
Algorithms 2015, 8, 656-668; doi:10.3390/a8030656
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Fifth-Order Iterative Method for Solving Multiple Roots of the
Highest Multiplicity of Nonlinear Equation
Juan Liang 1,†, Xiaowu Li 2,†,*, Zhinan Wu 3,†, Mingsheng Zhang 2,†,*, Lin Wang 2,†,* and
Feng Pan 2,†,*

1 Department of Science, Taiyuan Institute of Technology, Taiyuan 030008, China;
E-Mail: liangjuan76@126.com

2 College of Information Engineering, Guizhou Minzu University, Guiyang 550025, China
3 School of Mathematics and Computer Science, Yichun University, Yichun 336000, China;

E-Mail: zhi_nan_7@163.com

† These authors contributed equally to this work.

* Authors to whom correspondence should be addressed; E-Mails: lixiaowu002@126.com (X.L.);
zhangmscomputer@163.com (M.Z.); wanglin@gzmu.edu.cn (L.W.); panf@vip.163.com (F.P.);
Tel.: +86-18786132431 (X.L.); +86-138-8511-0635 (M.Z.); +86-139-8552-0012 (L.W.);
+86-139-8400-1687 (F.P.).

Academic Editor: Alicia Cordero

Received: 8 June 2015 / Accepted: 14 August 2015 / Published: 20 August 2015

Abstract: A three-step iterative method with fifth-order convergence as a new modification
of Newton’s method was presented. This method is for finding multiple roots of nonlinear
equation with unknown multiplicity m whose multiplicity m is the highest multiplicity.
Its order of convergence is analyzed and proved. Results for some numerical examples show
the efficiency of the new method.

Keywords: nonlinear equation; multiple roots; newton-like method; high-order
convergence; iterative methods

1. Introduction

This paper addresses the problem of multiple roots x∗ of nonlinear equation f(x) = 0 with unknown
multiplicity m whose multiplicity m is the highest multiplicity, where f : [a, b] ⊂ R→ R is a nonlinear

Algorithms 2015, 8 657

differential function on [a, b]. In case the multiplicity m is given explicitly, there are many iterative
methods established via various techniques (see [1–15] for more details). If the multiplicity m is not
known explicitly, Traub [16] utilized a simple transformation F (x) = f(x)/f ′(x) instead of f(x) for
computing a multiple root of f(x) = 0. In this case, the aim of solving a multiple root is reduced to
that of solving a simple root of the transformed equation f(x) = 0, and thus any iterative method can
be used to preserve the original convergence order. However, Newton’s method for this transformed
equation requires evaluations of the derivatives f ′(x) and f ′′(x). In order to avoid the evaluations of
these derivatives with the multiplicity m unknown, for multiple roots, King [17] proposed the secant

method which does not use the function F = f/f ′, but rather use F =
f(x)

f(x− f(x))− f(x)
(x− f(x))− x

=

−f 2(x)

f(x− f(x))− f(x)
. Wu and Fu [18] further used F (x) =

f 2(x)

f(x)− f(x− f(x))
and transformed the

problem of solving multiple roots of f(x) = 0 into that of solving simple root of f(x) = 0. Actually,
they established the following iteration formulae:

xn+1 = xn −
F 2(xn)

p · F 2(xn) + F (xn)− F (xn − F (xn))
, (1)

where p ∈ R, |p| < ∞. So, the sequence {xn} produced by the iteration Formulae (1) is at least
quadratically convergent for multiple roots. Moreover, Wu et al. [19] defined a function

F (x) = sign(f(x))f(x)|f(x)|1/m

sign(f(x+sign(f(x))|f(x)|1/m)−f(x))f(x)|f(x)|1/m+f(x+sign(f(x))|f(x)|1/m)−f(x)
, (2)

where m is the multiplicity, and employed the modified Steffensen’s method (see [20,21])

xn+1 =xn − hn
F 2(xn)

t · F 2(xn) + F (xn + F (xn))− F (xn)

=xn − hn
F (xn)

t · F (xn) + (F (xn + F (xn))− F (xn))/(F (xn))

(3)

to compute the approximate solution of the equation f(x) = 0, where hn(> 0) is the step size of iteration
and |t| <∞. Parida and Gupta [22] suggested another transformation

F (x) =

f 2(x)

δ + f(x+ f(x))− f(x)
if f(x) 6= 0,

0 if f(x) = 0 .

