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Abstract: Estimating forest structural attributes of planted forests plays a key role in managing forest
resources, monitoring carbon stocks, and mitigating climate change. High-resolution and low-cost
remote-sensing data are increasingly available to measure three-dimensional (3D) canopy structure
and model forest structural attributes. In this study, we compared two suites of point cloud metrics
and the accuracies of predictive models of forest structural attributes using unmanned aerial vehicle
(UAV) light detection and ranging (LiDAR) and digital aerial photogrammetry (DAP) data, in a
subtropical coastal planted forest of East China. A comparison between UAV-LiDAR and UAV-DAP
metrics was performed across plots among different tree species, heights, and stem densities. The
results showed that a higher similarity between the UAV-LiDAR and UAV-DAP metrics appeared
in the dawn redwood plots with greater height and lower stem density. The comparison between
the UAV-LiDAR and DAP metrics showed that the metrics of the upper percentiles (r for dawn
redwood = 0.95-0.96, poplar = 0.94-0.95) showed a stronger correlation than the lower percentiles
(r =0.92-0.93, 0.90-0.92), whereas the metrics of upper canopy return density (r = 0.21-0.24, 0.14-0.15)
showed a weaker correlation than those of lower canopy return density (r = 0.32-0.68, 0.31-0.52). The
Weibull & parameter indicated a higher correlation (r = 0.70-0.72) than that of the Weibull 8 parameter
(r = 0.07-0.60) for both dawn redwood and poplar plots. The accuracies of UAV-LiDAR (adjusted
(Adj)R2 = 0.58-0.91, relative root-mean-square error (rRMSE) = 9.03%—-24.29%) predicted forest
structural attributes were higher than UAV-DAP (Adj-R? = 0.52-0.83, r/RMSE = 12.20%-25.84%). In
addition, by comparing the forest structural attributes between UAV-LiDAR and UAV-DAP predictive
models, the greatest difference was found for volume (AAclj-R2 =0.09, ArRMSE = 4.20%), whereas
the lowest difference was for basal area (AAdj-R? = 0.03, ArRMSE = 0.86%). This study proved that
the UAV-DAP data are useful and comparable to LiDAR for forest inventory and sustainable forest
management in planted forests, by providing accurate estimations of forest structural attributes.

Keywords: unmanned aerial vehicle; LiDAR; digital aerial photogrammetry; forest structural
attributes; planted forest

1. Introduction

Planted forests cover approximately 7.3% (290 million ha) of global forests, and they increased
steadily by over 105 million ha since the 1990s [1]. The development of planted forests can effectively
increase the supply of wood, benefit the production of fiber, and enhance forest carbon storage [2,3],
as well as maintain biodiversity and mitigate climate change [3,4]. Effectively acquiring forest
information and accurately estimating planted forest structural attributes are critical for sustainable
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forest management [5]. Although there are increasing requirements for enhancing management
in planted forest, traditional forest inventory methods have limited capacities in the objectivity
and consistency of tree measurements due to manual operations [6,7]. However, remote sensing
technologies have the ability to provide accurate and spatially updated information for forest
inventories to characterize forest vertical structure and measure forest structural attributes [8-11].

Enhanced forest inventory (EFI) refers to a forest inventory that is based on traditional field
inventory data and advanced remote sensing technologies to monitor forest resource information [12].
Compared to traditional forest inventory, two main technologies, i.e., light detection and ranging
(LiDAR) and digital aerial photogrammetry (DAP), can provide more accurate, detailed, and
continuously updated forest information [6,13] and three-dimensional (3D) descriptions of the forest
canopy [14-16]. Forest resource information (i.e., stand structure, composition, and forest attributes)
can be characterized with enhanced data acquired by LiDAR and DAP to support EFIs [6]. LIDAR is
an active remote sensing technology that provides 3D information of forest canopy [17,18]. It emits
laser pulses that penetrate through the canopy to describe the horizontal and vertical distribution of
canopy structure [19]. Neesset (2002) [15] estimated forest structural attributes using airborne LiDAR
data in southeast Norway. He found that the estimations of Lorey’s mean height (R? = 0.82-0.95,
root-mean-square error (RMSE) = 0.05-0.07) had the highest accuracies, followed by mean diameter at
breast height (DBH) (R? = 0.39-0.78, RMSE = 0.12) and volume (R? = 0.80-0.93, RMSE = 0.16-0.22).

