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Abstract: Evergreen trees play a significant role in urban ecological services, such as air purification,
carbon and oxygen balance, and temperature and moisture regulation. Remote sensing represents
an essential technology for obtaining spatiotemporal distribution data for evergreen trees in
cities. However, highly developed subtropical cities, such as Nanjing, China, have serious land
fragmentation problems, which greatly increase the difficulty of extracting evergreen trees information
and reduce the extraction precision of remote-sensing methods. This paper introduces a normalized
difference vegetation index coefficient of variation (NDVI-CV) method to extract evergreen trees
from remote-sensing data by combining the annual minimum normalized difference vegetation index
(NDVIann-min) with the CV of a Landsat 8 time-series NDVI. To obtain an intra-annual, high-resolution
time-series dataset, Landsat 8 cloud-free and partially cloud-free images over a three-year period
were collected and reconstructed for the study area. Considering that the characteristic growth of
evergreen trees remained nearly unchanged during the phenology cycle, NDVI,n-min is the optimal
phenological node to separate this information from that of other vegetation types. Furthermore, the
CV of time-series NDVI considers all of the phenologically critical phases; therefore, the NDVI-CV
method had higher extraction accuracy. As such, the approach presented herein represents a more
practical and promising method based on reasonable NDVI,nn-min and CV thresholds to obtain spatial
distribution data for evergreen trees. The experimental verification results indicated a comparable
performance since the extraction accuracy of the model was over 85%, which met the classification
accuracy requirements. In a cross-validation comparison with other evergreen trees’ extraction
methods, the NDVI-CV method showed higher sensitivity and stability.

Keywords: coefficient of variation; evergreen trees; NDVI; remote sensing; time-series

1. Introduction

As part of the subtropical urban ecosystem, evergreen trees play an irreplaceable role in ecological
service functions such as carbon fixation and oxygen release, air purification, temperature and moisture
regulation, and soil and water conservation [1]. Compared with deciduous trees, the average carbon
sequestration capacity per unit area of evergreen trees exceeds 0.6 g/m?-d, and the dust retention
capacity is several-fold to dozens of times higher [2,3]. At the same time, evergreen trees increase
the relative humidity of the air over forest land by 7% compared with that over non-forest land in
winter [4], effectively improving the urban microclimate. In addition, the aesthetic value of evergreen
trees in urban areas should not be ignored. Evergreen trees effectively fill the gaps in the urban
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vegetation landscape when deciduous trees enter dormancy in winter. However, the ecological and
landscape values of evergreen trees vary according to their spatiotemporal distribution; the differences
therein have an effect on growth status analyses, the overall planning of urban vegetation, and urban
ecological environmental management. For air purification in the center of a city, urban evergreen trees
play a greater role than evergreen trees far from the urban area. Moreover, from the perspective of the
evolution of time dynamics, young trees whose growth requires more organic matter have a stronger
carbon fixation capacity than mature trees [5]. Therefore, it is necessary to obtain spatiotemporal
distribution information on urban evergreen trees.

Currently, urban green-space planning management is uncoordinated in most parts of China,
which leads to inaccurate information regarding the distribution of evergreen trees [6]. Meanwhile,
traditional forest survey methods are time-consuming and laborious, and the accuracy of the
information is poor [7]. Remote sensing offers an efficient means to obtain characteristic vegetation
information, as the method can be used repeatedly to monitor large areas in a short amount of time
with low cost [8-10].

Existing vegetation information extraction methods based on remote sensing can be categorized
into two types. The first type extracts the required characteristic vegetation information by
remote-sensing classification based on the spectral characteristics of ground object imagery in key
phenological periods [11-17]. Due to the convenience provided by obtaining data using a single-phase
classification method, this approach has been used widely in a regional land-use classification
research [18-20]. In general, different types of vegetation on the underlying surface have similar
spectral characteristics. For example, there is some spectral confusion between forest plantations and
farmland, as a result of the regular planting shape [21]. Consequently, the single-image classification
method has some uncertainty associated with its findings.