(4)

where δ = sign(f(x + f(x)) − f(x))f 2(x), and transform the task of solving multiple zeros of f into
that of solving simple zero of F . In this case, they utilized a quadratically convergent derivative free
Newton-like iterative method:

xn+1 = xn −
F 2(xn)

p · F 2(xn) + F (xn)− F (xn − F (xn))
(5)

where the parameter p should be chosen such that the denominator is the largest in magnitude. Yun [23]
suggested a new transformation of f(x) as

Hε(x) =
εf 2(x)

f(x+ εf(x))− f(x)
, (6)

Algorithms 2015, 8 658

took ε such that max
a≤x≤b

|εf(x)| = δ, that is

ε =
δ

maxa≤x≤b |f(x)|
=

δ

max {|f(a)| , |f(b)|}
,

and proposed an iterative method as follows:

xn+1 = xn −
2(xn − xn−1)Hε(xn)

Hε(2xn − xn−1)−Hε(xn−1)
. (7)

Recently, for the transformed equation K(x) = 0 with a simple root, Yun [24] proposed a
Steffensen-type iterative formula

pk+1 = pk −
µK(pk)

2

K(pk + µK(pk))−K(pk)
, k ≥ 0, (8)

where K(x) = K(ε;x) =

{
εf(x)2

f(x+εf(x))−f(x) , if f(x) 6= 0,

0, if f(x) = 0.

In this paper we construct a new modified Newton’s method. We will present the proof that the method
is three-step iterative method with fifth-order convergence for nonlinear equations of multiple roots with
unknown multiplicity m, whose multiplicity m is the highest multiplicity and without requiring the use
of the second derivative.

2. Iterative Method with Fifth-Order Convergence for Solving Multiple Roots

We consider the simple transformation (see [16,25]):

F (x) =

f(x)

f ′(x)
, if f(x) 6= 0,

0, if f(x) = 0,
(9)

and use a Newton-like iterative method:

yn = xn −
F (xn)

F ′(xn)
,

zn = yn −
F (yn)

F ′(yn)
,

xn+1 = zn −
F (zn)

F ′(zn)
.

(10)

In order to avoid computing the first derivatives of function F (xn), F (yn) and F (zn), we approximate
them as follows:

F ′(xn) ≈
F (xn + F (xn))− F (xn)

F (xn)
= g1(xn), (11)

F ′(yn) ≈
2(F (yn)− F (xn))

yn − xn
− g1(xn) = g2(xn) (12)

F ′(zn) ≈F [zn, yn] + F [zn, xn, xn](zn − yn)

=
F (zn)− F (yn)

zn − yn
+

F (zn)− F (xn)
zn − xn

− g1(xn)

zn − xn
(zn − yn)

=g3(xn)

(13)

Algorithms 2015, 8 659

(See [25–28] for the detail discussions of Equations (11)–(13) respectively.) Substituting the
approximations of F ′(xn), F ′(yn) and F ′(zn) given by Equations (11)–(13) in Equation (10),
we establish the following new iterative method:

yn = xn −
F (xn)

g1(xn)
,

zn = yn −
F (yn)

g2(xn)
,

xn+1 = zn −
F (zn)

g3(xn)
.

(14)

We give the following convergence theorem for the proposed method Equation (14) as follows.

Theorem 1. Suppose that f ∈ C1(D)(D ⊆ R → R) has multiple roots x∗ ∈ D, whose multiplicity m
is the highest multiplicity of nonlinear equation, where D is an open interval. If the initial point x0 is
sufficiently close to x∗, the iterative method defined by (14) has fifth-order convergence.

Proof. Without loss of generality, we assume that f(x) has two multiple roots

f(x) = (x− x∗)m(x− x1)nh(x) (15)

where x∗ is a multiple root of Equation (15) with multiplicitym and x1 is a multiple root of Equation (15)
with multiplicity n (m > n), h(x) is a continuous function with h(x∗) 6= 0 and h(x1) 6= 0. According
to Equation (15), we have

f ′(x) = m(x− x∗)m−1(x− x1)nh(x)+n(x− x∗)m(x− x1)n−1h(x)+ (x− x∗)m(x− x1)nh′(x). (16)

Dividing Equation (15) by Equation (16), we get

F (x) =
f(x)

f ′(x)
=

(x− x∗)(x− x1)h(x)
m(x− x1)h(x) + n(x− x∗)h(x) + (x− x∗)(x− x1)h′(x)

(17)

From Equation (17), we can see that the problem of computing multiple roots of f(x) = 0 can be
reduced to the equivalent problem of computing simple root x∗ of F (x) = 0.

Using Taylor’s expansion, we have

h(xn) = h(x∗)[1 + b1en + b2e
2
n + b3e

3
n + b4e

4
n + b5e

5
n + b6e

6
n + o(e7n)] (18)

where bk =
h(k)(x∗)

k!h(x∗)
, k = 1, 2, ..., and en = xn − x∗.