Recently, there was increasing interest in DAP data for EFIs [16,20-23], due to its lower cost
compared to airborne LiDAR data, and the potential capability to provide 3D point clouds as with
LiDAR [6,14,24], and a finer scale to support forest inventory applications. Goodbody et al. (2018) [25]
acquired high-spatial-resolution images from boreal forests of East Canada and generated DAP point
clouds using image-matching algorithms; then, structural and spectral metrics were extracted to
predict basal area and volume in spruce-dominated stands. The prediction results indicated that
volume (R? = 0.80, RMSE = 49.69 m3-ha—!) had a similar performance with basal area (R? = 0.90,
RMSE = 4.11 m?-ha~!). Similar studies [16,21,26-28] also compared the performance of airborne
LiDAR and DAP for the estimations of forest structural attributes, and the predicting model
outcomes of airborne LiDAR data were better than those of DAP data, but the accuracies of DAP
data were acceptable. Giannetti et al. (2018) [29] compared non-normalized and normalized
DAP data, and airborne LiDAR data to estimate forest growing stock. The prediction results
demonstrated that non-normalized DAP data can be used effectively for predicting forest growing
stock volume. Unmanned aerial vehicles (UAVs) have advantages of cost effectiveness and widespread
availability [30,31], and are increasingly being used as an alternative remote sensing platform to
acquire high-spatial- and temporal-resolution data [32]; thus, UAVs were applied in EFIs in recent
years [31,33,34]. With the increasing development of the compatibility and detecting ability of
sensors [35], UAVs have the capability of acquiring high-spatial-resolution imageries [6,36], and
generating high-density LIDAR and DAP point clouds. Puliti et al. (2015) [37] used a fixed-wing UAV to
acquire high-resolution DAP imagery from southeast Norway. UAV-DAP metrics were extracted from
DAP point clouds, which were generated by the structure from motion (SFM) algorithm. The predictive
models for Lorey’s mean height, basal area, and volume were fitted by the metrics and field-measured
data. UAVs can also be equipped with LiDAR sensors to retrieve LIDAR data for estimating forest
structural attributes. Jaakkola et al. (2010) [38] reported the first application of UAV-LiDAR in forestry.
Wallace et al. (2012) presented an early research in the forestry application using UAV-LiDAR and
UAV-DAP point clouds. Chisholm et al. (2013) [39] extracted forest below-canopy information using
UAV-LiDAR data, and developed a postprocessing software to detect trees and estimate their DBH
(R? = 0.45, relative RMSE (rRMSE) = 25.1%) within a 20 m x 20 m study site. Sankey et al. (2017) [40]
used UAV platforms to acquire high-resolution LiDAR, hyperspectral, and multispectral data in
northern Arizona, United States of America (USA).



Forests 2019, 10, 145 3 of 26

However, most of the previous studies only used the UAV platforms to acquire imageries and
extract spectral indices for estimating forest structural attributes, while only a few studies used UAV
platforms to acquire both LiDAR and DAP data at the same time; thus, the assessments of variations
and prediction capabilities using two types of metrics are limited. To the best of our knowledge, no
study assessed the variations of LIDAR- and DAP-derived metrics under different forest conditions
(e.g., various tree species, stem densities, and stand heights), as well as integrated UAV-LiDAR and
UAV-DAP metrics to estimate forest structural attributes in subtropical forests. In this study, we
extracted two suites of point cloud metrics from UAV-based LiDAR and DAP data and compared
the metrics across different tree species (i.e., dawn redwood (Metasequoia glyptostroboides Hu & W. C.
Cheng) and poplar (Populus deltoides Marsh)), heights, and stem densities in a subtropical planted
forest of east China. The main objectives of this study were (1) to assess the correlations of UAV-LiDAR-
and UAV-DAP-derived standard and canopy metrics; (2) to compare the variations of UAV-LiDAR
and UAV-DAP metrics across different stages of stand development; and (3) to evaluate the estimation
accuracies of plot-level forest structural attributes (i.e., mean DBH, Lorey’s mean height, stem density,
basal area, volume, and aboveground biomass) by fitting UAV-LiDAR and DAP metrics alone and in
combination with field measurements.

