hammersley and Clifford theorem [24], under the mild assumption that P(Y|X;θ) > 0 for all 

possible Y values, in a CRF, the conditional probability distribution can be given in a factored form as: 

( ) 1
( , , )

z(x)
| c c c

c C

P yy xx ψ θ
∈

= ∏  (1)

where ( ) ( , , )c c c c
y Y c C

z x y xψ θ
∈ ∈

=∏  xc is a feature vector, cψ  are factors that are specified for the 

application (see below), and yc are the corresponding labels. 
In Equation (1), the factors ψc correspond to maximal cliques in the graph and is usually a member 

of the exponential family. The term C is the set of all maximal cliques in the graph, where a maximal 

clique of a graph is a fully connected subset of nodes that cannot be further extended. The function z(x) 

is the partition function required for P(y|x) to sum to one over all possible values of y. We use lower 

case letters to depict realized values of the corresponding random variables (which are upper case). We 

give particular examples of Equation (1) in Equations (2) and (3) below. 

The probability P(Y|X;θ) must sum to 1 over all possible values of the Y vector The partition 
function, Z, is difficult to calculate because enforcing the normalization ( | ; ) 1

y

P Y X θ =  requires  

a summation over 
2

2n  pixels in the case of an n-by-n square image for a binary-valued class label Y, 

which is computationally nearly impossible for modest values of n such as n = 100. The vector  
21 2{ , ,..., }

n
Y y y y=  is the vector of class labels (one label for each pixel). 

In applications, e.g., computer vision, a pairwise CRF model is often used. This model takes into 

consideration only unary and pairwise cliques. The distribution is then defined as 

( )
( )

( )
( )

( )
,

1
| ; , ; , , ;

Z ; i i i ij i j ij
i V i j E

P Y X θ ψ Y X θ ψ Y Y X θ
X θ

 
Î Î

=    (2)

and can be rewritten as 
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| ; θ = 1Z exp ψ , , θ∈ + ψ , , , θ∈∈ 	   

where θ is the parameter vector, Z is the partition function that is used to ensure that ( | ; ) 1
y

P Y X θ = ,  

S indexes CRF nodes that correspond to random variables, ψi is the association (also called pairwise) 

potential (usually a function in the exponential family) involving individual samples, and ψij is the 

interaction potential (usually a function in the exponential family) involving samples in the 

neighborhood Ni of site “i.” If we consider only the association potential term ψi, the model reduces  

to the logistic regression. The introduction of the interaction ψij potential accounts for the fact that 

interlinked random variables impact each other’s states. Example applications of CRFs that use 

pairwise cliques in computer vision include [8,9] and many others. 

Now that Equation (2) is introduced, we point out that the term “inference” can either include  

all aspects of model formulation, including choosing a model, choosing a neighborhood structure, 

estimating the corresponding model parameters, and the final step of inferring the class label of a 

sample (see Sections 4 and 5). In Equation (2), this means one must choose the association and 

interaction potential functions, the neighborhood structure, and then some type of estimation method to 

estimate the model parameters θ. We point out, however, that in the PGM literature, “inference” is not 

such a broad term, but refers only to computing the probability distribution over the unobserved 

variables iy Y∈  given the observables, which include values for Xs and possibly some subset of Y.  

A sample label is then inferred based on the computed probability distribution. In the statistics 

literature, “inference” is the broader task of choosing a model and estimating the model parameters. 

This paper clarifies with each usage the meaning of the term “inference”. Schemes for parameter 

estimation in CRFs are described in Section 2.1. 

It is known that inference in general graphical models is NP-hard, unless the models have tree-like 

structures or the model size is small [25,26]. Probabilistic inference in CRFs based on trees is 

computationally efficient and exact. However, the expressiveness of a tree-structured model for 

approximating a general probabilistic graphical model is limited. A challenge in CRF model structure 

construction and parameter optimization (learning) is to balance the expressive power of the models 

with the computational complexity of inference in the models, because the inference has to be 

performed both during model learning and for answering probabilistic queries based on the optimized 

model. This requires developing computationally-efficient inference algorithms that provide a 

reasonable approximation to the inference over the original computationally-intractable model. A 

growing effort in recent years has been devoted to developing approximate probabilistic inference 

algorithms that can broadly categorized as: (1) variational algorithms, that cast the inference problem 

as an optimization problem. This category includes the mean-field approach [27], energy minimization 