The second remote-sensing type involves extracting vegetation information using multi-temporal
or time-series remote-sensing data according to the growth characteristics of vegetation throughout the
phenological cycle [22-29]. This method simultaneously utilizes the multi-spectral and multi-temporal
information of remote-sensing images, and makes full use of the characteristic vegetation phenology
change, improving the extraction accuracy. Additionally, this approach relies on continuous time-series
remote-sensing datasets. For example, the revisiting period of MODIS (Moderate Resolution Imaging
Spectroradiometer) is short, on the order of one to two days, which enables the continuous monitoring
of the global land surface; as such, it has become the main data source for time-series vegetation
extraction. The low spatial resolution of MODIS data is generally suitable for the extraction of
forest or crop information on a large scale or for areas with simple land-cover types [30]. However,
the classification accuracy is usually low for areas with complex vegetation types [31,32]. In contrast,
Landsat’s resolution (30 m) meets the accuracy requirements for vegetation classification. However,
due to the long revisiting period (16 days), the data are more easily affected by cloud cover, which
limits time-series continuity [33,34]. Regarding these issues, many researchers have attempted to
obtain high spatial resolution and multi-temporal remote-sensing images by means of multi-source
data fusion. However, the existing data fusion approaches fill the gaps in values from neighboring
available pixels by assuming that different periods of satellite imagery have unchanged land-cover
types, thus contradicting the purpose of identifying land-cover changes over time [35-37].

In the last 10 years, some researchers have made use of vegetation indices such as the normalized
difference vegetation index (NDVI), the enhanced vegetation index (EVI) [38], and the land surface
water index (LSWI), which are based on time-series images for monitoring evergreen forests on a
large scale [39-42]. Since the study areas were large or the complexity of the landscapes was low,
the mixed pixel problem has not been an issue in these studies. Thus, the data used in previous studies
were mainly based on MODIS time-series images [29,43]. Relatively speaking, highly developed
urban regions have more complex underlying vegetation types and more fragmented landscapes,
which generates serious spectral confusion and mixed pixel problems. As a result, neither the
single-date classification method nor time-series data with low spatial resolution can meet the accuracy
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requirements of evergreen tree extraction [40]. In addition, it is difficult to obtain continuous time-series
Landsat images with a suitable resolution, due to the rainy weather in subtropical regions.

In response to the problems described above, this study aims to combine annual minimum
normalized difference vegetation index (NDVIynn-min) values with the coefficient of variation (CV) of
NDVL Under the assumption that the spatial distribution of urban green space in the study area was
stable over a three-year period from 2015 through 2017, cloud-free and partially cloud-free intra-annual
and inter-annual Landsat images were acquired and reconstructed into an intra-annual time-series
dataset to obtain NDVI data with enhanced spatiotemporal resolution [44]. Moreover, the CV of the
NDVl is a precise parameter that highlights fluctuations in vegetation growth cycles and vegetation
coverage, especially those regarding the growth characteristics of evergreen trees [45]. Therefore,
the proposed approach effectively reduces the impact of mixed pixel problems on model accuracy
assessment. Furthermore, land-use type extraction based on the time-series of remote sensing images
has become the mainstream trend of remote sensing monitoring.

The objective of this paper is to develop a new method to obtain accurate spatial distribution
information on evergreen trees in subtropical urban areas by using the CV of time-series NDVL
To test the accuracy of the proposed method in determining the spatial distribution of evergreen
trees, we selected a typical subtropical city, Nanjing, China, as the study area. Our results indicate
that the proposed method is capable of extracting evergreen trees from subtropical urban areas with
high precision, thus providing a reliable basic dataset for the assessment of the ecological benefits of
urban vegetation.