2. Materials and Methods

2.1. Study Area

The study area covered approximately 1963 ha and was located in Dongtai Forest, a planted forest
in coastal Jiangsu province, east China (120°49'32.2” E, 32°52/20.6” N). The annual mean temperature
is 14.6 °C, and the annual mean precipitation is 1050 mm [41]. The topography within the study area is
flat, and the mean elevation ranges from 11 to 14 m above sea level. The major planted tree species
include dawn redwood and poplar. Figure 1 shows the location of the study area and field sample
plots for both tree species, as well as the photos of two typical plots.

2.2. Field Data

The field data within the study area were collected from 11-18 September 2016, and were based on
the dominant tree species, age classes, and site index of historical survey data; a total of 41 circular plots
(radius (r) = 15 m) were set in the data acquisition sites (Figure 1c). All plots (1 = 41) were divided into
a dawn redwood group (n = 20) and a poplar group (n = 21) according to the tree species composition.
The centers of field plots were positioned according to Trimble GeoXH6000 global positioning system
(GPS) (Trimble, Sunnyvale, CA, USA) units, which were corrected with high-precision real-time
differential signals received from the Jiangsu Continuously Operating Reference Stations (JSCORS),
resulting in a sub-meter accuracy [41]. DBH was measured using a diameter tape, and tree-top height
was measured using a Vertex IV hypsometer (Haglof, Langsele, Sweden). Based on the measurement
data, a number of forest structural attributes for each plot were calculated, including average DBH
(cm), Lorey’s mean height (m) (i.e., mean height weighted by basal area), stem density (n-ha~!), basal
area (m?-ha~1), volume (m3ha~1), and aboveground biomass (mg~ha_1). The plot-level volume
was calculated using the provincial species-specific volume equations based on DBH (Appendix A
(Table Al)). The aboveground biomass (AGB) components (including stem, branch, and foliage) were
calculated by the species-specific allometric equations based on DBH and height that were developed
by Ji et al. [42]. A summary of field-measured forest structural attributes is provided in Table 1.
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Figure 1. The location of the study area, field sample plots with two different tree species, and photos
of two typical plots. High-resolution digital aerial photogrammetry imagery was acquired from an
unmanned aerial vehicle (UAV), covering the whole study area. Light detection and ranging (LiDAR)
data were obtained from the UAYV, covering the data acquisition sites. (a) Location of Yancheng city
in Jiangsu province; (b) location of Dongtai Forest; (c) orthophoto of the study area and locations of
the data acquisition sites; (d) locations of sample plots, among which the pink circles represent dawn
redwood and the yellow circles represent poplar; (e) photo of a typical dawn redwood plot; (f) photo
of a typical poplar plot.

Table 1. A summary of field-measured forest structural attributes.

. All Plots (n = 41) Dawn Redwood (1 = 20) Poplar (n = 21)
Attributes Range Mean SD Range Mean SD Range Mean SD
DBH (cm) 6.3-37.1 23.0 83 6.3-30.3 19.4 8.4 11.0-37.1 26.3 6.7

H (m) 4.9-33.4 21.2 80 49-254 16.8 7.5 9.7-33.3 25.3 6.1
D (n-ha™1) 142-850 484.8 190.7 425-850 643.9 129.8 142482 333.3 85.8
G (m%ha1) 6.3-40.1 249 83  6.3-40.1 25.1 9.6  85-352 24.8 7.1

