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Abstract: In tropical and sub-tropical regions, biomass carbon (C) losses through forest degradation
are recognized as central to global terrestrial carbon cycles. Accurate estimation of forest biomass C is
needed to provide information on C fluxes and balances in such systems. The objective of this study
was to develop generalized biomass models using harvest data covering tropical semi-evergreen,
tropical wet evergreen, sub-tropical broad leaved, and sub-tropical pine forest in North East India
(NEI). Among the four biomass estimation models (BEMs) tested AGBest = 0.32(D2Hδ)0.75 × 1.34
and AGBest = 0.18D2.16 × 1.32 were found to be the first and second best models for the different
forest types in NEI. The study also revealed that four commonly used generic models developed
by Chambers (2001), Brown (1989), Chave (2005) and Chave (2014) overestimated biomass stocks
by 300–591 kg tree−1, while our highest rated model overestimated biomass by 197 kg tree−1.
We believe the BEMs we developed will be useful for practitioners involved in remote sensing,
biomass estimation and in projects on climate change mitigation, and payment for ecosystem services.
We recommend future studies to address country scale estimation of forest biomass covering different
forest types.

Keywords: Biomass estimation models; forest ecosystems; remote sensing; winners curse

1. Introduction

Land based climate change mitigation strategies have received much global attention in the recent
past, due to the large sink capacity and economic viability [1]. Among the terrestrial ecosystems,
tropical and sub-tropical forests are considered central to global terrestrial carbon (C) stocks [1,2].
Tropical and sub-tropical regions are well-recognized for losing forests due to agricultural expansion
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and bio-energy production [3]. Information on tropical forest biomass and C fluxes is gaining both
economic and political currency in renewable energy development, C credit markets and research in
global environmental change. Since the approval of the REDD+ (reducing emissions from deforestation
and forest degradation) during the Conference of the Parties (COP 19) in November 2013, the Warsaw
Framework has become a formal mechanism for creating performance-based C financing. The Warsaw
Framework requires consistency in methods, definitions, and comprehensiveness in measurement,
reporting and verifying emissions by sources and removals by sinks, and changes in C storages [4].

In spite of the significant progress in biomass estimation methods, quantifying C stocks in tropical
and sub-tropical forests is still challenging. A large degree of uncertainty exists in measured C stocks
and fluxes in tropical and sub-tropical forests [5–9]. Some of the uncertainty results from the lack of
consistencies in methods, thus leading to widely varying results even among similar studies. Based on
remotely sensed data, two independent studies, namely Harris et al. [5] and Baccini et al. [8], published
maps of tropical forest C storages, which are widely used in REDD+ projects [6]. For 2000–2005,
Harris et al. [5] reported gross emission of 0.81 Pg (Petagram, 1 Pg = 1015 g) C year−1 compared to
2.22 Pg C year−1 by Baccini et al. [8]. Although the maps developed in both the studies used the same
LiDAR data from the Geoscience Laser Altimeter System (GLAS) across the tropics, the maps reveal
substantial differences in total biomass stocks, with little consistency in the direction of differences [6,9].
Differences of this magnitude are reason for concern, not only in policy formulation, but also global
climate change science [9]. According to Mitchard [6] one of the causes of the differences between the
two maps is the difference in the biomass estimation models (BEMs) used to estimate biomass from
the ground plots. The choice of BEMs can significantly influence local, regional and global biomass
estimates. In addition, the choice of BEMs poses a practical limit to the accuracy with which remote
sensing methods can predict regional biomass [6]. This highlights the need for the development of
region-specific BEMs.

The introduction of C credits under REDD has financial implications to C stock in tropical and
sub-tropical forest ecosystems [10]. Therefore, accurate estimation of C loss and sequestration is
fundamental to the initiatives of managing forested ecosystems for reducing CO2 emissions [11] and
model applications to climate change studies [12]. Accuracy in estimates of forest C stocks are limited
by the challenge of developing robust models to estimate tree biomass [13]. Different direct and
indirect methods are used for biomass estimation. In the direct methods, a sample of trees in a given
area is harvested and measured for estimation of dry weight in different tree components (e.g., trunk,
branches, and leaves). Direct methods can be expensive, especially when dealing with large sample
areas and several species [14]. In the indirect method, biomass is usually estimated using BEMs,
which relate measurable variables such as total tree height, diameter at breast height, and woody
density to total tree biomass [15–17]. Therefore, the use of indirect methods is often preferred over
direct methods [18].