2. Materials and Methods

2.1. Study Area

The study area of Nanjing is located in southeastern China and southwestern Jiangsu Province,
centered at latitude 32.06° N and longitude 118.80° E. The total land area is 6597 km?, and the
distribution of major land-use types in Nanjing includes built-up areas, farmland, forest land, water,
and grassland, as shown in Figure 1. The overall terrain of the region is relatively gentle, with a
maximum elevation of about 300 m. The climate of Nanjing is a typical subtropical monsoon,
with abundant precipitation (average annual precipitation: 1200 mm) and four distinct seasons.
The average daily temperature ranges of summer and winter seasons in Nanjing are 20-29 °C and
2-11 °C, respectively [46]. As early as 2002, the Municipal Government made the strategic decision
to build a “green Nanjing”. The goal was to build a modern urban greenspace, which was described
as “landscape, urban and forest integration, ecological and economic win-win, harmonious human
landscape, urban and rural coordination.” At present, the forest has become the most important
resource in Nanjing, with ecology promotion as its biggest advantage. The urban tree coverage area
has reached more than 31.2% of the total area (http://www.njyl.gov.cn/). Evergreen trees are an
important part of the green ecological network system, due to their unique ecological and landscape
aesthetic value. The evergreen tree species in Nanjing mainly include typical subtropical, evergreen
broad-leaved tree species such as Magnolia, camphor, and evergreen coniferous trees (Pinus massoniana
and yew). The highest proportion of evergreen shrub vegetation in Nanjing is Osmanthus.
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Figure 1. Location of the study area showing the land-use types obtained from GlobeLand 30 in 2010.
2.2. Methodology Flowchart

The detailed research process used in this study is shown in Figure 2. First, the remote-sensing
images were preprocessed. The processed data were then used for model construction. The model was
simulated with high-resolution imagery to determine a reasonable threshold for the parameters. Finally,
the accuracy of the experimental results was evaluated to verify the feasibility of the method [47].
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Figure 2. Flowchart of subtropical evergreen tree mapping and accuracy assessment. TM = Thematic
Mapper; NDVI = normalized difference vegetation index; CV = coefficient of variation.
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2.3. Data Selection and Reconstruction

Landsat 8 Thematic Mapper (TM) images (Path 120, row 38) for 2015-2017 with at least partially
cloud-free imagery were downloaded from the United States Geological Survey Global Visualization
Viewer website (http://glovis.usgs.gov/). Images acquired for this study were processed for
atmospheric correction and geometric correction Level 2 T [48]. Twenty-four images constituted
the original dataset, with a median of eight images per year (range: seven to 10 images per year).
Two images were selected from each month (Table 1).

Nanjing is located in the subtropical zone, and is highly susceptible to precipitation, making
it difficult to obtain continuous cloud-free images within a single year. During the three studied
years (2015-2017), the spatial and temporal distribution of the urban green space remained virtually
stable [49]. Thus, we assumed that the difference in vegetation coverage in the same month of different
years (i.e., June 2015 and June 2017, September 2015 and September 2017, etc.) would be negligible,
and used images obtained over three years to reconstruct the intra-year NDVI time-series dataset.
The NDVI was calculated for each image date [(B5—B4)/(B5+B5)], which was originally developed
by Rouse and applied by Tucker [50,51]. The maximum NDVI value was selected for two images in
the same month, using the maximum value composites (MVC) method to minimize cloud shadow
features [52]. The MVC method is an effective way of eliminating the undesirable influences of cloud
cover, atmospheric constituents, and aerosol concentrations by retaining the highest value for each
pixel location of several NDVI images [53]. Ultimately, we obtained 12 intra-annual continuous NDVI
time-series images (one image per month). The time-series dataset was used to obtain the annual
minimum NDVI (NDVI,n-min) and CV values.

Table 1. Acquisition dates of Landsat 8 images.