V (m3ha1) 22.9-352.4 191.0 82.1 229-3524 1823 100.7  44.3-284.6 199.2 60.8
AGB (Mgha™!)  20.1-1382  80.7 309 20.1-1382 79.0 373  274-130.8 81.6 241

Notes: DBH: mean diameter at breast height; H: Lorey’s mean height; D: stem density; G: basal area; V: volume;
AGB: aboveground biomass.
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2.3. UAV Platforms and Sensors

LiDAR data covering the data acquisition sites were acquired using a multi-rotor UAV.
High-resolution digital imageries were acquired from a fixed-wing UAYV, covering the whole study
area (Figure 1c).

The GV1300 (GreenValley International, Berkeley, CA, USA) multi-rotor UAV used in this study
was equipped with a Velodyne Puck VLP-16 laser scanner (Velodyne, San Jose, CA, USA) to acquire
the LIDAR data. The GV1300 UAYV has eight brushless motors, ensuring that the flight has a strong
driving force and high stability [43]. The GV1300 UAV was controlled by a ground control station
linked with a long-range Wi-Fi system, which transferred information on the real-time trajectory and
flying parameters (e.g., flying altitude and speed) supported by a Novatel inertial measurement unit
(IMU) (IMU-IGM-51) and a dual-frequency GPS (Novatel).

The E-DO (E-DO, Shenzhen, China) fixed-wing UAV used in this study was equipped with a
Canon EOS 5D Mark Il camera (Canon, Japan) to acquire the digital imagery. The flight altitude can
reach a maximum of 3500 m with an airspeed of 25 m/s. The UAV was controlled by a custom ground
control system using a predefined flight mission. The GPS and IMU of the fixed-wing UAV recorded
the longitude and latitude, elevation, roll angle, and pitch angle of each image in real time.

2.4. UAV Data

An overview of the UAV data processing workflow is shown in Figure 2. Firstly, dense
image-based point clouds were generated using the SFM algorithm to obtain UAV-DAP point clouds.
Secondly, normalized UAV-LiDAR point clouds were generated using a digital elevation model
(DEM), which was created based on ground point clouds after filtering; then, the DEM was used to
normalize the UAV-DAP point clouds. Thirdly, two suites of metrics were derived from the normalized
UAV-LiDAR and UAV-DAP point clouds, and then metric comparisons were conducted under different
forest conditions. Finally, the accuracies of predictive models of forest structural attributes, which were
generated by UAV-LiDAR and UAV-DAP metrics, were compared. Figure 2 provides an overview of
the analysis workflow.

2.4.1. UAV-LiDAR Data and Processing

LiDAR data were obtained from 24-25 August 2016, using a Velodyne VLP-16 laser sensor
operating at a flight altitude of 80 m above ground level and a flight speed of 4.8 m/s, which was
designed by self-defined trajectories to acquire LiDAR data (Figure 3). The swath width of the LiDAR
strip was 42 m. The pulse repetition rate was 18.2 kHz, and the scan frequency was 21.7 Hz, with
a maximum scan angle of 30°. The beam divergence was 3 mrad, and the wavelength was 903 nm.
The overlap of LIDAR strips was 75%. The average point density of each plot was 50.24 pts-m 2.
Firstly, the LIDAR point clouds were denoised to remove outliers, and the processing was preformed
using the Outlier Removal algorithm in LiDAR360 software (GreenValley International, California, CA,
USA). The algorithm depends on the average and maximum distance from the point to its neighboring
points and the user-defined parameter setting (i.e., neighboring points and multiples of standard
deviation) to identify the outlier points. Secondly, the improved progressive Triangulated Irregular
Network (TIN) densification (IPTD) filter algorithm was used to classify the ground points [41], and
the default parameters were employed in processing (i.e., max building size (m): 20; max terrain angle
(°): 88; iteration angle (°): 30; iteration distance (m): 1.6). Then, the DEM (spatial resolution = 0.5 m)
was generated using the inverse distance weighting (IDW) interpolation algorithm. Finally, the DEM
was subtracted from the elevation value of each point [28,44,45] using the normalization function
in LiDAR360 software (GreenValley International, California, CA, USA) for generating normalized
point clouds.
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Figure 2. An overview of the analysis workflow for comparing the variations of UAV-LiDAR and UAV
digital aerial photogrammetry (DAP) point cloud metrics, and the assessments of the accuracies of
predictive models fitted by the metrics. SEM: structure from motion.
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Figure 3. Comparison of the UAV-LiDAR point cloud and UAV-DAP point cloud profiles. (a) Side view
of the UAV-LiDAR point cloud profile; (b) side view of the UAV-DAP point cloud profile; (c) display of
the UAV-LiDAR and UAV-DAP point cloud profiles.
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2.4.2. UAV Imagery Acquisition and Point Cloud Processing