Multi-species pan tropical models have been developed for estimation of above ground biomass
(AGB) for major forest types [16,19]. However, such models may not accurately predict biomass of
forests in different ecological regions of the world [20,21]. Species-specific models [16] and LiDAR
technology can also be unreliable for application to mixed species stands.

In the tropical and sub-tropical parts of North East India (NEI), forests cover 66% of the
total geographical area [22]. These forests have significant influence on regional and national C
balance. In NEI, different species-specific models have been developed for Pinus kesiya [23], Hevea
brasiliensis [24], and Barringtonia acutangula [25]. Given the uncertainty in biomass estimation, these
species-specific models may not have wider application in mixed species tropical forests. Biomass and
C stock for diverse forest ecosystems in NEI have also been estimated [26–29] using various generic
models including those developed by Brown et al. [30], Chambers et al. [31] and Chave et al. [16,19].
However, the accuracy of biomass estimates using these models has rarely been tested. Therefore,
accurate estimation of biomass and C stock in NEI will form the baseline for regional/national C
balance datasets.
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The objective of this study was to develop generalized biomass models using harvest data
covering tropical semi-evergreen, tropical wet evergreen, sub-tropical broad leaved, and sub-tropical
pine forest in NEI. The aim of this study is to present generalized BEMs for NEI for use by practitioners
involved in projects on climate change mitigation, and payment for ecosystem services.

2. Methods

2.1. Descriptions of the Study Region

This study covered NEI, which consists of eight different states: Assam, Arunachal Pradesh,
Mizoram, Meghalaya, Manipur, Nagaland, Sikkim, and Tripura. NEI covers 26.3 million hectares
(M ha) equivalent to 8% of total geographical area of India [32]. NEI is situated at the confluence of the
Indo-Chinese, Indo-Malayan, and Indian bio-geographical realms. Due to this unique geographical
location, NEI represents numerous forest types falling within one of the biodiversity hotspots of the
world, the Indo-Burma biodiversity hotspot [33]. In NEI, 17.2 M ha of land is covered with forests,
which constitutes ~25% of India’s total forest area [32] and is represented by five broad forest types
based on the elevation, forest structure and composition: (i) tropical semi-evergreen (up to 600 m),
(ii) tropical wet evergreen (up to 900 m), (iii) sub-tropical broad leaved (900–1900 m), (iv) sub-tropical
pine (1000–3500 m), and (v) alpine temperate (above 3500 m) [34,35].

2.2. Sampling Strategies

Sample tree data (a total of 303 trees) were collected from four major forest types (Table 1, Figure 1)
accounting for over 90% of the forest cover in NEI. These four forest types span over tropical to
sub-tropical climates. Alpine zone that represents temperate forests of NEI accounts for only 5%–7% of
total forest cover of NEI. Therefore, this forest type was not included in this study.

To cover diverse tree sizes for harvest, seven diameter classes were formed: 10.1–20 cm, 20.1–30 cm,
30.1–40 cm, 40.1–50 cm, 50.1–60 cm, 60.1–70 cm, and 70.1–90 cm. Tree sizes ≤10 diameter at breast
height (D) were not considered for harvest. Sample trees were harvested from a minimum of four
different diameter classes for each of the four different forest types. This sampling strategy was
adopted because for certain forest types, trees were distributed up to maximum of four diameter
classes. Then selected trees were cut at ground level and total height (m) was measured. After felling,
tree components were separated in to leaf, branch, and bole, and fresh weight of each component was
measured in the field with a digital balance. Sub-samples (1 kg) of each component were collected,
taken to the laboratory and dried at 65 °C until a constant weight was reached. Then, the fresh weight
to dry weight ratio was used to compute the dry mass of the total tree.
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Table 1. Dominant and co-dominant tree species sampled for the present study.