Year Image Acquisition Date

2015 21 January 13 May 14 June
2016 9 February 28 March ég igﬁ

2017 26 January 27 February 15 March 18 May 3 June
2015 17 August 2 September 20 October 5 November

2016 20 September 9 December
2017 251 ]]uil}; 6 August 9 October 26 November 12 December

2.4. Evergreen Tree Extraction Model

The evergreen tree extraction model (NDVI-CV) consisted of two parts: the NDVI,nn-min and the
CV of the NDVI time series. The CV reflects the degree of difference or dispersion of the overall unit
marker values. The CV of the NDVI is the ratio of the standard deviation to the mean of the NDVI
time series for each pixel. In a growth cycle, a smaller CV value for the NDVI time series indicates
smoother seasonal fluctuations in the vegetation growth. The standard deviation of the time-series
images ¢ and the average of the time-series images y used to calculate the CV of a single pixel are
given in Equations (1) and (2), respectively [45]:

n

1 ! 2
o= |- mz_:l(NDVI)m—<

2
NDVIm> 1)

m=1

n

p= Y (NDVI),/n )

m=1
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where NDVI,;, is the NDVI value of image m, and n is the total number of images over the year. The CV
calculation formula of the pixel for row 7 and column j is given by:
0, ij
COVZ']' = — (3)
Hij

2.5. Model Threshold Analysis

The selection of reasonable NDVI,,n.min and CV thresholds are key steps in the proposed
method [54]. Compared with the NDVI curves of deciduous trees, farmland, and mixed trees, evergreen
trees are the most stable, with the smallest CV value (0.082). Moreover, evergreen trees had the highest
NDVIynn-min value, above 0.6, as shown in Figure 3. Combining the NDVI,nn-min and CV values to
extract pure evergreen forest pixels was a relatively simple process. However, choosing reasonable
CV and NDVI,n-min thresholds for extracting evergreen trees from mixed pixels is difficult. For the
purposes of simplifying the problem of mixed pixels, here we define a pixel (30 m x 30 m) as “evergreen
trees” if the majority of its area (50% or greater) is covered by evergreen trees [55].
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Figure 3. Different vegetation pixels of the time-series variation of Landsat 8-derived normalized
difference vegetation index (NDVI) curves (left), and the coefficient of variation (CV) value and annual
minimum NDVI (NDVI,,n-min) Value corresponding to each curve (right).

To extract evergreen trees in mixed pixels, the relationship between the CV value and the
proportion of evergreen trees was analyzed, as shown in Table 2. In the mixed pixels of evergreen
and deciduous trees, as the proportion of evergreen trees increases, the CV value decreases. However,
the CV is invalid for distinguishing evergreen trees in the mixed pixels consisting of evergreen trees
and fallow land, because of the close CV value of the two (Figure 3). Therefore, the constraint of
NDVILnn-min is necessary for extracting the evergreen trees in the mixed pixels of evergreen trees and
fallow land.

Table 2. Relationship between the coefficient of variation (CV) and the weight of evergreen trees in
corresponding pixels. The CV value changes as the proportion of evergreen trees in the pixel changes.

CV Value 0.10 0.13 0.16 0.19 0.22
Proportion Evergreen trees 1 0.80 0.75 0.55 0.40
P Deciduous trees 0 0.20 0.25 0.45 0.50

The same analysis of the NDVI,nn-min threshold is shown in Table 3. NDVI,nn-min values of the
mixed pixels varied with the different compositions in the pixel (i.e., composite of evergreen trees
and deciduous trees or composite of evergreen trees and fallow land). As the proportion of evergreen
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trees changed, the change in the corresponding NDVI,ynmin Value differed between mixed pixels
of evergreen and deciduous trees (evergreen trees and fallow land). Therefore, the two cases were
considered separately in the threshold analysis (Table 3). By analyzing the percentage of evergreen
trees in mixed pixels, we estimated a preliminary CV value of <0.22 (Table 2) and an NDVI nn-min
value of ~0.48 (Table 3).

Table 3. Relationship between the annual minimum normalized difference vegetation index
(NDVI nn-min) and proportion of evergreen trees in corresponding mixed pixels. The NDVI,nn-min
value changes as the proportion of evergreen trees in the pixel changes.