By Equation (18), we obtain

h′(xn) = h(x∗)[b1 + 2b2en + 3b3e
2
n + 4b4e

3
n + 5b5e

4
n + 6b6e

5
n + o(e6n)]. (19)

Substituting Equations (18) and (19) into Equation (17), we get

F (xn) =
enh(xn)

mh(xn) + enh′(xn)
= c1en + c2e

2
n + c3e

3
n + c4e

4
n + o(e5n) (20)

Algorithms 2015, 8 660

where
c1 =

1

m
, c2 = −

(a− b)b1 + n

m2(a− b)
(21)

c3 =
1

(a− b)2m3
((a− b)2b21m+ a2b21 − 2a2b2m− 2abb21 + 4abb2m

+ b2b21 − 2b2b2m+ 2ab1n− 2bb1n+mn+ n2)

(22)

c4 =−
1

m4(a− b)3
(a3b31m

2 − 3a2bb31m
2 + 3ab2b31m

2 − b3b31m2 + 2a3b31m

− 3a3b1b2m
2 − 6a2bb31m+ 9a2bb1b2m

2 + 6ab2b31m− 9ab2b1b2m
2

− 2b3b31m+ 3b3b1b2m
2 + a3b31 − 4a3b1b2m+ 3a3b3m

2 − 3a2bb31

+ 12a2bb1b2m− 9a2bb3m
2 + 2a2b21mn+ 3ab2b31 − 12ab2b1b2m

+ 9ab2b3m
2 − 4abb21mn− b3b31 + 4b3b1b2m− 3b3b3m

2 + 2b2b21mn

+ 3a2b21n− 4a2b2mn− 6abb21n+ 8abb2mn+ 3b2b21n− 4b2b2mn

+ 2ab1mn+ 3ab1n
2 − 2bb1mn− 3bb1n

2 +m2n+ 2mn2 + n3)

(23)

Substituting Equation (20) into Equation (11), we obtain

g1(xn) =c1 + c2(2 + c1)en + (3c3 + 3c1c3 + c21c3 + c22)e
2
n + (4c2c3 + 2c1c2c3 + 4c4

+ 6c1c4 + 4c21c4 + c31c4)e
3
n + (5c5 + 10c1c5 + 5c31c5 + 10c21c5 + 2c23c1 + c22c3

+ 7c2c4 + c41c5 + 3c23 + 3c21c2c4 + 8c1c2c4)e
4
n + o(e5n)

(24)

Substituting Equation (20) and Equation (24) into the first formula of Equation (14), we have

yn =x∗ +
c2(1 + c1)

c1
e2n +

1

c21
(−2c22 + 2c1c3 + 3c21c3 + c31c3 − 2c1c

2
2 − c21c22)e3n

+
1

c31
(3c21c4 + 6c31c4 + 4c41c4 + c51c4 + 5c1c

3
2 + 3c21c

3
2 + c31c

3
2 + 4c32 − 10c21c2c3

− 7c1c2c3 − 7c31c2c3 − 2c41c2c3)e
4
n + o(e5n)

(25)

With Equation (25), we get

F (yn) =c2(1 + c1)e
2
n +

1

c1
(−2c22 + 2c1c3 + 3c21c3 + c31c3 − 2c1c

2
2 − c21c22)e3n

+
1

c21
(3c21c4 + 6c31c4 + 4c41c4 + c51c4 + 7c1c

3
2 + 4c21c

3
2 + c31c

3
2 + 5c32 − 10c21c2c3

− 7c1c2c3 − 7c31c2c3 − 2c41c2c3)e
4
n + o(e5n)

(26)

Thereby, with Equations (20) and (24)–(26), we obtain

g2(xn) =c1 − c1c2en −
1

c1
(c1c3 + 3c21c3 + c31c3 − c1c22 − 2c22)e

2
n

− 1

c21
(2c21c4 + 6c31c4 + 4c41c4 + c51c4 + 4c1c

3
2 + 2c21c

3
2 + 4c32 − 4c21c2c3 − 6c1c2c3)e

3
n

− 1

c31
(10c41c5 − 3c31c

2
3 + 3c31c5 − 4c21c

2
3 − 8c42 + c2c4c

5
1 + 20c22c

2
1c3 + 15c3c

3
1c

2
2

+ 16c1c
2
2c3 + 4c41c

2
2c3 + 10c5c

5
1 + 5c5c

6
1 + c5c

7
1 − 10c1c

4
2 − 6c21c

4
2 − 2c42c

3
1

− 7c2c4c
3
1 − 8c2c4c

2
1)e

4
n + o(e5n)

(27)

