
algorithms

Article

Two Efficient Derivative-Free Iterative Methods for
Solving Nonlinear Systems

Xiaofeng Wang * and Xiaodong Fan

School of Mathematics and Physics, Bohai University, Jinzhou 121013, China; fxd@emails.bjut.edu.cn
* Correspondence: w200888w@163.com; Tel.: +86-150-4169-9258

Academic Editors: Alicia Cordero, Juan R. Torregrosa and Francisco I. Chicharro
Received: 16 October 2015; Accepted: 27 January 2016; Published: 1 February 2016

Abstract: In this work, two multi-step derivative-free iterative methods are presented for solving
system of nonlinear equations. The new methods have high computational efficiency and low
computational cost. The order of convergence of the new methods is proved by a development
of an inverse first-order divided difference operator. The computational efficiency is compared
with the existing methods. Numerical experiments support the theoretical results. Experimental
results show that the new methods remarkably reduce the computing time in the process of
high-precision computing.
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1. Introduction

Finding the solutions of system of nonlinear equations F(x) = 0 is a hot problem with wide
applications in sciences and engineering, wherein F : D ⊂ Rm → Rm and D is an open convex domain
in Rm. Many efficient methods have been proposed for solving system of nonlinear equations, see for
example [1–18] and the references therein. The best known method is the Steffensen method [1,2],
which is given by

y(k) = ψ1(x(k), w(k)) = x(k) − [w(k), x(k); F]−1F(x(k)) (1)

where w(k) = x(k) + F(x(k)), [w(k), x(k); F]−1 is the inverse of [w(k), x(k); F] and [w(k), x(k); F] :
D ⊂ Rm → Rm is the first order divided difference on D. Equation (1) does not require the derivative
of the system F in per iteration.

To reduce the computational time and improve the efficiency index of the Steffensen method,
many modified high-order methods have been proposed in open literatures, see [3–14] and the
references therein. Liu et al. [3] obtained a fourth-order derivative-free method for solving system
of nonlinear equations, which can be written as

y(k) =ψ1(x(k), w(k))

x(k+1) =ψ2(x(k), w(k), y(k))

=y(k) − [y(k), x(k); F]−1([y(k), x(k); F]− [y(k), w(k); F]

+[w(k), x(k); F])[y(k), x(k); F]−1F(y(k))

(2)
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where w(k) = x(k) + F(x(k)). Grau-Sánchez et al. [4,5] developed some efficient derivative-free
methods. One of the methods is the following sixth-order method

y(k) =x(k) − [w(k), s(k); F]−1F(x(k))

z(k) =y(k) −
{

2[x(k), y(k); F]− [w(k), s(k); F]
}−1

F(y(k))

x(k+1) =ψ3(w(k), s(k), x(k), y(k), z(k))

=z(k) −
{

2[x(k), y(k); F]− [w(k), s(k); F]
}−1

F(z(k))

(3)

where w(k) = x(k) + F(x(k)) and s(k) = x(k) − F(x(k)). It should be noted that the Equations (2)
and (3) need to compute two LU decompositions in per iteration, respectively. Some derivative-free
methods are also discussed by Ezquerro et al. in [6] and by Wang et al. in [7,8]. The above multi-step
derivative-free iterative methods can save the computing time in the High-precision computing.
Therefore, it is meaningful to study the multi-step derivative-free iterative methods.

It is well-known that we can improve the efficiency index of the iterative method and reduce
the computational time of the iterative process by reducing the computational cost of the iterative
method. There are many ways to reduce the computational cost of the iterative method. In this paper,
we reduce the computational cost of the iterative method by reducing the number of LU (lower upper)
decompositions in per iteration. Two new derivative-free iterative methods are proposed for solving
system of nonlinear equations in Section 2. We prove the local convergence order of the new methods.
The feature of the new methods is that the LU decomposition is computed only once in per iteration.
Section 3 compares the efficiency of different methods by computational efficiency index [10].
Section 4 illustrates convergence behavior of our methods by numerical examples. Section 5 is
a short conclusion.