Forest Types Altitudinal Range (Meters) Species

Alpine Temperate >3500 Data not available for this study

Sub-Tropical Pine 1000–3500 Pinus kesiya Royle ex Gordon, Pinus roxburghii
Sarg.

Sub-Tropical Broad Leaved 900–1900

Schima wallichii Reinw. ex Blume, Quercus
oblongata D. Don, Ficus benghalensis L., Machilus
gamblei King ex Hook.f., Mallotus philippensis
(Lam.) Muller.-Arg., Myrica sapinda Wall.,
Terminalia myriocarpa Van Heurck & Mull.,
Terminalia chebula (Gaertn) Retz, Toona ciliata M.J.
Roem, Juglans regia L., Alnus nepalensis D. Don

Tropical Wet Evergreen Up to 900
Tectona grandis L.f., Macaranga denticulata (Blume)
Muller. -Arg., Mesua ferrea L., Dipterocarpus
turbinatus C.F.Gaertn

Tropical Semi-Evergreen Up to 600

Albizia procera (Roxb.) Benth., Syzygium cumini
(L.) Skeels, Macaranga peltata (Roxb.) Muller.
-Arg., Bauhinia variegata L., Artocarpus chama Buch.
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2.3. Model Development

Development of an empirical biomass model is subject to the use of appropriate independent
variables and covariates that are likely to influence biomass and the chosen variables. Although the
selection of independent variables still remains a matter of debate [17], D and total tree height (H)
are the most commonly used variables when developing BEMs [16,17]. The compound forms of D
and H with or without wood density (δ) are also widely used in BEMs [13,19]. The conventional
approach in the development of BEMs has been to use models with only fixed effects, i.e., without
considering covariates. As biomass estimates may vary not only with the fixed effects, but also
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covariates such as forest type, stand density, site quality, competition, etc., it is important to include such
covariates as sources of additional variation in the model. In this study, we used both conventional and
a linear mixed modeling (LMM) framework where covariates are considered in model development.
The general form of the LMM model is given as:

Yi = βXi + uiZj + εi. (1)

where Yi is the n-dimensional response vector, β is the p-dimensional parameter vector for fixed-effects,
Xi is the nxp design matrix for fixed-effects, ui is the q-dimensional vector of parameters for random
effects; Zi is the nxq design matrix for random-effects, εi is the n-dimensional error vector [36]. It is
assumed that the expectation (E) is E(εi) = E(ui) = 0, and the variances (V) and co-variances (Cov)
are: Var(ui) = Ri, Var(ui) = Di, Cov(εi, ui) = 0, respectively. Furthermore, εi and ui are assumed to be
normally distributed as: εi ~ N(0,Ri) and ui ~ N(0,Di) [36].The rationale for the LMM is that both the
fixed and random parameters can be entered in the model simultaneously, thus providing consistent
estimates of parameters and their standard errors than the conventional method [37].

In this study, we had only information on forest type, but information was lacking on stand
density, site quality and competition. Initially, we entered a random intercept and forest type as
random effects in the model, but this created problem with convergence of algorithms and testing the
significance of the random intercept. Although convergence criteria were met, the final hessian was
not positive definite when the intercept was entered as a random effect. Therefore, we used only forest
type as the random effect. Here, four forest types, namely, sub-tropical pine, sub-tropical broad leaved,
tropical wet evergreen and tropical semi-evergreen forest were considered in the model.

Both the conventional and LMM versions of four commonly used BEMs [17] were compared here.
In the conventional framework, the four models are formulated as follows:

Model 1: ln(AGB) = ln(a) + bln(D) + ε;
Model 2: ln(AGB) = ln(a) + bln

(
D2H

)
+ ε;

Model 3: ln(AGB) = ln(a) + bln
(

D2Hδ
)
+ ε;

Model 4: ln(AGB) = ln(a) + bln(D) + cln(H) + dln(δ) + ε

where AGB is total above-ground biomass in kg dry matter tree−1, a is the intercept, b, c and d are
slope parameters, D is diameter at breast height in centimeters, H is total height in meters, δ is wood
density (or specific gravity) in kg m−3 and ε is the random error. In all models we had H measurements,
but δ was obtained from Global Wood Density Database [38]. Upon back transformation, each model
was multiplied with a correction factor (CF) estimated from the residual variance or mean square error
(MSE) using the formula CF = exp(MSE/2) [39]. The CF accounts for the back transformed of the error
and a step in log-transformed data in BEMs [17].