Algorithms 2015, 8 661

From Equations (25)–(27), it follows that

zn =x∗ − c22(1 + c1)

c1
e3n −

c2
c31
(−3c22c1 − 2c22c

2
1 − c22 + 6c3c

2
1 + c3c1 + 7c3c

3
1 + 2c41c3)e

4
n

− 1

c41
(9c23c

3
1 + 2c23c

2
1 + 4c22 + 16c41c2c4 + 2c61c2c4 + 9c2c4c

5
1 − 21c21c

2
2c3 − 10c31c

2
2c3 − 8c1c

2
2c3

+ 7c1c
4
2 + 3c21c

4
2 + 2c31c

4
2 + 11c2c4c

3
1 + 2c2c4c

2
1 + 12c41c

2
3 + 6c51c

2
3 + c61c

2
3 + c41c

4
2)e

5
n + o(e6n)

(28)

It is similar to Equation (26), we have

F (zn) =− c22(1 + c1)e
3
n −

c2
c21
(−3c22c1 − c22c21 − c22 + 6c21c3 + c3c1 + 7c3c

3
1 + 2c3c

4
1)e

4
n

+ o(e5n)
(29)

Moreover, substituting Equations (20), (24)–(26), (28) and (29) into Equation (13), we get

g3(xn) = c1 − c22(1 + c1)e
2
n −

c2
c1
(2c3c

3
1 + 7c3c

2
1 + 7c3c1 + 2c22c1 + c22 + 2c3)e

e
n + o(e4n) (30)

Substituting Equations (28)–(30) into the third formula of Equation (14), we get

xn+1 = zn −
F (zn)

g3(xn)
= x∗ +

(1 + 2c1 + c21)c
4
2

c21
e5n + o(e6n) (31)

which just means that the iterative method defined by Equation (14) has fifth-order convergence.
The proof is completed.

We further consider how to find the highest multiplicity of the root x∗ in the iterative method. If xn is
the n-th iteration computed by an iterative method applied to f , then from Equation (9), we have

fn ≈
(xn − x∗)(xn − x1)h(xn)

m(xn − x1)h(xn) + n(xn − x∗)h(xn) + (xn − x∗)(xn − x1)h′(xn)

=
εn(xn − x1)h(xn)

m(xn − x1)h(xn) + nεnh(xn) + εn(xn − x1)h′(xn)
,

(32)

where fn = f(xn). Because εn is small, we get fn ≈
εn
m

. Similarly, we can compute that fn+1 ≈
εn+1

m
.

Furthermore εn+1 − εn = xn+1 − xn. Consequently, when the iteration becomes closer to the root x∗,
we can estimate its multiplicity by computing

m ≈ xn+1 − xn
fn+1 − fn

. (33)

In the practical computing root x∗ process, some iteration number is no more than two by using
Equation (14). According to this case, we compute the root x∗ by using Equation (14), then we select the
initial value near the root x∗, and we use Newton iterative method to compute the highest multiplicity.
Therefore, m is approximately the reciprocal of the divided difference of f for successive iteration xn
and xn+1.

Algorithms 2015, 8 662

3. Numerical Results

We employ the proposed modification of Newton’s method with three-step Equation (14) (MNM) to
solve some nonlinear equations. All the computations were done by using Visual C++ 6.0 and were
satisfied the condition such that |f(xn)| < 1.E − 17, |xn − x∗| < 1.E − 17. In order to show the
effectiveness of our iterative method, we provide at least three different initial iterative values. From
different initial iterative values, they can be convergent to the same iterative solution whose multiplicity
is the highest multiplicity of nonlinear equation. We used the following test functions and obtained the
approximate zeros x∗ round up to the 17-th decimal place:

g1(x) =
(x−

√
5)7(x−

√
3)4

(x− 1)2 + 1
, x0 = −12.0, 23.0, 1.9,m = 7, n = 4, x∗ = 2.236067977499790

g2(x) = (sin(x)2 − 2x+ 1)5(x− 2)3, x0 = −23, 23, 1.5, 1.7,m = 5, n = 3, x∗ = 0.71483582544138924

g3(x) = (8x exp(−x2)− 2x− 3)8(x− 2)5, x0 = −20, 20, 0.0, 1.5,m = 8, n = 5, x∗ = −1.7903531791589544

g4(x) =
(2x cos(x) + x2 − 3)10(x− 3)8

(x2 + 1)
, x0 = −23, 23, 3.1, 2.99,m = 10, n = 8, x∗ = 2.9806452794385368

g5(x) = (exp(−x2 + x+ 3)− x+ 2)9(x− 13

5
)6, x0 = −18, 18, 2.5, 2.55,m = 9, n = 6, x∗ = 2.4905398276083051

g6(x) = (exp(−x) + 2 sin(x))4(x− 2)3, x0 = 4.0, 2.5,m = 4, n = 3, x∗ = 3.1627488709263654

g7(x) = (ln(x2 + 3x+ 5)− 2x+ 7)15(x−
√
37)10, x0 = 34, 5, 5.8,m = 15, n = 10, x∗ = 5.4690123359101421

g8(x) = (
√
x2 + 2x+ 5− 2 sin(x)− x2 + 3)20(x−

√
7)11, x0 = 9, 2, 3,m = 20, n = 11, x∗ = 2.3319676558839640

g9(x) =
(x− 2)7(x−

√
5)8

(x− 1)2 + 1
, x0 = −12, 12, 2.1, 2.5,m = 8, n = 7, x∗ = 2.2360679774997897

g10(x) = (x− 5

2
)