2. The New Methods and Analysis of Convergence

Using the central difference [x(k) + F(x(k)), x(k) − F(x(k)); F], we propose the following
iterative scheme {

y(k) =x(k) − [w(k), s(k); F]−1F(x(k))

x(k+1) =ψ4(x(k), w(k), s(k), y(k)) = y(k) − µ1F(y(k))
(4)

where µ1 = (3I − 2[w(k), s(k); F]−1[y(k), x(k); F])[w(k), s(k); F]−1,w(k) = x(k) + F(x(k)), s(k) = x(k) − F(x(k))
and I is the identity matrix. Furthermore, if we define z(k) = ψ4(x(k), w(k), s(k), y(k)), then the order of
convergence of the following method is six.

x(k+1) = ψ5(x(k), w(k), s(k), y(k), z(k)) = z(k) − µ1F(z(k)) (5)

Compared with the Equation (4), the Equation (5) increases one function evaluation F(z(k)). In
order to simplify calculation, the new Equation (4) can be written as

[w(k), s(k); F]γ(k) = F(x(k))
y(k) = x(k) − γ(k)

[w(k), s(k); F]δ(k)1 = F(y(k))
δ
(k)
2 = [y(k), x(k); F]δ(k)1

[w(k), s(k); F]δ(k)3 = δ
(k)
2

x(k+1) = y(k) − 3δ
(k)
1 + 2δ

(k)
3

(6)

Similar strategy can be used in the Equation (5). For the Equations (4) and (5), we have the
following analysis of convergence.
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Theorem 1. Let α ∈ Rm be a solution of the system F(x) = 0 and F : D ⊂ Rm → Rm be sufficiently
differentiable in an open neighborhood D of α. Then, for an initial approximation sufficiently close to α, the
convergence order of iterative Equation (4) is four with the following error equation

ε = (4A2
2 − A3 − A3F′(α)2)Ee2 + A2E2 + O(e5) (7)

where e = x(k) − α and E = y(k) − α. Iterative Equation (5) is of sixth order convergence and satisfies the
following error equation

en+1 = 2A2Eε− (A3 + A3F′(α)2 − 4A2
2)e

2ε + O(e7) (8)

where en+1 = x(k+1) − α

Proof. The first order divided difference operator of F as a mapping [·, ·; F] : D× D ⊂ Rm × Rm → L(Rm)

(see [5,10,11]) is given by

[x + h, x; F] =
∫ 1

0
F′(x + th)dt, ∀(x, h) ∈ Rm × Rm (9)

Expanding F′(x + th) in Taylor series at the point x and integrating, we obtain

∫ 1

0
F′(x + th)dt =F′(x) +

1
2

F′′(x)h +
1
6

F′′′(x)h2 + O(h3) (10)

Developing F(x(k)) in a neighborhood of α and assuming that Γ = [F′(α)]−1 exists, we have

F(x(k)) = F′(α)[e + A2e2 + A3e3 + A4e4 + A5e5 + O(e6)] (11)

where Ai =
1
i! ΓF(i)(α) ∈ Li(Rm, Rm). The derivatives of F(x(k)) can be given by

F′(x(k)) = F′(α)[I + 2A2e + 3A3e2 + 4A4e3 + 5A5e4 + O(e5)] (12)

F′′(x(k)) = F′(α)[2A2 + 6A3e + 12A4e2 + 20A5e3 + O(e4)] (13)

F′′′(x(k)) = F′(α)[6A3 + 24A4e + 60A5e2 + O(e3)] (14)

Setting y = x + h and E = y − α, we have h = E − e. Replacing the previous expressions
Equations (12)–(14) into Equation (10) we get

[x(k), y(k); F] = F′(α)(I + A2(E + e) + A3(E2 + Ee + e2) + O(e5)) (15)

Noting that w(k) − α = e + F(xk) and s(k) − α = e − F(xk), we replace in Equation (15) E by
e + F(xk), e by e− F(xk), we obtain

[w(k), s(k); F] = F′(α)(I + 2A2e + (3A3 + A3F′(α)2)e2 + O(e3)) = F′(α)D(e) + O(e3) (16)

where D(e) = I + 2A2e + (3A3 + A3F′(α)2)e2 and I is the identity matrix. Using Equation (16),
we find

[w(k), s(k); F]−1 = D(e)−1Γ + O(e3) (17)

Then, we compel the inverse of D(e) to be (see [12,13])

D(e)−1 = I + X2e + X3e2 + O(e3) (18)

such that X2 and X3 verify
D(e)D(e)−1 = D(e)−1D(e) = I (19)
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Solving the system Equation (19), we obtain

X2 = −2A2 (20)