NDVI,nn-min Value 0.40 0.44 0.48 0.52 0.56
Evergreen trees 0.1 0.2 0.5 0.8 0.9
Proportion Deciduous trees 0.9 0.8 0.5 0.2 0.1
P Evergreen trees 0.15 0.3 0.6 0.8 0.9
Fallow land 0.85 0.7 04 0.2 0.1

The percentage of evergreen trees within the pixel was validated by Google Earth high-resolution
images and field sampling. In addition, we selected 1926 sample sites (50 m x 50 m) in the Google
Earth images (Figure 4) and samples acquisition dates were shown in Table 4. 47 field samples based
on a stratified random method to verify the accuracy of the models.

118" 30'0"F 119° 0'0°E
118° 30 0"E 119° 0'0"E
Figure 4. Partial samples in the Google Earth images.
Table 4. Acquisition dates of samples.
Sampling date Samples in Google Earth images Field samples

December 2016 ~ February 2017 July 2017 October 2017 April 2018
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2.6. Comparative Analysis with Other Models

To verify the NDVI-CV model, a cross-comparison with the results of a previous model was
performed. In other studies, the most widely used model to extract evergreen forests was the LSWI
((oNIR — pSWIR)/(pNIR + pSWIR)) [43,56]; evergreen forest information was determined based on
the annual minimum LSWI threshold (LSWl,y;n). The LSWI curve fluctuations of different types of
vegetation during the growth cycle are similar to those of the NDVI. The LSWI curve of evergreen
trees is relatively stable, whereas the LSWI curves of farmland and deciduous trees fluctuate greatly.

Furthermore, we also compared the NDVI-CV method with another two indexes derived from
this paper: (1) the NDVI nn-min €vergreen tree extraction method (without CV constraints), and (2)
the single NDVI image extraction method in winter, i.e., NDVI,. In this study, the threshold of the
methodology was consistent with the threshold of the NDVI nn-min-

3. Results

3.1. Threshold Analysis Results

The relationship between a set of CV and NDVI,nn-min Values and the proportion of the evergreen
trees in mixed pixels was obtained (Figure 5). Parts of the CV and NDVI,nnmin Values were selected
and used in an example calculation (Tables 2 and 3). The results showed that the proportion of
evergreen trees gradually decreased with increasing CV values (Figure 5a), and increased with
increasing NDVI n-min (Figure 5b) values. When the proportion of evergreen trees exceeded 0.5,
the corresponding CV value should be <0.2. For mixed pixels formed by evergreen trees and deciduous
trees or evergreen trees and fallow land, the same NDVI value corresponded to different evergreen
tree ratios. Based on the simulation analysis results, the model CV threshold value should be <0.2,
and the NDVI,nn-min should be >0.48. Using the same threshold analysis method, we determined that
the threshold of LSWIy,, based on the data in this paper, should be greater than 0.14.

1.0 o T T T T T T T 1.0 T T T T T T T T
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Figure 5. Model threshold analysis results: variation in proportion of evergreen trees with changes in
(a) the CV in mixed pixels of evergreen trees and deciduous trees, and (b) the NDVI in two types of
mixed pixels composed of evergreen trees and another vegetation type.

3.2. Spatial Distribution of Evergreen Trees

Based on the threshold analysis, CV and NDVI,nn min thresholds were obtained to extract the
spatial distribution information of evergreen trees in Nanjing (Figure 6). The area of evergreen trees in
Nanjing is 342.33 km? according to the extraction result. Due to the green-space planning differences
in different districts, the distribution of evergreen trees varies greatly from one district to another.
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Evergreen trees are mainly distributed in four districts of Nanjing: Jiangning, Pukou, Gaochun, and
Lishui. The reason for this may be that these four districts include many hilly areas with concentrated
trees. Therefore, the distribution of evergreen vegetation is relatively wide. By contrast, there are fewer
evergreen trees in the central urban area and Liuhe District. In this case, the major land-use type in
the central urban area is commercial or residential land, whereas evergreen trees exhibit a scattered
distribution, making it more difficult to identify them. Additionally, due to its relatively flat terrain,
Liuhe District tends to be a major crop-growing area.
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Figure 6. Spatial distribution of evergreen trees in Nanjing.
3.3. Verification and Comparison of Models