In the LMM framework, the models were formulated as follows:

Model 1: ln(AGB) = ln(a) + bln(D) + uF + ε;
Model 2: ln(AGB) = ln(a) + bln

(
D2H

)
+ uF + ε;

Model 3: ln(AGB) = ln(a) + bln
(

D2Hδ
)
+ uF + ε;

Model 4: ln(AGB) = ln(a) + bln(D) + cln(H) + dln(δ) + uF + ε

where AGB, D, H, δ, a, b, c, d and ε are defined as in the conventional. The added quantity is the
parameter u, which is the random effect of forest type (F). In all LMM models, it is assumed that u and
ε are uncorrelated, random and normally distributed variates with mean 0 and variance of 1. In these
models, there are two variance components; the variance associated with the random effect (σ2

u) and
the residual variance (σ2

ε ).
To ensure comparability of parameters, we estimated parameters of both the conventional and

LMM models using the PROC MIXED procedure in the SAS system. The SAS codes used for estimation
of parameters of the conventional and LMM models are given in Tables A1 and A2, respectively. PROC
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MIXED uses the restricted maximum likelihood (REML) estimation method. The REML method is
known to produce consistent estimates of the variance-covariance matrix [37] and asymptotic standard
errors of the covariance parameter estimates.

The performance of the different models was assessed using the bias-corrected Akaike information
criterion (AICc) and the coefficient of determination (R2). In the LMM framework, the R2 is
not routinely estimated due to theoretical problems in its definition and practical difficulties in
implementation [40]. As such, PROC MIXED does not normally report it. Therefore, R2 was estimated
as: R2 = 1 − RVm/RVi, where RVm is the residual variance of the full model, and RVi is the residual
variance of empty (intercept-only) model [40].

LMMs are based on the theory of empirical best linear unbiased predictors (EBLUPs) of the
random effects and the best linear unbiased estimates (BLUEs) of the fixed effects [37]. The advantage
of EBLUPs estimation is that it does not require normality of the random effects [41]. As such, LMMs
provide an efficient approach to small area (or domain) estimation by incorporating random effects
that account for dissimilarities between domains (forest type in our analysis). Taking advantage of
this property, localized AGB predictions that are specific to each forest type were generated using the
intercepts of the different forest types for the two highly ranked LMM model. Finally, the standardized
residuals generated using the linear mixed effects model were plotted against the independent values
to check for heteroscedasticity in residuals. Outliers were detected by checking the studentized
residuals, and values below −2 or +2 were considered as outliers [17]. Heteroscedasticity will typically
be manifested as residuals whose magnitude is correlated with that of the response variable and a plot
of the residuals against the predicted values will reveal a megaphone pattern if the errors are not
homogenous [17].

2.4. Model Validation

Cross validation is usually recommended to determine how accurately BEMs will perform when
applied to an independent dataset. Usually 5-fold or 10-fold cross validation provides a good balance
between bias and variance [17]. Therefore, a 10-fold cross-validation was employed to evaluate the
predictive performance of the four selected models. The goodness of fit criteria was calculated for
the validation dataset using the lava and forecast packages of the R package (Appendix A Table A3).
Specifically, the adjusted coefficient of determination (Adj R2), root mean square of error (RMSE), the
AICc and Bayesian information criterion (BIC) were estimated from the 10-fold cross validation using
the forecast packages of R (see Appendix A).

2.5. Comparison with Generic Models

We also compared our highest ranked LMM model with the following commonly used generic
models developed by Brown et al. (1989) [30], Chamber et al. (2001) [31], Chave et al. (2005) [16]
and Chave et al. (2014) [19] for broadly defined forest types. We chose these models for comparison
with our own models because they are commonly used for biomass estimation in NEI by previous
researchers [26–29].