X3 = (4A2
2 − (3A3 + A3F′(α)2)) (21)

then,
[w(k), s(k); F]−1 = (I − 2A2e + (4A2

2 − (3A3 + A3F′(α)2))e2 + O(e3))Γ (22)

E = y(k) − α = e− [w(k), s(k); F]−1F(x(k)) = A2e2 + O(e3) (23)

Similar to Equation (11), we have

F(y(k)) = F′(α)[E + A2E2 + O(E3)] (24)

From Equations (15) and (22)–(24), we get

µ1 = (3I − 2[w(k), s(k); F]−1[y(k), x(k); F])[w(k), s(k); F]−1

= (I − 2A2E + (A3 + A3F′(α)2 − 4A2
2)e

2)Γ
(25)

Taking into account Equations (4), (24) and (25), we obtain

ε = ψ4(x(k), w(k), s(k), y(k))− α = E− µ1F(y(k))
= E− (I − 2A2E + (A3 + A3F′(α)2 − 4A2

2)e
2)(E + A2E2 + O(E3))

= (4A2
2 − A3 − A3F′(α)2)Ee2 + A2E2 + O(e5)

(26)

This means that the Equation (4) is of fourth-order convergence.
Therefore, from Equations (5) and (24)–(26), we obtain the error equation:

en+1 = x(k+1) − α = ε− µ1F(z(k))
= ε− (I − 2A2E + (A3 + A3F′(α)2 − 4A2

2)e
2)(ε + O(ε2))

= 2A2Eε− (A3 + A3F′(α)2 − 4A2
2)e

2ε + O(e7)

(27)

This means that the Equation (5) is of sixth-order convergence.

3. Computational Efficiency

The classical efficiency index E = ρ1/c (see [9]) is the most used index, but not the only one.
We find that the iterative methods with the same classical efficiency index (E) have the different
properties in actual applications. The reason is that the number of functional evaluations of iterative
method is not the only influence factor in evaluating the efficiency of the iterative method. The
number of matrix products, scalar products, decomposition LU of matrix, and the resolution of the
triangular linear systems also play an important role in evaluating the real efficiency of iterative
method. In this paper, the computational efficiency index (CEI) [10] is used to compare the efficiency
of the iterative methods. Some discussions on the CEI can be found in [4–7]. The CEI of the iterative
methods ψi (i = 1, 2, · · · , 5) is given by

CEIi(µ, m) = ρ
1

Ci(µ, m)

i , i = 1, 2, 3, 4, 5 (28)

where ρi is the order of convergence of the method and Ci(µ, m) is the computational cost of method.
The Ci(µ, m) is given by

Ci(µ, m) = ai(m)µ + pi(m) (29)

where ai(m) denotes the number of evaluations of scalar functions used in the
evaluations of F and [x, y; F], and pi(m) represents the operational cost per iteration.
To express the value of Equation (29) in terms of products,a ratio µ > 0 in
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Equation (29) between products (and divisions) and evaluations of functions is required,
see [5,10]. We must add m products for multiplication of a vector by a scalar and m2

products for matrix-vector multiplication. To compute an inverse linear operator, we need (m3 −m)/3
products and divisions in the LU decomposition and m2 products and divisions for solving two
triangular linear systems. If we compute the first-order divided difference then we need m(m − 1)
scalar functional evaluations and m2 quotients. The first-order divided difference [x, y; F] of F is
given by

[y, x; F]ij = (Fi(y1 · · · , yj−1, yj, xj+1, · · · , xm)− Fi(y1 · · · , yj−1, xj, xj+1, · · · , xm))/(yj − xj)

where 1 ≤ i, j ≤ m, x = (x1, · · · xj−1, xj, xj+1, · · · xm) and y = (y1, · · · yj−1, yj, yj+1, · · · ym) (see [9]).
Based on Equations (28) and (29), Table 1 shows the computational cost of different methods.

Table 1. Computational cost of the iterative methods.