15
4 exp(x)(x− 2)2, x0 = −13, 2.4, 2.1,m =

15

4
, n = 2, x∗ = 2.50000000000

g11(x) = (
√
x− x− 1)11(x−

√
3)5, x0 = 11, 2.0, 1.8,m = 11, n = 5, x∗ = 2.147899035704787

g12(x) = (ln(x) +
√
x− 5)15(x− 8)10, x0 = 23, 9, 7, 8.1,m = 15, n = 10, x∗ = 8.309432694231572

g13(x) = (sin(x) cos(x)− x3 + 1)9(x− 3

2
)3, x0 = 5, 0, 1.4, 1.8,m = 9, n = 3, x∗ = 1.117078770687451

g14(x) = (x−
√
7)5ex(x−

√
2)2, x0 = 7, 3, 1.8,m = 5, n = 2, x∗ = 2.6457513110645906

g15(x) = (ln(x) +
√

x4 + 1− 2)7(x−
√

3

2
)6, x0 = 5, 1.5, 1, 0.5,m = 7, n = 6, x∗ = 1.222813963628973

g16(x) = (ln(x) +
√
x4 + 1− 2)8(x−

√
3

2
)4(x−

√
4

3
)2, x0 = 12, 4, 1.3, 1.2,m = 8, n = 4, x∗ = 1.222813963628973

g17(x) = (x−
√
7)5(x−

√
2)2(x−

√
3

2
), x0 = 11,−11, 1.8, 0.5,m = 5, n = 2, x∗ = 2.6457513110645906

g18(x) = (ln(x) +
√
x4 + 1− 2)10(x−

√
3

2
)10(x− 1), x0 = 12, 2, 1.5, 1.3,m = 10, n = 10, x∗ = 1.222813963628973

The computational results indicate that our proposed iterative method can converge to multiple roots
whose multiplicity is the highest multiplicity of nonlinear equation. In the next section, for the special
case which the multiplicity of the roots of nonlinear equation is a single multiplicity, we present the
analysis result for comparison with previous methods.

Algorithms 2015, 8 663

Remark 1. The method of the Formula (14) can also solve the problem of Euler equation
for higher-order linear ordinary differential equation with variable coefficients. We consider a
Euler equation

x8y(8) + x7y(7) − 2x5y(5) − x4y(4) + 8x2y(2) + y = 0, (34)

where a1 = 1, a2 = 0, a3 = −2, a4 = −1, a5 = 0, a6 = 8, a7 = 0, a8 = 1. It is not difficult to know that
the corresponding characteristic equation of Equation (34) is the following,

p(K) =K(K − 1)(K − 2)(K − 3)(K − 4)(K − 5)(K − 6)(K − 7)

+K(K − 1)(K − 2)(K − 3)(K − 4)(K − 5)(K − 6)− 2K(K − 1)(K − 2)(K − 3)(K − 4)

−K(K − 1)(K − 2)(K − 3) + 8K(K − 1) + 1

= K8 − 27K7 + 301K6 − 178K5 + 6053K4 − 11572K3 + 11401K2 − 4370K + 1

= 0

(35)

Using iterative Formula (14), the real roots of characteristic Equation (35) are
K1 = 0.0002289696985655638, K2 = 0.9983856337914987, K3 = 2.111134535386187,
K4 = 2.659996979882180, K5 = 4.396978604791156, K6 = 7.038659857754116, respectively.
So the general solution of the Euler Equation (34) is y(x) = C1x

K1 + C2x
K2 + C3x

K3 + C4x
K4 +

C5x
K5 + C6x

K6 ,where C1, C2, C3, C4, C5, C6 are different constants.