We verified the classification accuracy of several models with Google Earth high-resolution images
(Table 5). According to a confusion matrix [57], the overall classification accuracy of the NDVI-CV
model was up to 93%; meanwhile, the user accuracy and producer precision [58] exceeded 92% and
85%, respectively. The classification accuracy of several models according to the field samples is
described in Table 6. The overall classification accuracy of the NDVI-CV was 87%; this was the highest
accuracy value among the models considered.

Compared with other models, NDVI-CV has the highest classification accuracy. Although the
NDVIinn-min and LSWIpi, are based on time-series methods, these two models extract evergreen trees
by determining only the minimum value of the time series, which is still derived from a single image.
Moreover, the NDVIi, model is derived from a single-phase image, whose classification accuracy can
be predicted to be very low. In general, the NDVI-CV of a time series is more effective and stable.
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Table 5. Comparison of high-resolution image verification accuracy. LSWI: land surface water index.

Model Class (pixels) Evergreen Trees Others Producer Accuracy

Evergreen trees 565 47 92.3%
Others 98 1226 93.3%

NDVI-CV Overall accuracy

User accuracy 85.2% 96.3% o

93.0%
Evergreen trees 471 141 76.9%
Others 209 1105 84.1%

LSWhnin U Opverall accuracy

ser accuracy 80.0% 81.5%

80.8%
Evergreen trees 540 72 88.2%
Others 1173 141 89.3%

NDVlann-min Opverall accuracy

User accuracy 82.7% 93.7% o

90.0%
Evergreen trees 417 195 68.2%
Others 770 544 58.6%

NDVLvin U Opverall accuracy
ser accuracy 68.1% 58.8% 64.1%

Table 6. Field sampling accuracy assessment.

Model CV-NDVI LSWIpnin NDVInn-min NDVIin

Total classification
accuracy

87% 65% 83% 56%

4. Discussion

4.1. Analysis of Data on Phenology Characteristics of Evergreen Trees

The time-series classification method considers the characteristic phenology period of
vegetation [59-62]. As shown above, the time-series NDVI-CV model achieved higher classification
accuracy than the NDVI nn-min, LSWlnyin, and NDVIi,. Unlike the NDVI;nn-min and LSWIin, which
only select the best phase in the time series, or the NDVI;, model only that selects a single-phase
image in winter, our new method considers multiple phenological features. Subtropical urban areas
have complex vegetation types and severe fragmentation of land-use types. Therefore, it is necessary to
reconstruct continuous, high-resolution data to extract vegetation information. In addition, compared
with other vegetation types in subtropical zones (deciduous trees, grassland, farmland, etc.), changes
in evergreen trees during the growth cycle are less affected by season and temperature, and growth
fluctuations tend to be more stable. In a one-year period, the growth trend of evergreen trees and other
vegetation could be distinguished.

4.2. Method Suitability

The CV is affected by changes in vegetation coverage, which depends on the CV formula
itself. For example, some mixed pixels with a large proportion of deciduous trees showed relatively
high NDVI values during the defoliation period. Neglecting the CV constraint would cause the
misclassification of such pixels as evergreen trees, because the NDVI;nn.min value was greater than the
threshold. NDVTI is the most sensitive to moderate vegetation coverage. Thus, when the proportion
of fallow land is about 50%, the classification accuracy of the NDVI is the highest for mixed pixels of
evergreen trees and fallow land [63]. In the cross-validation comparison, although the classification
accuracy of NDVI,nn-min showed little difference to the accuracy of the NDVI-CV model, this method
still has certain deficiencies. It would generate different results for other study areas with different
vegetation coverage characteristics. This is due to the variation in the sensitivity of the NDVI according
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to different vegetation coverage types. Moreover, as NDVI, . min is a phenological node of the
time-series, it omits some important phenology characteristics.