Digital imagery acquisition was conducted on 7 August 2016, using a Canon EOS 5D Mark
II camera with a flight altitude of 500 m above ground level, which covered the whole study area
(Figure 1c). The end lap of the flight was 80%, and the side lap was 65%. A fixed camera setting
was used during the whole flight to ensure constant radiometry for the imagery [46]. The exposure
time was set to 1/1000 s, the focal length was 35 mm, and the aperture value was fixed at f/3.2. The
setting of a low Light Sensibility Ordinance (ISO) speed (ISO 250) ensured effective luminosity. The
imagery was collected with 0.10 m ground sample distance (GSD). The pixel size was 6.4 um, and the
average point density was 13.10 pts-m 2. At the same time, 18 ground control points (GCPs) were
set within the study area and were located using the Trimble RTK (Real-Time Kinematic). Imagery
pre-processing was performed using the SFM algorithm as implemented in Pix4D (Version 4.2.26)
(Pix4D S.A., Lausanne, Switzerland) to generate dense image point clouds. The average point density
of each plot was 13.10 pts-m 2. After the DAP processing, DAP point clouds were normalized by the
LiDAR-generated DEM to derive heights above ground and obtain normalized DAP point clouds.

2.5. UAV-LiDAR and UAV-DAP Point Cloud Metrics

To compare UAV-LiDAR and UAV-DAP data, two suites of metrics were calculated from
normalized UAV-LiDAR and DAP point clouds. i.e., standard and canopy metrics (Table 2). These
metrics included (i) height-based metrics (Hps, Hso, H7s, Hos, Hmean, Hev, and Hmax); (ii) density-based
metrics (D3, Ds, D7, and Dy); (iii) canopy cover (CCmean); (iv) canopy volume metrics (Open, Euph, Oligo,
and Closed); and (v) Weibull-fitted metrics (Weibull « and Weibull ). The descriptions of UAV-LiDAR
and UAV-DAP metrics are shown in Table 2.

Table 2. Description of the metrics derived from unmanned aerial vehicle (UAV) light detection
and ranging (LiDAR) and digital aerial photogrammetry (DAP) point clouds that were used for the
comparison and modeling forest structural characteristics.

Metrics Description

Standard metrics

The percentiles of the canopy height distributions

Height percentiles (Has, Hso, Hys, Hos) (25th, 50th, 75th, and 95¢h) above 2 m.

. Mean height (Hmean) Mean of return heights above 2 m.
Height-based
Coefficient of variation of heights (Hcy) Variation of heights of LIDAR returns above 2 m.
Maximum height (Hmax) Maximum of return heights above 2 m.
. The proportion of points above the quantiles (30th,
Density-based Canopy return density 50th, 70th, and 90th) to total number of points

(D3, Ds, Dy, Dy) above 2 m.

Canopy cover above mean height (CCyyy,) Percentages of LiDAR return heights above 2 m.

Canopy cover Percentages of LiDAR return heights above

Canopy cover above mean height (CCmean) average point cloud height.