Chamber’s model is given as

AGB = exp
⌊
−0.370 + 0.333lnD + 0.9333lnD2 − 0.122lnD3

⌋
(2)

The model proposed by Brown et al. (1989) for tropical regions is:

AGB = 13.2579− (4.8945D) + 0.6713D2 (3)

Chave’s model 1 was based on his equation for tropical wet forests (Chave et al. 2005) given as:

AGB = 0.0776
(

ρD2H
)0.940

(4)
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Chave’s model 2 is Equation (4) of Chave et al. (2014) said to be the best-fit pan tropical model. It is
given as:

AGB = 0.0673
(

ρD2H
)0.976

(5)

We determined the appropriateness of these generic models by comparing with our highest ranked
model using the R2, RMSE, relative prediction error (Error), mean absolute percentage error (MAPE)
and AICc. We also compared the 95% CI (confidence interval) of the slopes (b) of the regression of
measured against fitted values to assess whether or not significant prediction errors exist. If significant
prediction errors exist b 6= 1, and the 95% CI of b will not cover 1 [17].

3. Results

Parameter estimates of models 1–4 generated using the conventional method and the linear mixed
effects modeling (LMM) framework are given in Table 2. The AICc and adjusted R2 show that models
1–4 fitted using LMM are superior to those fitted using the conventional method (Table 2). Therefore,
all inferences hereafter will be based on the models fitted using the mixed effects framework. Estimates
of the covariance parameters for the different LMM models are given in Table 3. In all models the
variance of random effect was not significantly different from zero, while the residual variance was
significantly larger than zero (Table 3). The largest residual variance was recorded in Model 2.

Table 2. Comparison of models fitted using the conventional (CONV) method with models fitted
within a linear mixed effects (LME) framework where forest type was used as a random effect. The
Akaike information criterion (AIC), adjusted R2 (Adj R2) and RMSE were used for comparing CONV
with LMM.

Model Parameters Adj

Model ln(a) (SE) † b (SE) c (SE) d (SE) AIC ‡ R2 RMSE

1 CONV −2.12 (0.34) 2.32 (0.10) 769 0.62 0.851
LME −1.73 (0.45) 2.16 (0.10) - 705 0.705 0.749

2 CONV −2.30 (0.35) 0.82 (0.04) 771.7 0.619 0.852
LME −1.64 (0.44) 0.74 (0.04) - 734.5 0.675 0.785

3 CONV −1.83 (0.32) 0.82 (0.04) 770.3 0.621 0.850
LME −1.25 (0.43) 0.75 (0.04) - 725.7 0.685 0.773

4 CONV −2.12 (0.39) 2.00 (0.16) 0.43 (0.16) 0.37 (0.34) 763.2 0.627 0.842
LME −1.21 (0.49) ns 2.22 (0.16) −0.08 (0.16) ns 0.87 (0.30) 698.8 0.710 0.740

† Figures in parentheses are asymptotic standard errors (SE) of parameter estimates; ‡ AIC values in bold face
indicate the better model when the conventional was compared with LMM; ns: not significant: Note: Model 1:
ln(AGB) = ln(a) + b*ln(D); Model 2: ln(AGB) = ln(a) + b*ln(D2H); Model 3: ln(AGB) = ln(a) + b*ln(D2Hδ); Model 4:
ln(AGB) = ln(a) + b*ln(D) + c*ln(H) + d*ln(δ).

Table 3. Estimates of covariance parameters and their significance for the different models.

Model § Covariance Parameter Variance Estimate Z Value † p Value ‡

1 Forest 0.38 (0.32) 1.18 0.1187
Residual 0.56 (0.05) 12.21 <0.0001

2 Forest 0.30 (0.26) 1.16 0.1236
Residual 0.62 (0.05) 12.20 <0.0001

3 Forest 0.33 (0.28) 1.17 0.1218
Residual 0.60 (0.05) 12.20 <0.0001

4 Forest 0.45 (0.38) 1.18 0.1182
Residual 0.55 (0.05) 12.16 <0.0001

† The Z value is the Wald Z-test for covariance parameter estimates; ‡ p value represents the significance of the Z
test of the hypothesis that the variance of the effect is 0; § Specification of models is as in Table 2.