The NDVI-CV model is more stable for evergreen species whose leaf color is greatly affected by
moisture content compared with LSWI,i, [64,65]. Figure 7a shows a false color image of the Landsat
6/5/4 band synthesis, which is used to enhance the vegetation area. The image was taken on 9 February
2016 (in winter). The red square is generated by the image processing software; the difference between
the extraction results of the two models is more obvious in the red square (Figure 7). Comparing the
NDVI-CV method with the LSWI,,;, method, the color of the forest within the red-framed area was
slightly brighter than that of the surrounding forest. The NDVI-CV method extracted this information
successfully, whereas the LSWI,,;, method misclassified this area as other vegetation. This is because
the leaf moisture content of evergreen species is affected by season, and because the LSWI is more
sensitive to leaf water content variations [56,66].
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Figure 7. Comparison of maps with the 30-m Landsat 8 Thematic Mapper (TM) image on 9 February
2016. (a) Evergreen trees appear as green on composite Landsat 8 TM images combined as false color
(6/5/4). (b) Subtropical evergreen trees in the study area based on the NDVI-CV model. (c) Map of the
LSWI,,j, model.

The continuous time-series advantage of the NDVI-CV model effectively avoided the interference
of other vegetation with similar spectral characteristics as that of forest land. In previous research
on vegetation extraction, the key phenological phase of a particular vegetation that is different from
other land-use types was first determined; then, the vegetation information was extracted using a
single image or several images during the key phenological phase. The key phenological phase of
evergreen trees in the study area is from December to February of the following year. For this period,
the NDVI values of most of the deciduous trees and grasslands are at annual minima. However, some
crops undergo a growth stage during this period, and the associated NDVI values of these crops are
high (Figure 8). Therefore, using a single image does not avoid spectral confusion among multiple
vegetation types with similar spectral features, whereas the continuous time-series NDVI-CV model
shows better classification results.
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Figure 8. Farmland grown in single-phase images in winter: (a) 30-m Landsat 8 Thematic Mapper (TM)
image combined as false color (6/5/4) on 9 February 2016, and (b) farmland most likely extracted as
evergreen vegetation.

4.3. Limitations and Deficiencies

Landsat images have limited high-quality data in subtropical rainy regions, resulting in
intra-annual time-series with unequal, long (~one month) intervals during a year. The shorter the
time-series interval, the closer the NDVI curves are to vegetation growth fluctuations. The NDVInn-min
threshold may be biased due to a lack of data for some key nodes. Reducing the intervals of the time
series can improve the stability of the model and increase the precision. In addition, although the
land-use dynamics in the research area remained basically stable over the three-year study period,
there were still inevitable changes that may have led to classification errors.

Future studies should work toward a more accurate acquisition of evergreen forest information
from mixed pixels. Additionally, the optimization of the NDVI-CV model relies on the use of
remote-sensing images with enhanced spatiotemporal resolution.

5. Conclusions

In this work, we used cloud-free and partially cloud-free Landsat remote-sensing images acquired
over three years to reconstruct an intra-annual continuous time-series dataset for evergreen tree
extraction. Our method combines the NDVI,nn-min with the CV. The results indicated that the proposed
method accurately identified evergreen trees. In a subtropical urban area with complex and fragmented
land-use types, the proposed model effectively avoided spectral confusion between evergreen trees
and other vegetation, such as forest plantation and farmland, by reducing the interference of mixed
pixels in the extraction results. Using Google Earth high-resolution images to verify the model, the user
accuracy, producer accuracy, and overall accuracy of the model were high, at 92.3%, 85.2%, and
93%, respectively. The total accuracy of field sampling verification also exceeded 87%. Therefore,
the NDVI-CV model of time-series is a more stable and accurate. Future research should address the
means to obtain continuous inter-annual time-series data and the real-time monitoring of changes in
the spatiotemporal distribution of evergreen trees.
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