Canopy metrics

Open and closed gap zones of canopy
volume metric (CVM)
(i.e., Open and Closed)

The “Empty” voxels were located above and below
the canopy, respectively.

Canopy volume The voxels located within an uppermost percentile

Euphotic and oligophotic zones of CVM (65%) of all filled grid cells of that column, and
(i.e., Euph and Oligo) voxels located below the point in the
profile, respectively.

The scale parameter « and shape parameter § of
Weibull-fitted Parameter & and B of Weibull distribution the Weibull density distribution fitted to the
canopy height distribution (CHD).
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2.5.1. Canopy Volume Metric Calculation

The canopy volume model (CVM) approach, which was based on voxels, represented the vertical
structural distribution of elements in a canopy space [47,48]. The canopy spaces were divided into four
parts of three-dimensional crown volume zones (i.e., Open, Euphotic, Oligophotic, and Closed zones).
Firstly, according to whether there was a point cloud in the voxel (5 x 5 x 0.5 m3 ), all voxels of each
canopy space were divided into “Filled” and “Empty” voxels. Secondly, the voxels defined as “Filled”
were further classified according to their vertical distribution; the uppermost 65% of the “Filled” voxels
were classified as the euphotic (“Euph”) voxels and the lowermost 35% as the oligophotic (“Oligo”)
voxels, whereas “Empty” voxels continued to be classified as the higher (“Open”) or lower (“Closed”)
voxels of the “Empty” voxels. Finally, canopy volume metrics (i.e., Open, Euph, Oligo, and Closed)
were calculated as a set of metrics by running a program conducted in MATLAB R2016b software
(The Mathworks, Natick, MA, USA). The descriptions of canopy volume metrics are shown in Table 2.

2.5.2. Weibull Metric Calculation

The canopy height distribution (CHD) profile described the vertical distribution of point clouds,
which characterized the condition of the foliage elements and the non-photosynthetic tissues within
the canopy [19]. According to previous studies [19,47], the same height interval (0.3 m) was selected
so that the results could be compared. All point clouds of the canopy space were sliced into the
same interval of stratified layers from the ground to the top of canopy, and the ratio of the number
of point clouds to the total point cloud in a certain height interval was calculated, which represented
the vertical distribution of the point clouds [49,50]. The Weibull function reflects the distribution of
different tree species [51,52], as well as the height distribution of the canopy [53]. Thus, in this study, a
Weibull density function was used to fit the CHD, and the Weibull-fitted parameters (parameter o and
parameter (3) were derived to represent Weibull-fitted metrics. Parameter « was the shape parameter
(i.e., the vertical scaling and positioning factor), and (3 was the scaling parameter (i.e., the capability
to control the increase or decrease in the width of the distribution) [19]. A detailed description of the
metrics is shown in Table 2.

z2
F(z) = /Z " CHD(2)dz, (1)

i P
F(z)=1- (e(«’””) ) 2

where F(z) is the cumulative CHD function, CHD(z) is the CHD value of z1 and z2 stratified intervals
with a change in the height of CHD, z is the height above the ground, and H,,y is the maximum height
of the canopy.

2.6. Metric Selection and Regression Analysis

In this study, a number of metrics were extracted to assess the accuracies of the predictive
models of forest structural attributes. To quantitatively compare the difference between UAV-LiDAR
and UAV-DAP metrics, the mean difference (MD), the root-mean-square deviation (RMSD), and
Pearson’s correlation coefficient () were used in this study (see details in White et al. (2015) [28]). MD
represented the average difference between two suites of metrics, RMSD indicated the general level of
difference, and r represented the correlation between UAV-LiDAR and UAV-DAP metrics. Previous
studies [47,54] provided helpful references for the selection of metrics that proved useful in predictive
models. Pearson’s correlation coefficient (r) was used to analyze the relationships between forest
structural attributes and all of the metrics (i.e., height-based, density-based, canopy cover, canopy
volume, and Weibull-fitted metrics). The metrics with low correlation (r < 0.2) were eliminated, and
other metrics were selected for use in the regression analysis.