using loopy belief propagation (LBP) [28–31], generalized belief propagation [32,33], tree reweighted 

approaches for maximum posterior marginals (MPM) estimation and maximum a posteriori (MAP) 

inference [34–36], and linear programming relaxations of MAP estimation [37–41] and (2) techniques 

that constrain the original problem using methods such as graph cuts [25,42,43]. The graph cuts 

technique introduces submodularity constraints and casts the inference over a general graph as finding 

the MAP configuration over the constrained graphical model. Submodular problems belong to a more 
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general class of linear programming relaxation techniques. Ongoing research in this area focuses on 

estimating uncertainties associated with the graph cuts output [44] and scaling the technique to larger 

problems, including multi-class classifications [45–48]. 

2.1. CRF Learning 

In general, learning the CRF model includes choosing a graphical model structure and estimating 

parameters corresponding to the chosen structure. Assuming that the structure is given, e.g., defined 

using domain expertise, learning the CRF model corresponds to finding the model parameters ∗ that 

maximize the conditional log-likelihood objective, L, on the training data D, 

( )
( )

( )* 2

,

1
arg max , arg max log | ; ||

| | ∈

 
= = −  

 
θ θ

X Y D

θ L D P Y X θ λ θ
D

θ ||  

where the regularization penalty term 2|| θλ ||  (λ = 1 2σ⁄ ) is a Gaussian, prior imposed on the 

parameters to control for overfitting, and | |D  is the size of the training data set. Estimation of the 

gradient of the log-likelihood objective requires computing marginals and is usually not tractable 

due to the presence of the partition function Z. Approximate computation of the marginal 

probabilities can be performed using LBP. The model parameters are often initialized using 

maximum likelihood estimation for the logistic regression model. Then, a limited memory  

quasi-Newton method, such as L-BFGS [49], is used to estimate the parameters. Once the model 

parameters are estimated, inferring classification labels is done using either maximum a posteriori 

(MAP) or the maximum posterior marginals (MPM) criteria that, similar to learning, require 

computing marginals and the partition function. To reduce the computational complexity of model 

learning, alternative objectives for learning have been proposed, including pseudo-likelihood (see 

Section 2.1.2) and contrastive divergence [10,50–53]. 

2.1.1. Estimation of Model Parameters θ Using Markov Chain Monte Carlo 

The broad topic of inference schemes based on Markov Chain Monte Carlo [54] (MCMC) for CRFs 

are another type of approximate inference, because numerical methods are used to approximate the 

true posterior distribution of each CRF model parameter. Here, the term “approximate inference” 

refers to approximate methods to estimate CRF model parameters; there are several interpretations of 

approximate inference, depending on whether the likelihood is somehow approximated, or the 

estimation scheme is an approximate one based on the approximate or true likelihood. 

In many models, one relatively straightforward option to estimate model parameters θ is a 

numerical Bayesian option such as MCMC. In fact, if Z were a known function of the unknown θ in 

Equation (2), then standard implementation MCMC which requires knowledge only of the ratio of 

probabilities (see the next paragraph) would be a good option to avoid having to compute Z [50,51]. 

MCMC examines many candidate parameter values θ′ and accepts those candidate values as an 

observation from the posterior distribution with a probability that depends on the value ; 	; 	 × . Because MCMC accepts a finite number of candidate θ′ values, the  

MCMC-based posterior has approximation error, even in situations where Z is a known function of the 
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unknown θ in Equation (2). Also, in any application of MCMC, one must check whether the chain has 

converged to the posterior distribution [50,54]. 

For situations such as CRFs where the ratio 
( )

( )current

| ;

| ;

θ
θ

′P Y X

P Y X
 depends on the unknown ratio, 

Z(θ)/Z(θ′), one of the first approximate estimation options developed was reverse logistic regression [55]. 

In parameter estimation for CRFs, suppose we have a collection of m normalizing  

constants, Z(θ1), Z(θ2), …, Z(θm), simply by trying different values of θ on a grid of values. For each 

value of θ denoted θk, MCMC can be used to generate random samples each of size n from the 

unnormalized (does not sum to 1) distribution denoted here as P(Y|X;θk), and P(Y|X;θk) = P′(Y|X;θk)/Zk. 