4. Comparison with Previous Methods

In this section, we use the proposed modification of Newton’s method with three-step (14) (MNM)
(the Formula (14) in our paper) to solve some nonlinear equations which the multiplicity of the roots is
a single multiplicity, and compare them with King’s method [17] (KM, (4), (13)) (G = f(x)

f(x−f(x))−f(x)
(x−f(x))−x

=

−f2(x)
f(x−f(x))−f(x) (4), x2 = x1 − (x0 − x1)

G1

G0−G1
(13)), the high-order convergence iteration methods

without employing derivatives given in [18] (WFM, (6)) (xn+1 = xn − F 2(xn)
p·F 2(xn)+F (xn)−F (xn−F (xn))

(6)), the improved method for finding multiple roots and itąŕs multiplicity of nonlinear equations given

in [22] (PGM, ((6), (11))) (G(x) =

{
f2(x)

δ+f(x+f(x))−f(x) , if f(x) 6= 0

0, if f(x) = 0
, where δ = sign(f(x + f(x)) −

f(x))f 2(x) (6), xn+1 = xn − G2(xn)
pG2(xn)+G(xn)−G(xn−G(xn))

(11)), the derivative free iterative method for

finding multiple roots of nonlinear equations given in [23] (YM, ((7), (10))) (Hε(x) =
εf(x)2

f(x+εf(x))−f(x) (7),

xk+1 = xk − 2(xk−xk−1)Hε(xk)

Hε(2xk−xk−1)−Hε(xk−1)
(10)), transformation methods for finding multiple roots of nonlinear

equations [24] (YM, ((10), (12))) (K(x) =

{
εf(x)2

fε(x)
, if f(x) 6= 0

0, if f(x) = 0.
, where fε(x) ≈ εf(x)f ′(x) (10),

pk+1 = pk − µK(pk)
2

K(pk+µK(pk))−K(pk)
(12)), as well as Newton’s first order method(NM) xk+1 = xk − f(xk)

f ′(xk)
).

Displayed in Table 1 are the number of iterations satisfied such that|f(xn)| < 1.E − 17, |xn − x∗| <
1.E − 17. All the computations were done by using Visual C++ 6.0. Since King’s method and Yun’s

Algorithms 2015, 8 664

method require two starting values, we have used x1 = x0 − 0.1. We used the following test functions
and obtained the approximate zeros x∗ round up to the 17th decimal place:

f1(x) =
(x−

√
5)4

(x− 1)2 + 1
, m = 4, x∗ = 2.236067977499790

f2(x) = (sin2(x)− 2x+ 1)5, m = 5, x∗ = 0.71483582544138924

f3(x) = (8xe−x
2 − 2x− 3)8, m = 8, x∗ = −1.7903531791589544

f4(x) =
(2x cos(x) + x2 − 3)10

(x2 + 1)
, m = 10, x∗ = 2.9806452794385368

f5(x) = (e−x
2+x+3 − x+ 2)9, m = 9, x∗ = 2.4905398276083051

f6(x) = (e−x + 2 sin(x))4, m = 4, x∗ = 3.1627488709263654

f7(x) = (ln(x2 + 3x+ 5)− 2x+ 7)8, m = 8, x∗ = 5.4690123359101421

f8(x) = (
√
x2 + 2x+ 5− 2 sin(x)− x2 + 3)5, m = 5, x∗ = 2.3319676558839640

f9(x) = (x− 2)4/((x− 1)2 + 1), m = 4, x∗ = 2.0000000000000000

f10(x) = (x− 2.5)
15
4 ex, m =

15

4
, x∗ = 2.500000000000000

f11(x) = (
√
x− 1

x
− 1)7, m = 7, x∗ = 2.147899035704787

f12(x) = (ln(x) +
√
x− 5)3, m = 3, x∗ = 8.309432694231572

f13(x) = (sin(x) · cos(x)− x3 + 1)9, m = 9, x∗ = 1.117078770687451

f14(x) = ((x− 3) exp(x))5, m = 5, x∗ = 3.0000000000000000

f15(x) = (ln(x) +
√
x4 + 1− 2)7, m = 7, x∗ = 1.222813963628973

Note that we used NC in Table 1 to mean that the method does not converge to the root. And
these methods can converge to root by using closer initial values. The computational results in Table 1
demonstrate that our proposed iterative method (MNM) requires less number of iterations than those of
KM, WFM, PGM, YM, and NM. Therefore, it is significant and applicable and can compete with other
existing methods.