Methods ρ a(m) p(m) C(µ, m)

ψ1 2 m(m + 1) (m3 −m)/3 + 2m2 C1 = m(m + 1)µ + (m3 −m)/3 + 2m2

ψ2 4 3m2 2(m3 −m)/3 + 7m2 C2 = 3m2µ + 2(m3 −m)/3 + 7m2

ψ3 6 m(2m + 3) 2(m3 −m)/3 + 6m2 C3 = m(2m + 3)µ + 2(m3 −m)/3 + 6m2

ψ4 4 2m(m + 1) (m3 −m)/3 + 6m2 + 2m C4 = 2m(m + 1)µ + (m3 −m)/3 + 6m2 + 2m
ψ5 6 m(2m + 3) (m3 −m)/3 + 9m2 + 4m C5 = m(2m + 3)µ + (m3 −m)/3 + 9m2 + 4m

From Table 1, we can see that our methods ψi (i = 4, 5) need less number of LU decomposition
than methods ψ2 and ψ3. The computational cost of the fourth-order methods show the
following order:

C4 < C2, for m ≥ 2 (30)

We use the following expressions [10] to compare the CEI of different methods

Ri,j =
ln CEIi
ln CEIj

=
ln(ρi)Cj(µ, m)

ln(ρj)Ci(µ, m)
, i, j = 1, 2, 3, 4, 5 (31)

For Ri,j > 1 the iterative method Mi is more efficient than Mj.
Using the CEI of the iterative methods,we obtain the following theorem:

Theorem 2. 1. For the fourth-order method, we have CEI4 > CEI2 for all m ≥ 2 and µ > 0.
2. For the sixth-order method, we have CEI5 > CEI3 for all m ≥ 11 and µ > 0.

Proof. 1. From Table 1, we note that the methods ψi (i = 2, 4) have the same order ρ2 = ρ4 = 4.
Based on Equations (29) and (30), we get that CEI4 > CEI2 for all m ≥ 2 and µ > 0.

2. The methods ψi (i = 3, 5) have the same order and the same functional evaluations. The
relation between ψ5 and ψ3 can be given by

R5,3 =
ln(ρ5)C3(µ, m)

ln(ρ3)C5(µ, m)
=

m(2m + 3)µ + 2(m3 −m)/3 + 6m2

m(2m + 3)µ + (m3 −m)/3 + 9m2 + 4m
(32)

Subtracting the denominator from the numerator of Equation (32), we have

1
3

m(m2 − 9m− 13) (33)

The Equation (33) is positive for m ≥ 10.2662. Thus, we obtain that CEI5 > CEI3 for all m ≥ 11
and µ > 0.



Algorithms 2016, 9, 14 6 of 10

Then, we compare the CEI of the iterative methods with different convergence order by the
following theorem:

Theorem 3. We have 1. CEI5 > CEI4 for all m ≥ 2 and µ > m2 ln2/3 +18m ln4/3 +(17 ln2 −5 ln3)

6(m ln3/2 + ln3/4)
.

2. CEI4 > CEI1 for all m ≥ 8 and µ > 0.

Proof. 1. From the expression Equation (31) and Table 1,We get the following relation between ψ4

and ψ5

R5,4 =
ln(ρ5)C4(µ, m)

ln(ρ4)C5(µ, m)
=

ln6

ln4
2m(m + 1)µ + (m3 −m)/3 + 6m2 + 2m
m(2m + 3)µ + (m3 −m)/3 + 9m2 + 4m

(34)

We consider the boundary R5,4 = 1. The boundary can is given by the following equation

µ = H5,4(m) =
m2 ln2/3 +18m ln4/3 +17 ln2−5 ln3

6(m ln3/2 + ln3/4)
(35)

where CEI5 > CEI4 over it (see Figure 1). The boundary Equation (35) cut axes at points (m, µ) = (13.888, 0)
and (2, 4.7859). Thus, we get that CEI5 > CEI4 since R5,4 > 1 for all m ≥ 2 and µ > H5,4(m).

2. The relation between ψ1 and ψ4 is given by

R4,1 =
ln(ρ4)C1(µ, m)

ln(ρ1)C4(µ, m)
=

ln4

ln2
m(m + 1)µ + (m3 −m)/3 + 2m2

2m(m + 1)µ + (m3 −m)/3 + 6m2 + 2m
(36)

Subtracting the denominator from the numerator of Equation (36), we have

1
3

m(m2 − 6m− 7) (37)

The Equation (37) is positive for m > 7. Thus, we obtain that CEI4 > CEI1 for all m ≥ 8 and
µ > 0.

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

m

µ

H
5,4

Figure 1. The boundary function H5,4 in(m, µ)−plain.