The collection P′(Y|X;θ1), P′(Y|X;θ2),…, P′(Y|X;θm) can be combined as in mixture distributions as 

( )1
1

| ; θ ,j

m

j

P Y X eη

=

′  where jeη  is introduced to satisfy 
1

log( ) log( ) log( ) log( )j k k

n
Z Z

nm m
η = − + = − +  

and then 

1

( ; )
( ; )

( ; )

|
|

|

k

k

k
k k m

k
k

P eY X
Y Xp

eXP Y

η

η

θθ
θ

=

′
=

′
is the probability that a simulated value Y from the mixture 

probability ( )1
1

| ; j

m

j

P Y X eηθ
=

′  occurred in the jth sample (there are mn samples) in the mixture 

distribution. Reverse logistic regression can then be applied to the n samples from each of P′(Y|X;θ1), 

P′(Y|X;θ2),…, P′(Y|X;θm) to estimate the ηj values, which determine the normalizing constants Zk. For 

the mn samples Yij, the likelihood for reverse logistic regression is

1 2 1 2
1 1

( , ,..., ) log( ( , , ,..., ))
jnm

m j ij m
j i

l p Yη η η η η η
= =

= , which can be maximized to solve to the estimate the ηj 

values. This use of reverse logistic regression involves approximating the normalizing constants, Zk, so 

it is one type of approximate inference. 

2.1.2. Estimation of Model Parameters θ Using Pseudo-Likelihood or Composite-Likelihood Methods 

Besag [24,56] introduced pseudo-likelihood and Lindsey [57] introduced composite-likelihood 

methods. These methods do not attempt to maximize the full likelihood, but instead maximize some 

type of conditional likelihood. For Gaussian MRFs, [58] compared pseudo-likelihood to the full 

likelihood for small numbers of pixels under varying amounts of simulated non-Gaussian behavior. 

For CRFs, [59] maximized the pseudo-likelihood. 

( )
2

1

| ; log( ( | , ; ))
=

= i

n

i N
i

PL Y X θ P y y x θ  (3)

where Equation (2) is written as ( )
1

1
| ; ( , ; )

Z
θ ψ θ

=

= ∏
A

a a a
a

P Y X y x  for appropriate choice of A and aψ . 

Equation (3) is not the full likelihood for a CRF, but is a likelihood conditioned on the neighboring 

true Y values in training data. Similarly, [60] applied composite likelihood to Gibbs fields, and a very 

similar approach could work for CRFs, due to the equivalence of Gibbs fields and MRFs and the fact 

that CRFS are MRFs when conditioned on the global observation vector, X. 
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2.1.3. Estimation of Model Parameters θ Using Likelihood-Free Methods 

In the context of the Potts random field, [61] provided a likelihood-free option to deal with the fact 

that the ratio 
( )

( )current

| ;

| ;

θ
θ

′P Y X

P Y X
depends on the unknown ratio 

( )

( )

Z

Z

θ
θ′

. The likelihood-free option is related 

to the auxiliary variable method, both of which generate samples from approximate densities. The 

likelihood-free methods introduce an auxiliary random vector so that synthetic samples can be 

simulated (without having an explicit analytical form for the likelihood) that have the correct 

asymptotic distribution, and thus circumvent the issue of having intractable likelihoods inside a 

MCMC loop. The Potts random field extends the well-known Ising model (see Section 3 for an 

application in image denoising) that originated to describe magnetic properties in statistical physics by 

allowing multiple possible instead of binary possible values for Y. 

3. CRF Applications and Challenges 

In a typical CRF graphical model, the class labels at the graph node given the observed data are 

assumed to obey a predefined dependence structure. A Markov dependence structure (see below) is 

one for which the class label at node i depends on the class labels in the neighborhood of node i. 

Additionally, the class label at the node i depends on “compatibility” of feature vectors corresponding 

to the node i and its neighbors in the neighborhood. Natural language processing extracts syntax from 

text, often to aid search and to find related documents. The response variable, Y, is a part-of-speech tag 

and the predictors, X, include information about the word at a given position, such as its identity and 

memberships in domain-specific lexicons. One common goal in computer vision is to classify regions 

in an image, and as Figure 1 suggests, the Y labels near a given pixel, i, influence our beliefs about Yi, 

as is captured in the neighborhood structure in Equation (1). 