Table 1. Comparison of various aiterative methods for the case of single multiplicity.

f(x) MNM KM [17] WFM [18] PGM [22] YM [23] YM [24]

Parameters x1 = x0 − 0.1
p = 1

p = 1
ε = 10−8

ε = 10−8

x1 = x0 − 0.1 µ = 1

f1, x0 = 3.0 2 4 6 4 3 2
f2, x0 = 1.5 2 NC NC 4 NC 5
f3, x0 = −1.1 2 NC NC NC 3 3
f4, x0 = 3.2 2 3 3 28 NC NC
f5, x0 = 3.0 2 NC 66 4 3 NC

Algorithms 2015, 8 665

Table 1. Cont.

f(x) MNM KM [17] WFM [18] PGM [22] YM [23] YM [24]

Parameters x1 = x0 − 0.1
p = 1

p = 1
ε = 10−8

ε = 10−8

x1 = x0 − 0.1 µ = 1

f6, x0 = 3.5 2 5 4 NC 3 2
f7, x0 = 6.5 2 NC 3 5 2 2
f8, x0 = 2.7 2 NC NC 9 3 3
f9, x0 = 2.5 1 4 4 6 4 3
f10, x0 = 2.8 2 6 3 20 3 2
f11, x0 = 2.5 2 3 3 3 NC 2
f12, x0 = 9.0 1 3 4 4 4 3
f13, x0 = 1.4 2 NC NC NC NC 4
f14, x0 = 3.4 2 59 NC NC 4 6
f15, x0 = 1.7 2 NC NC 32 4 2

5. Efficiency of Iterative Methods

In the following we compare the efficiency of methods mentioned in Section 1 whose the multiplicity
of the roots of nonlinear equation is a single multiplicity. We consider the definition of efficiency
index [29–31] as EFF = r

1
θ , where r is the order of the method and θ is number of function (and

derivatives) evaluations per iteration required by the method. These results are presented in Table 2.
In Table 2, we listed the methods according to decreasing order of efficiency index, and multiplicity
m of roots with all methods under the row of King’s method (including King’s method) are unknown.
For unknown multiplicity m, our new method comes second, next to King’s method.

Table 2. Comparison the efficiency of various iterative methods for the case of
single multiplicity.

Method Reference r θ EFF

Neta [8] (49) m 6= 3 2.732 2 1.653
Neta [8] (51) 2.732 2 1.653

Neta and Johnson [10] m = 2 4 3 1.587
Neta [8] (39) 3 3 1.442
Neta [8] (29) m 6= 3 3 3 1.442

Chun and Neta [7] (22) 3 3 1.442
Chun,Bae, and Neta [9] (14) 3 3 1.442
V ictory and Neta [4] (3) 3 3 1.442

Hansen and Patrick [2] (8.1) 3 3 1.442
Halley [12] 3 3 1.442

Laguerre [13] 3 3 1.442

Algorithms 2015, 8 666

Table 2. Cont.

Method Reference r θ EFF

Dong [14] (7), (8) 3 3 1.442
Dong [5] (9), (10) 3 3 1.442
Osada [6] 3 3 1.442

E.Schrder [1] 2 2 1.414
Neta and Johnson [10] m 6= 2 4 4 1.414

Neta [11] 4 4 1.414
Neta [8] (32) m = 3 2 3 1.259

Werner [15] (16) m = 2 1.5 3 1.145
King [17] 1.618 2 1.272

Our method This paper 5 8 1.223
Xinyuan Wu [18] 2 4 1.190
Xinyuan Wu [19] 2 4 1.190
P.K.Parida [22] 2 4 1.190

Beong In Y un [23] 2 4 1.190
Beong In Y un [24] 2 4 1.190

6. Conclusions

A new iterative method with fifth-order convergence has been developed as a modification of
Newton’s method for finding multiple roots with unknown multiplicity m whose multiplicity m is the
highest multiplicity of nonlinear equation. Several numerical examples demonstrate that the proposed
iterative method is efficient. For the special case which the multiplicity of the roots of nonlinear equation
is a single multiplicity, our method is more efficient and performs better than classical Newton’s method
and many other existing methods.

Acknowledgments

We take the opportunity to thank the reviewers for their thoughtful and meaningful comments. This
work was supported by National Natural Science Foundation of China (61263034), Scientific and
Technology Foundation Funded Project of Guizhou Province ([2014] 2092, [2014] 2093), Scientific
and Technology Joint Foundation Funded Project of Guizhou Province ([2011] 18, [2013] 20), National
Bureau of statistics Foundation Funded Project (2014LY011), Key Laboratory of Pattern Recognition
and Intelligent System of Construction Project of Guizhou Province ([2009] 4002), Information
Processing and Pattern Recognition for Graduate Education Innovation Base of Guizhou Province.

Author Contributions

The idea for this research work is proposed by Xiaowu Li and Mingsheng Zhang, numerical solution
of nonlinear dynamic system is done by Juan Liang, the code procedure realization is achieved by

Algorithms 2015, 8 667

Zhinan Wu and Feng Pan, theorem proof is done by Lin Wang, and the paper writing is completed
by Juan Liang and Xiaowu Li.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Schröder, E. Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 1870,
2, 317–365.