4. Numerical Examples

In this section, we compare the performance of related methods by mathematical experiments.
The numerical experiments have been carried out using Maple 14 computer algebra system with
2048 digits. The computer specifications are Microsoft Windows 7 Intel(R), Core(TM) i3-2350M CPU,
1.79 GHz with 2 GB of RAM.
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According to the Equation (29), the factor µ is claimed by expressing the cost of the evaluation
of elementary functions in terms of products [15]. Table 2 gives an estimation of the cost of the
elementary functions in amount of equivalent products, where the running time of one product is
measured in milliseconds.

Table 2. Estimation of computational cost of elementary functions computed with Maple 14 and
using a processor Intel R© Core(TM) i3-2350M CPU, 1.79 GHz (32-bit Machine) Microsoft Windows 7
Professional, where x =

√
3− 1 and y =

√
5.

Digits x· y x/y
√

x exp(x) ln(x) sin(x) cos(x) arctan(x)

2048 0.109 ms 1 5 53 12 112 110 95

Tables 3–8 show the following information of the methods ψi (i = 1, 2, · · · , 5): the number of
iterations k needed to converge to the solution, the norm of function F(x(k))at the last step, the value
of the stopping factors at the last step,the computational cost C, the computational time Time(s),
the computational efficiency indices CEI and the computational order of convergence ρ. Using the
commond time( ) in Maple 14, we can obtain the computational time of different methods. The
computational order of convergence ρ is defined by [16]:

ρ ≈ ln(||x(k+1) − x(k)||/||x(k) − x(k−1)||)
ln(||x(k) − x(k−1)||/||x(k−1) − x(k−2)||)

(38)

The following problems are chosen for numerical tests:
Example 1 Considering the following system{

x1 + ex1 − cos(x2) = 0
3x1 − x2 − sin(x2) = 0

where (m, µ) = (2, 53+110+112+1
2 ) = (2, 138) are the values used in Equation (29). x(0) = (0.5, 0.5)T

is the initial point and α ≈ (0, 0)T is the solution of the Example 1. ||x(k) − x(k−1)|| < 10−100 is the
stopping criterion.

The results shown in Table 3 confirm the first assertion of Theorem 2 and the first assertion of
Theorem 3 for m .

= 2. Namely, CEI5 > CEI4 for µ > 4.7859. The new sixth-order method ψ5 spends
minimum time for finding the numerical solution. The ’nc’ denotes that the method does not converge
in the Table 3.

Table 3. Performance of methods for Example 1.

Method k ||x(k)− x(k-1)|| ||F(x(k))|| ρ C CEI Time(s)

ψ1 13 1.792e−161 3.748e−322 2.00000 838 1.0008275 1.127
ψ2 nc
ψ3 4 3.558e−743 8.245e−496 6.00314 1960 1.0009148 0.780
ψ4 5 4.086e−211 5.330e−421 4.00015 1686 1.0008226 0.836
ψ5 4 6.240e−164 2.389e−489 6.00420 1978 1.0009063 0.546

Example 2 The second system is defined by [11]
x2 + x3 − e−x1 = 0
x1 + x3 − e−x3 = 0
x1 + x2 − e−x3 = 0



Algorithms 2016, 9, 14 8 of 10

where (m, µ) = (3, 53+53
3 ) = (3, 35.3). The initial point is x(0) = (0.5, 0.5, 0.5). ||x(k) − x(k−1)|| < 10−200

is the stopping criterion.The solution is α ≈ (0.3517337, 0.3517337, 0.3517337).
The results shown in Table 4 confirm the first assertion of Theorem 2 and assertion 1 of

Theorem 3 for m = 3. Namely, CEI4 > CEI2 and CEI5 > CEI4 for µ > 4.7859. Table 4 shows
that sixth-order method ψ5 is the most efficient iterative method in both computational time and CEI.

Table 4. Performance of methods for Example 2.

Method k ||x(k)− x(k-1)|| ||F(x(k))|| ρ C CEI Time(s)

ψ1 9 2.136e−302 5.945e−604 2 449.6 1.00154289 0.514
ψ2 5 2.439e−675 2.703e−1350 4 1032.1 1.00134408 0.592
ψ3 4 1.414e−1080 7.020e−1620 6 1023.1 1.00175284 0.561
ψ4 5 4.123e−699 9.73957e−1397 4 915.2 1.00151589 0.561
ψ5 4 9.097e−550 8.57708e−1647 6 1054.1 1.00170125 0.483

Example 3 Now, considering the following large scale nonlinear systems [17]:{
xixi+1 − 1 = 0, 1 ≤ i ≤ m− 1
xmx1 − 1 = 0

The initial vector is x(0) = {1.5, 1.5, · · · , 1.5}t for the solution α = {1, 1, · · · , 1}t. The stopping
criterion is ||x(k) − x(k−1)|| < 10−100.