Table 4 provides goodness-of-fit statistics of the cross validation of models 1–4. Models 1–3
were indistinguishable in terms of RMSE, AICc, BIC and R2 (Table 4). Although the cross-validation
goodness of fit criteria indicates that model 4 is the best, the mixed model analysis revealed that
parameters a and d in Model 4 are not significantly different from zero. Therefore, Model 3, the one
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with the next smaller RMSE, AICc and BIC, was chosen as the best model. Model 3 is given as
AGBest = 0.32(D2Hδ)

0.75× 1.34 in the arithmetic domain where 1.34 is the correction factor. The second
best option would be the power law model given as AGBest = 0.18D2.16 × 1.32 in the arithmetic
domain. The AGB values predicted using the different models are shown in Figure A1. In all models,
the residuals did not reveal heterogeneity of variance (Appendix A Figure A1).

The LMM estimates of the intercept (and SE) of Model 3 were −1.01 (0.34) for sub-tropical pine,
−0.83 (0.36) for sub-tropical broad leaved, −1.10 (0.31) for tropical wet evergreen, and −2.08 (0.31)
for tropical semi evergreen forest. The predictions produced using these estimates for each forest
type are presented in Figure 2. For Model 1, the forest type-specific intercept were −1.34 (0.34) for
sub-tropical pine, −1.46 (0.37) for sub-tropical broad leaved, −1.49 (0.31) for tropical wet evergreen,
and −2.64 (0.32) for tropical semi-evergreen forest, and corresponding the predictions for each forest
type are presented in Figure 3. The discrepancies in predictions between the conventional and the
LMM models were largest in tropical wet evergreen forest (Figure 2d), and the discrepancies increased
with tree diameter (Figure 3a). On the other hand, the smallest discrepancy was observed in tropical
semi-evergreen forest subtropical pine forest (Figures 2d and 3d).

Table 4. Comparison models using cross validation goodness of fit criteria including the adjusted
coefficient of determination (Adj R2), root mean square of error (RMSE), the bias-corrected Akaike
information criterion (AICc) and Bayesian information criterion (BIC).

Model Adj R2 RMSE AICc BIC

1 0.62 0.728 −93.7 −82.7
2 0.62 0.729 −93.1 −82.0
3 0.62 0.726 −94.4 −83.4
4 0.63 0.713 −98.5 −83.8

Note: Model 1: ln(AGB) = ln(a) + b*ln(D); Model 2: ln(AGB) = ln(a) + b*ln(D2H); Model 3: ln(AGB) = ln(a) +
b*ln(D2Hδ); Model 4: ln(AGB) = ln(a) + b*ln(D) + c*ln(H) + d*ln(δ).

Table 5. Comparison of the predictions of our highest rated model with the generic models using the
various goodness of fit criteria and the slope (b) of the measured above ground biomass (AGB) with
the fitted values.

Model R2 RMSE Error MAPE AICc b (95% CL)

Our highest rated model 0.869 141 197.4 235.7 3001.8 1.06 (1.01–1.11)
Chamber’s model 0.870 140 591.4 595.4 2997.9 0.33 (0.32–0.35)

Brown’s model 0.848 151 303.6 314.8 3045.7 0.59 (0.56–0.61)
Chave’s model 1 0.829 161 299.6 313.2 3081.8 0.42 (0.40–0.45)
Chave’s model 2 0.821 165 372.8 382.7 3096.5 0.32 (0.31–0.34)