2. Hansen, E.; Patrick, M. A family of root finding methods. Numer. Math. 1977, 27, 257–269.
3. Li, S.G.; Cheng, L.Z.; Neta, B. Some fourth-order nonlinear solvers with closed formulae for

Multiple roots. Comput. Math. Appl. 2010, 59, 126–135.
4. Victory, H.D.; Neta, B. A higher order method for multiple zeros of nonlinear functions. Int. J.

Comput. Math. 1983, 12, 329–335.
5. Dong, C. A family of multipoint iterative functions for finding multiple roots of equations. Int. J.

Comput. Math. 1987, 21, 363–367.
6. Osada, N. An optimal multiple root-finding method of order three. J. Comput. Appl. Math. 1994,

51, 131–133.
7. Chun, C.; Neta, B. A third-order modification of Newtonąŕs method for multiple roots.

Appl. Math. Comput. 2009, 211, 474–479.
8. Neta, B. New third order nonlinear solvers for multiple roots. Appl. Math. Comput. 2008, 202,

162–170.
9. Chun, C.; Bae, H.J.; Neta, B. New families of nonlinear third-order solvers for finding multiple

roots. Comput. Math. Appl. 2009, 57, 1574–1582.
10. Neta, B.; Johnson, A.N. High-order nonlinear solver for multiple roots. Comput. Math. Appl.

2008, 55, 2012–2017.
11. Neta, B. Extension of Murakami’s High order nonlinear solver to multiple roots. Int. J.

Comput. Math. 2010, 87, 1023–1031.
12. Halley, E. A new, exact and easy method of finding the roots of equations generally and that without

any previous reduction. Philos. Trans. R. Soc. Lond. 1694, 18, 136–148.
13. Laguerre, E.N. Sur une méthode pour obtener par approximation les racines d’une équation

algébrique qui a toutes ses racines réelles. 2e séries. Nouv. Ann. Math. 1880, 19, 88–103.
14. Dong, C. A basic theorem of constructing an iterative formula of the higher order for computing

multiple roots of an equation. Math. Numer. Sin. 1982, 11, 445–450.
15. Werner, W. Iterationsverfahren höherer Ordnung zur Lösung nicht linearer Gleichungen. Z. Angew.

Math. Mech. 1981, 61, T322–T324.
16. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: Englewood, IL,

USA, 1964.
17. King, R.F. A secant method for multiple roots. BIT 1977, 17, 321–328.

Algorithms 2015, 8 668

18. Wu, X.Y.; Fu, D.S. New higher-order convergence iteration methods without employing derivatives
for solving nonlinear equations. Comput. Math. Appl. 2001, 41, 489–495.

19. Wu, X.Y.; Xia, J.L.; Shao, R. Quadratically convergent multiple roots finding method without
derivatives. Comput. Math. Appl. 2001, 42, 115–119.

20. Steffensen, I.F. Remark on Iteration. Skand. Aktuarietidskr 1933, 16, 64–72.
21. Wu, X.Y. A new continuation Newton-like method and its deformation. Appl. Math. Comput.

2000, 112, 75–78.
22. Parida, P.K.; Gupta, D.K. An improved method for finding multiple roots and it’s multiplicity of

nonlinear equations in R. Appl. Math. Comput. 2008, 202, 498–503.
23. Yun, B.I. A derivative free iterative method for finding multiple roots of nonlinear equations.

Appl. Math. Lett. 2009, 22, 1859–1863.
24. Yun, B.I. Transformation methods for finding multiple roots of nonlinear equations.

Appl. Math. Comput. 2010, 217, 599–606.
25. Kioustelidis, J.B. A derivative-free transformation preserving the order of convergence of iteration

methods in case of multiple zeros. Numer. Math. 1979, 33, 385–389.
26. Wang X.; Liu, L. Modified Ostrowski’s method with eighth-order convergence and high efficiency

index. Appl. Math. Lett. 2010, 23, 549–554.
27. Bi, W.; Ren, H.; Wu, Q. New family of seventh-order methods for nonlinear equations.

Appl. Math. Comput. 2008, 203, 408–412.
28. Bi, W.; Ren, H.; Wu, Q. Three-step iterative methods with eighth-order convergence for solving

nonlinear equations. J. Comput. Appl. Math. 2009, 225, 105–112.
29. Gautschi, W. Numerical Analysis: An Introduction; Birkhäuser: Boston, MA, USA, 1997.
30. Neta, B. On a family of multipoint methods for non-linear equations. Int. J. Comput. Math. 1981,

9, 353–361.
31. Li, X.; Mu, C.; Ma, J.; Wang, C. Sixteenth-order method for nonlinear equations.

Appl. Math. Comput. 2010, 215, 3754–3758.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Iterative Method with Fifth-Order Convergence for Solving Multiple Roots
	Numerical Results
	Comparison with Previous Methods
	Efficiency of Iterative Methods
	Conclusions