A particular example of Equation (1) for 2-dimensional image data is 

( ) 1
1| ; exp ( ) ( )

Z
θ ψ ψ

∈ ∈ ∈

 
= = +  

 
 

i

T T
i i i ij i j

i S i S j N

P Y X w y x v y x x  (4)

In Equation (4), ( )i( ) 1, y ,i iyψ = a two-component vector and ( ) (1, | ,| )ij i jy y yψ = − also a  

2-component vector, and the xi are all two-dimensional. The model parameter vector ( , )w vθ = .The 

application for Equation (4) in [50,51] was image segmentation, which partitions or clusters an image 

into homogeneous pixels or pixel patches such as “land” or “water”. 

One well-known MRF that has many applications, including image denoising, is the Ising  

model [58,61,62]. In the image denoising context, the interaction portion of Equation (2), 

( ), , ,
i

ij i j
i S j N

y y X
∈ ∈
ψ θ  can be regarded as being a prior probability for the true Y values. Such a prior 

probability can enforce a tendency for neighboring Y values to be similar or dissimilar, depending on 
the application. The term ( ), ,ϕ θ

∈
 i i
i S

y X  in Equation (2) can be regarded as the likelihood, choosing, 

for example, 2exp{ ( )}i i iy xψ θ= − − , where yi = xi + ei with xi the true image value, ei, the measurement 

errors, and neighboring yi, predicted to be similar or dissimilar by choice of ( ), , ,ψ θij i jy y X . 
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Despite the computational issues described in Section 2, CRFs have proven to perform well for 

many applications. For example, [8] demonstrates good CRF performance compared to other pattern 

recognition methods such as a Gaussian mixture model or support vector machines [63] in labeling 

pixel patches as natural or manmade. Furthermore, a few papers, such as [50,51], show how well the 

various approximation schemes work in limited settings with experimental data. 

Aside from the need for better and faster approximate inference methods for CRFs, another open 

issue is choosing a model structure by using prior knowledge about the domain or by using trial and 

error with different structures. In the context of hidden Gibbs random fields, [64] recently developed a 

method to choose the dependency structure in Gibbs fields that relies on approximate Bayesian 

computation. Another way to assess candidate model structure (such as function forms or number of 

connections used in Equation (1)) is empirical classification accuracy. Choosing the model structure 

involves choosing the number of layers in the model, the structure of each layer, as well as the number 

of states of the latent variables in the hidden layers. Naturally, the probabilistic inference is an 

unavoidable component in estimating changes the model structure. The idea of capturing the 

multiscale nature of the problem of interest, such as image modeling, is naturally related to the structure 

learning. For instance, image modeling using a multi-layer CRF was proposed by [10]. Reference [65] 

extended the CRF framework by incorporating structured hidden variables to model components (parts) 

constituting objects; this extension became known as hidden CRFs (HCRFs). A non-parametric model 

that is capable to automatically learn the number of hidden states in HCRFs was presented in [15]. 

Reference [13] introduced class of energies with hierarchical costs to model classification labels 

organized in a hierarchy. 

4. Examples 

This section describes performance in two example applications of CRFs in computer vision 

domain. These examples include performance evaluation of the original 2D grid structured CRF model 

with LBP inference, and CRF model approximations based on spanning trees, pseudo-likelihood and 

graph cuts. For comparison we show performances demonstrated by MRF, logistic regression models 

and mixture discriminant analysis. 

4.1. Example 1: Pattern Recognition to Distinguish Natural from Manmade Objects 

Using data available from [8], from which the images in Figures 1 and 2 were created, with 108 

training and 129 testing images such as those shown in Figures 1 and 2, [66,67] give misclassification 

rates for several methods, including existing CRF-based methods and CRF model approximations 

using an ensemble of spanning trees (Figure 3) or a cascade of spanning trees. The X vector consists of 

image gradients and is 14-dimensional at each pixel. The false positive (predicting a pixel that really is 

a natural object to be man-made) and false negative rates (predicting a pixel that really is man-made to 

be natural) are given separately. The results are summarized in Table 1 and illustrated in Figure 4. 

Because the false positive rates were not the same for all methods in testing, we do not attempt to 

declare a winning method, but only to illustrate strong performance by several methods. It should be 

noted, though, that the cascade model built of tree-structured approximations performed better than 

the grid-structured CRF with LBP inference both in terms of detection rate and false positive rate. 
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(a) (b) (c) 

Figure 3. Illustration of a 5 × 7 grid-like CRF graph (a) and corresponding two randomly 

generated spanning trees (b,c). In CRF setup in computer vision, the observation variable 
 could be the average color of the pixel patch, and the random variable  is  

a classification label of the pixel patch. For clarity we show only one pair of  and . 