With high R2 and low AICc, RMSE and MAPE values, our highest rated model was also superior
to the generic model developed by Brown and the two pan-tropical models developed by Chave
(Table 5). Although our highest rated model was comparable with Chamber’s model in terms of R2,
AICc, and RMSE, it was superior in terms of MAPE and prediction error (Table 5). With b < 1 all the
generic models also have significant prediction errors (Table 5). Compared to our highest rated model,
Chamber’s model and Chaves model 2 severely overestimated AGB especially for trees with DBH
exceeding 40 cm (Figure 4a). The largest average deviation from our model prediction (595.5 kg tree−1)
was recorded with Chamber’s model, while the lowest (191.4 kg tree−1) was recorded with Brown’s
model (Figure 4b). However, the deviations increased with increasing tree diameter (Figure 3b).
Irrespective of tree diameter, when errors in estimation were evaluated, Chamber’s, Brown’s, Chave
Model 1 and Chave Model 2 overestimated biomass stock by 591.4, 303.6, 300 and 372.8 kg tree−1,
respectively, while our highest rated model overestimated biomass stock by 197.4 kg tree−1.
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Figure 2. The observed AGB (open circles) and fitted lines for the four forest types produced using the
highest rated model (Model 3) in the arithmetic domain. The dashed fitted lines represent predictions
produced using the conventional (CONV) method, while the smooth lines represent predictions
produced using the LMM procedure.
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Figure 3. The observed AGB (open circles) and fitted lines for the four forest types produced using
the second highest rated model (Model 1) in the arithmetic domain. The dashed fitted lines represent
predictions produced using the conventional (CONV) method, while the smooth lines represent
predictions produced using the LMM procedure.
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Figure 4. Comparison of models using (a) fitted values and (b) departures from our highest rated
model across values of tree diameter at breast height (DBH).

4. Discussion

Our analysis indicated that models 1–4 fitted using the LMM approach is superior to those fitted
using the conventional method. This is probably because mixed effects models can account for the
clustered or nested structure of data in forestry. Interestingly, the discrepancies in predictions between
the conventional and the LMM models were large in tropical wet evergreen forest.

Our analysis also indicated that the models with wood specific gravity (Model 3 and 4) fitted the
data better than models without it although wood specific gravity was obtained from the literature.
This is in disagreement with analyses by Stegen [42] that shows inconsistent relationship between
forest biomass and wood specific gravity. Although recent analysis has also shown that wood specific
gravity has a very weak contribution to AGB [43,44], we believe its inclusion can improve prediction.
The use of fewer explanatory variables has been recommended for ease in model application and
validation [17]. In the present study D and H were directly measured and could be included in BEMs.
In the study area model 3 was found to be more appropriate than Model 1, 2 and 4. Although the cross
validation shows that Model 4 is slightly better than Model 3, parameters a and c of Model 4 were not
significantly different from zero. Therefore, Model 4 cannot be reliably used for predictive purposes.
The limitation of our highest rated model is that it requires H and δ data, which are often not available
in many situations. In situations where measured height (H) and wood density (δ) are lacking, second
highest rated model, i.e., AGBest = 0.18D2.16 × 1.32, may be used for biomass estimation in NEI.

Although species-specific BEMs have often been applied across multiple sites, they are not
necessarily applicable to other species, especially those with differing wood densities [16] and plant
functional types [45]. The generic models [16,19,30,31] currently in use in NEI severely overestimated
the biomass stock when applied to our dataset. This suggests that our model is better suited for
AGB estimation for diverse forest types in NEI. The differences in biomass stock estimation between
our highest rated model and the generic models may be attributed to differences in the forest types.
The generic models were widely used because of the high goodness of fit to the sample data used
to develop them. Models usually have a grossly inflated performance in-sample compared to their
performance in follow-up studies. This is called the winner’s curse [46] in statistics literature. It must
be noted that a good model fit does not necessarily translate into good predictions of AGB at the
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landscape level or outside the study area [47]. The ability of a model to describe the data at hand
(in sample fit) is sometimes confused with predictive power (out-of-sample fit). The value of cross
validation is to avoid bias in predictions of biomass [45]. Cross validation also provides a better
method for model assessment as it estimates how accurately a model will perform when applied to
an independent dataset. It will also curtail problems such as over-fitting [17]. Therefore, we caution
against overdependence on generic models without validating their suitability in new areas.

5. Conclusions

Availability of appropriate biomass models for species-diverse forest ecosystems was a major
constraint in the study of C balance in NEI. The models developed in the present study can be applied
for multi-site and multi-species evaluation of stand biomass and C assessment at local and regional
scale. Such models can also find application in studies of plant community and forest structure,
and remote sensing methods. Future studies may incorporate harvest data from Alpine zone with
larger data set for country scale estimation and validation. We also recommend future studies to
address country scale estimation of forest biomass covering different forest types.
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Appendix A

Table A1. PROC MIXED codes for estimating parameters of the conventional models.