The multiple regression models were separately fitted to predict the forest structural attributes
(i.e., mean DBH, Lorey’s mean height, stem density, basal area, volume, and aboveground biomass)



Forests 2019, 10, 145 9 of 26

using UAV-LiDAR and UAV-DAP metrics. All dependent variables (forest structural attributes) and
independent variables (derived metrics) were transformed using the natural logarithm for linearity
and were corrected for bias using a bias correction factor (BCF) [55]. F-tests were applied, and the
independent variables with a p < 0.05 significance level were kept in the model. Multicollinearity was
assessed by principal component analysis (PCA) based on the correlation matrix to ensure a relatively
low correlation between independent variables. Models with a low condition number (k < 30) were
selected to reduce multicollinearity [56]. Finally, the best predictive models were selected based on
Akaike information criterion (AIC) [57]. The accuracies of the predictive models were evaluated using
the coefficient of determination (R?), adjusted R? (Adj—Rz), root-mean-square error (RMSE), and relative
root-mean-square error (rRMSE), defined as the percentage of the ratio of RMSE and the observed
mean values, the root-mean-square error (RMSE) of the adjustment decision coefficient (Adj—Rz), and
the relative RMSE (rRMSE). After selecting the optimal model, leave-one-out cross-validation was
used to evaluate the accuracies of the predictive models [58]. Equations (3)-(6) were used as follows:

1 a2
'Zl (xz - xi)
2 1=
RR=1-% — ®)
Y (xi =)
i=1
Adj—-R2=1--""1 (1_g2 @)
n—-p-1
RMSE = | =)  (xj — %) )
N3
rRMSE = RA;SE 100% (6)

where x; represents the field-measured values for plot i; X; represents the average field-measured
values for plot i; £; represents the estimated values for plot i; X represents the average field-measured
values for all plots; p is the number of variables; # is the number of plots; and i is the sample number.

3. Results

3.1. Visual Comparison of UAV-LiDAR and UAV-DAP Point Clouds and Metrics

The comparison of a UAV-LiDAR and UAV-DAP strip, across forest stands with different tree
species, heights, and stem densities, is shown in Figure 3. A total of 1230 images were generated from
SFM and resulted in a GSD with 0.1 m. The GCPs made it effective to align the LIDAR and DAP
data. A total of 18 GCPs were used in the processing of image matching, resulting in a mean RMSE
of 0.012 m.

Three typical sample plots (with different stem densities) for each tree species, i.e., dawn redwood
(Figure 4) and poplar (Figure 5), were selected for visual comparison by analyzing the point cloud
profiles and height distributions. Overall, UAV-DAP point clouds had similarities with UAV-LiDAR
point clouds in the vertical distributions, and the difference in the height percentile metrics between
the two data sources for dawn redwood plots showed higher similarity than that for the poplar plots.
For dawn redwood plots (Figure 4), the difference value (DV, i.e., the absolute differences between
UAV-LiDAR and UAV-DAP metrics) of Hos (the 95th percentile of heights) varied from 0.22 m to
1.68 m, the DV of Hys (the 25th percentile of heights) varied from 0.99 m to 1.09 m, and the plot with
the highest density exhibited the smallest difference. For the coefficient of variation of heights (Hcy),
the DV of the two data sources ranged from 0.01 to 0.07. For poplar plots (Figure 5), the difference in
Hogs was higher than that in dawn redwood plots, with the DV ranging from 0.35 m to 1.78 m, but no
similar trend was detected for Hys (DV = 0.16-1.34 m). The DV of H.y, ranged from 0.03 to 0.06, and
H¢, of UAV-LiDAR was higher than UAV-DAP.
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Figure 4. Comparisons of UAV-LiDAR and UAV-DAP point clouds and canopy height distribution

(CHD) profiles in three dawn redwood plots with different stem densities. Metrics are defined in
Table 2.