 

 

Figure 4. Example results for structure detection task. True positives are brightened and 

outlined with white boundaries. 

Table 1. Detection rates (DR) and false positives per image (FP) for structure detection 

problem over the test set containing 129 images. Comparisons to Markov random field, and 

grid-structured CRF model with loopy belief propagation inference (LBP) are also shown. 

 DR (%) FP (Per Image) 

Markov Random Field [9] 58.35 2.44 
Discriminative Random Fields [9] 72.54 1.76 
LBP (MPM estimates) 85.30 14.32 
Ensemble of spanning tree structured CRFs [66] 90.52 9 
Hierarchical cascade of spanning tree structured CRFs (MPM estimates) [67] 91.75 11.85 
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4.2. Example 2. Image Denoising 

References [66,67] also analyzed noisy images, such as that shown in Figure 5. The synthetic noise 

was either unimodal Gaussian or bimodal Gaussian. The data are from [8], and [66,67] find good 

performance (low pixelwise misclassification rate) for LBP, the new CRF method using the ensemble 

of spanning trees of 6.21%, 6.04%, and 5.80%, respectively (for the bimodal Gaussian noise).  

A logistic regression classifier performed noticeably worse, with 23.1% pixelwise classification error. 

These results are summarized in Table 2. It is evident that the approximation based on the ensemble 

of spanning tree structured CRFs demonstrates better performance than the ones produced by the 

grid-structured CRF model that uses LBP inference, and the models in [9] in the case of  

bimodal noise. 

(1) (2) (3) (4) (5) (6) 

     

     

   

   

Figure 5. Results of binary denoising task. Column (1) reference images; (2) images 

corrupted with bimodal noise; (3) logistic classifier results; (4) results of the grid structured 

CRF model with loopy belief propagation inference; (5) result using one spanning tree;  

(6) CRF spanning trees cascade results. 

In the second part of this Example 2, we introduce new results from a relatively simple alternative 

to CRFs in order to denoise the images that contain the bimodal Gaussian noise that has two key 

aspects. The first aspect exploits the knowledge that the errors are bimodal; that is, because the added 

synthetic noise was bimodal in one case, we fit a mixture distribution, using the function mda, which 

implements mixture discriminant analysis (MDA) in R [68]. The second aspect is that we exploit 
structure simply by smoothing the estimates ŷ  from MDA of each pixel, which approximates the 

behavior of CRFs. If the smoothed prediction exceeds 0.5, we predict a 1; if the smoothed prediction is 

less than or equal to 0.5, we predict a 0. We also tested neighborhood sizes, trying 3 × 3, 5 × 5, or  
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7 × 7 neighborhood sizes. A size-3 neighborhood is the 3-by-3 square block of pixels centered on the 

target pixel, and similarly for the size-5 and size-7 neighborhoods. Pixels near the edge of the scene 

have truncated neighborhoods. 

Table 2. Pixelwise classification error (%) for binary denoising task. KH’06 stands for the 

results published in [9]. Comparisons to logistic classifier and grid-structured CRF model 

with loopy belief propagation inference (LBP) are also shown. The averaging was done 

over five different runs each on 160 test samples; mean ± standard deviation is shown. 

 Unimodal Bimodal 

Logistic regression based classifier 14.72 ± 0.02 23.10 ± 0.04 

KH’06 (DRF, penalized pseudo-likelihood parameter  
learning, MAP labelings estimated using graph cuts) 

2.30 6.21 

LBP (MPM estimates) 2.65 ± 0.11 6.04 ± 0.09 

Ensemble of spanning tree structured CRFs [66] 3.38 ± 0.04 5.80 ± 0.02 

Hierarchical cascade of spanning tree structured CRFs [67] 3.06 ± 0.11 6.00 ± 0.12 

First, using MDA, on a per-pixel basis without exploiting any structure in Y, the testing error rate is 