/*Code for fitting Model 1*/
Proc mixed data = Biomass method = REMLcovtest ratio ic;
Class Forest;
Model lnAGB = lnD/solution outp = check cl;
Run;

/*Code for fitting Model 2*/
Proc mixed data = Biomass method = REMLcovtest ratio ic;
Class Forest;
Model lnAGB = lnDDH/solution outp = check cl;
Run;

/*Code for fitting Model 3*/
Proc mixed data = Biomass method = REMLcovtest ratio ic;
Class Forest;
Model lnAGB = lnWDDH/solution outp = check cl;
Run;

/*Code for fitting Model 4*/
Proc mixed data = Biomass method = REMLcovtest ratio ic;
Class Forest;
Model lnAGB = lnDlnHlnW/solution outp = check cl;
Run;

Table A2. PROC MIXED codes for estimating parameters of the LMM models.

/*Code for fitting Model 1*/
Proc mixed data = Biomass method = REMLcovtest ratio ic;
Class Forest;
Model lnAGB = lnD/solution outp = check cl;
Random Forest;
ESTIMATE “1” intercept 1| Forest 1;
ESTIMATE “2” intercept 1| Forest 0 1;
ESTIMATE “3” intercept 1| Forest 0 0 1;
ESTIMATE “4” intercept 1| Forest 0 0 0 1;
Run;

/*Code for fitting Model 2*/
Proc mixed data = Biomass method = REMLcovtest ratio ic;
Class Forest;
Model lnAGB = lnDDH/solution outp = check cl;
Random Forest;
ESTIMATE “1” intercept 1| Forest 1;
ESTIMATE “2” intercept 1| Forest 0 1;
ESTIMATE “3” intercept 1| Forest 0 0 1;
ESTIMATE “4” intercept 1| Forest 0 0 0 1;
Run;

/*Code for fitting Model 3*/
Proc mixed data = Biomass method = REMLcovtest ratio ic;
Class Forest;
Model lnAGB = lnWDDH/solution outp = check cl;
Random Forest;
ESTIMATE “1” intercept 1| Forest 1;
ESTIMATE “2” intercept 1| Forest 0 1;
ESTIMATE “3” intercept 1| Forest 0 0 1;
ESTIMATE “4” intercept 1| Forest 0 0 0 1;
Run;

/*Code for fitting Model 4*/
Proc mixed data = Biomass method = REMLcovtest ratio ic;
Class Forest;
Model lnAGB = lnDlnHlnW/solution outp = check cl;
Random Forest; ESTIMATE “1” intercept 1| Forest 1;
ESTIMATE “2” intercept 1| Forest 0 1;
ESTIMATE “3” intercept 1| Forest 0 0 1;
ESTIMATE “4” intercept 1| Forest 0 0 0 1;
Run;
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Table A3. R scripts for the four models.

Model1<-lm(lnAGB ~ lnD, data = Biomass_data)
Model2<-lm(lnAGB ~ lnDDH, data = Biomass_data)
Model3<-lm(lnAGB ~ lnWDDH, data = Biomass_data)
Model4<-lm(lnAGB ~ lnD + lnH + lnW, data = Biomass_data)

The R script for cross validation using 10-fold using the lava packages:
cv(list(Model1, Model2, Model3, Model4), k = 10, data = Biomass_data)

Various goodness of fit indices were calculated using the following codes using the “forecast” package of
R:
Model1_results < -t(data.frame(CV(Model1)))
Model2_results < -t(data.frame(CV(Model2)))
Model3_results < -t(data.frame(CV(Model3)))
Model4_results < -t(data.frame(CV(Model4)))
Model_results < -rbind(Model1_results, Model2_results, Model3_results, Model4_results)
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Figure A1. The observed AGB (open circles) and fitted values (smooth lines) using models 1–4 in the
arithmetic domain.
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