Table 5. Performance of methods for Example 3, where (m, µ) = (199, 1).

Method k ||x(k)− x(k-1)|| ||F(x(k))|| ρ C CEI Time(s)

ψ1 10 4.993e−150 7.480e−299 2.00000 2,745,802 1.000000252 95.940
ψ2 5 3.013e−212 1.210e−423 4.00000 5,649,610 1.000000245 126.438
ψ3 4 3.922e−556 2.197e−833 5.99998 5,571,005 1.000000322 77.111
ψ4 5 1.404e−269 9.850e−538 4.00000 2,944,404 1.000000471 81.042
ψ5 4 5.298e−208 2.231e−621 5.99976 3,063,804 1.000000585 64.818

Table 6. The computational time (in second) for Example 3 by the methods.

Method ψ1 ψ2 ψ3 ψ4 ψ5

m = 99 20.982 29.499 16.848 19.219 15.459
m = 199 95.940 126.438 77.111 81.042 64.818
m = 299 254.234 328.896 207.340 199.930 156.094

Application in Integral Equations

The Chandrasekhar integral [18] equation comes from radiative transfer theory, which is given
by

F(P, c) = 0, P : [0, 1]→ R

with the operator F and parameter c as

F(P, c)(u) = P(u)−
(

1− c
2

∫ 1

0

uP(v)
u + v

dv
)−1
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We approximate the integrals by the composite midpoint rule:

∫ 1

0
f (t)dt =

1
m

m

∑
j=1

f (tj)

where tj = (j− 1/2)/m for 1 ≤ j ≤ m. We obtain the resulting discrete problem is

Fi(u, c) = ui −
(

1− c
2m

m

∑
j=1

tiuj

ti + tj

)−1

, 1 ≤ i ≤ m

The initial vector is x(0) = {1.5, 1.5, · · · , 1.5}t, c = 0.9. Tables 7 and 8 show the numerical results
of this problem. ||F(x(k))|| < 10−200 is the stopping criterion of this problem.

Table 7. The computational time (in second) for solving Chandrasekhar Integral equation.

Method ψ1 ψ2 ψ3 ψ4 ψ5

m = 30 88.468 207.200 87.937 102.055 70.309
m = 60 422.388 904.602 435.929 488.969 400.345

Table 8. The number of iterations for solving Chandrasekhar Integral equation.

Method ψ1 ψ2 ψ3 ψ4 ψ5

m = 30 8 6 4 5 4
m = 60 8 6 4 5 4

The results shown in Table 5 confirm the assertion of Theorem 2 and Theorem 3 for m = 199.
Namely, CEI4 > CEI2, CEI5 > CEI3, and CEI4 > CEI1. From the Table 6, we remark that the
computational time of our fourth-order method ψ4 is less than that of the sixth order method ψ3 for
m = 299. Tables 5–7 show that, as the nonlinear system is big-sized, our new methods ψi (i = 4, 5)
remarkably reduce the computational time.

The numerical results shown in Tables 3–8 are in concordance with the theory developed in
this paper. The new methods require less number of iterations to obtain higher accuracy in the
contrast to the other methods. The most important is that our methods have higher CEI and lower
computational time than other methods in this paper. The sixth-order method ψ5 is the most efficient
iterative methods in both CEI and computational time.

5. Conclusions

In this paper, two high-order iterative methods for solving system of nonlinear equations are
obtained. The new methods are derivative free. The order of convergence of the new methods is
proved by using a development of an inverse first-order divided difference operator. Moreover, the
computational efficiency index for system of nonlinear equations is used to compare the efficiency
of different methods. Numerical experiments show that our methods remarkably reduce the
computational time for solving big-sized system of nonlinear equations. The main reason is that the
LU decomposition of the matrix of our methods is computed only once in per iteration. We concluded
that, in order to obtain an efficient iterative method, we should comprehensively consider the number
of functional evaluations, the convergence order and the operational cost of the iterative.
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