14%. Next, we exploited the structure in Y by smoothing. If we simply used the average values of the 

neighboring pixels, the testing error averaged approximately 5%, 5%, and 5% (repeatable to within 

less than ±1% as in Table 2) results for 3-nbr, 5-nbr, or 7-nbr, respectively. If we first applied MDA to 

get an initial estimate of each Y, and smoothed those estimates, the testing error averaged 

approximately 4%, 3%, and 4% for 3-nbr, 5-nbr, or 7-nbr, respectively. Therefore, this is a case where 

it helps to know the error structure, because this simple approach is competitive with the CRF 

approaches. However, one could argue that it is unfair to use MDA in this context, because MDA 

allows for the known bimodal error structure. Nevertheless, this suggests that it can be important to 

estimate the error structure from training data, which is a topic for future work, and would involve 

goodness-of-fit testing to select CRF models that are most supported by the data. Additionally, there 

might be computer-run-time reasons to prefer the simpler-than-CRF approach However, these results 

were obtained in R on a modern desktop PC, so the computer run times for this simple approach that 

uses smoothing and MDA cannot yet be meaningfully compared to run times for CRFs that were 

implemented on another desktop. 

5. Research Issues for CRFs 

First, regarding the computational challenges discussed in Section 2, there are open problems for 

maximum posterior marginal (MPM) estimation and maximum a posteriori (MAP) estimation. The 

lack of MPM and MAP inference methods that scale up to large data sets severely limits CRF usage. 

Most of the current approaches to address this challenge focus on approximate inference schemes, e.g., 

using either approximate optimization function, approximations of the original graph model such as 

spanning trees or the region graphs, or introducing constraints such as submodularity employed in the 

graph cuts approach.  

Second, the MDA performance in Example 2 in Section 4 suggests that it would be valuable to 

accommodate different forms for the CRF likelihood in models such as Equations (1)–(3). In Example 2, 
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we know that the true distribution of the feature vector, X, is bimodal (a mixture of two Gaussians, 

which is not in the exponential family), so one could select the association potential terms ψ , and/or 
the interaction terms ψ  in Equation (2) to better accommodate mixture distributions, which are quite 

general, and can approximate many real-life error distributions. 

Third, and related to the second, is goodness of fit testing. Cross-validation allows us to evaluate the 

classification performance of the model. However, it does not show how accurately the learned model 

captures the target distribution. We are not aware of any efforts to use a fitted CRF to generate 

simulated data (generate Y’s conditional on X), re-apply each candidate estimation strategy, and then 

see how well the inferred model parameters agree with the true and known model parameters. Given 

an ability to simulate from a fitted CRF (probably using some type of MCMC strategy as in [69]), 

goodness of fit tests could be developed, perhaps extending the goodness of fit tests proposed in [70]. 

Because CRFs have many choices such as the neighborhood structure, and the particular parametric 
functions iϕ  and ijψ  in Equation (2), it is important to have a way to assess the quality of the fitted 

CRF to model the real data. Of course, any CRF can be used for pattern recognition, but if such a 

simulation-based goodness of fit test indicated a lack of fit, then it is reasonable to assume that a CRF 

with different modeling assumptions would have a better classification performance in pattern recognition. 

In summary, three important issues are: (1) developing efficient approximate probabilistic inference 

in general graphs (e.g., MCMC with reverse logistic regression, generalized belief propagation, 

decomposition approaches such as tree based approximations of the original general graphical model, 

and linear programming relaxations of the MAP estimation problem); (2) learning CRF structure 

simultaneously with estimating CRF parameters; and (3) goodness-of-fit testing. The first issue is  

a challenge of utmost importance in graphical probabilistic models. The second and third issues 

depend on the solution of the first issue because it is currently difficult to evaluate many candidate 

structures and introduce optimal changes to a given structure. 

6. Conclusions 

Conditional random fields (CRFs) model structured data using the conditional distribution  

P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent 

features. This paper had two parts. Part one overviewed CRFs and their application to pattern 

recognition in structured problems. Our primary examples were image analysis applications in which 

there is dependence among samples (pixel patches) in the output domain because nearby pixel patches 

tend to have similar labels such as “natural” or “manmade”. Part two described successful applications 

of CRFs, presented numerical examples, and identified research topics. Regarding research topics, 

computational challenges in fitting CRFs are being addressed using approximate learning methods. 

Some of those approximation methods were described, and others are under development. Fortunately, 

even a suboptimal fit of CRF parameters has the potential to perform specific tasks fairly well. 

Nevertheless, we anticipate that goodness of fit testing, which currently is non-existent in the CRF 

literature, will improve CRF model selection and improvement. 
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