UAV-LIDAR point clouds in a high stem density plot UAV-DAP point clouds in a high stem density plot
35 345 35 35
30 29.7 30 29.7
B 24.98m 249 g — .= 24.63m §49
£ 307im %201 Exn 340m Ezﬂ.]
=5 Z1s3 2 2153
10 105 10 105
5 57 5 57
° 09 0 09

0 0.05 0.1 0 0. [I5‘ 0.1
Density Density

|H“ =0.15 Hy = 20.51m Hyg=22.55m Hys = 24.98m CC,, = 44.99% CC,,, = 28.05%]

|11m =0.09 Hy=20.07m Hy=21.66m Hy=24.63m CCy, =100% CC,e = 54.62%'

UAV-LIDAR point clouds in a medium stem density plot UAV-DAP point clouds in amedium stem density plot

35

Height(m)
Ex 8RB

Ps

o

0 0.05

Density

0.1

] 0.05 0.l
Density
H,, =0.12 Hys=24.14m Hey=27.09m Hys =31.14m CCy, = 84.72% CCpy = 45A54"qE |H“. =0.07 Hyy=2548m Hyy=26.90m Hy;=29.36m CC,,=100% CChpn= 55.77%|

UAV-LIDAR point clouds in a low stem density plot UAV-DAP point clouds in a low stem density plot
345 §
297
T29 E E
£ 201 .'?:020 gn 20.1
2153 s T 153
105 10 105 =0.16
p=2.27
5.7 & 57
0.9 0 09
0 0.05 0.1 0 0.05 0.1
Density Density

‘ Ho,=0.11 Hy=26.61m Hyy=29.22m Hys=32.84m CCyp, =87.68% CClepn = 50.17%‘ ‘Hﬂ, =0.08 Hys=26.87m Hyy=28.49m Ho5=31.79m CCyp=100% CCppyy, = 52.37%)

Figure 5. Comparisons of UAV-LiDAR and UAV-DAP point clouds and canopy height distribution
profiles in three poplar plots with different stem densities. Metrics are defined in Table 2.
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For canopy cover above 2 m (CCpp) and canopy cover above mean height (CCpean), generally,
CCom (ADV = 2.74-55.01%) showed a greater difference than CCmean (ADV = 0.27-26.57%). However,
there was a greater disparity in CCpy, of poplar plots than that of dawn redwood plots. Additionally,
ADV = 0.27-10.66% for dawn redwood plots and 2.2-26.57% for poplar plots. The results showed
CCrean With ADV = 2.74%-9.17% for dawn redwood plots and 12.32%-55.01% for poplar plots. Canopy
height distribution (CHD) profiles are shown in Figures 4 and 5. Weibull curves (orange line) were
used to fit CHDs, and the Weibull shapes of UAV-LiDAR were slightly steeper than those of UAV-DAP.
It was evident that the Weibull scales of UAV-LiDAR were slightly larger than those of UAV-DAP.
The peak of the Weibull curves of UAV-LiDAR was higher than seen for UAV-DAP, especially in
poplar plots.

3.2. Statistical Comparison of UAV-LiDAR and DAP Metrics

Figures 6 and 7 show the results of scatterplots of UAV-LiDAR and UAV-DAP metrics in dawn
redwood and poplar plots, respectively. In general, the metrics of the upper percentiles (r = 0.95-0.96,
0.94-0.95) showed a higher correlation than those of lower percentiles (r = 0.92-0.93, 0.90-0.92), whereas
the metrics of the upper canopy return density (r = 0.21-0.24, 0.14-0.15) showed a lower correlation
than those of the lower canopy return density (r = 0.32-0.68, 0.31-0.52). The metric of the closed zone
showed the highest correlation (r = 0.72-0.88) within the canopy volume profile model-derived metrics.
The Weibull « parameter indicated a relatively high correlation (r = 0.70-0.72), and showed a trend
that the height-based metrics had a stronger correlation than the other metrics. The correlations for
dawn redwood plots were higher than those for poplar plots in both height-based and density-based
metrics. For height percentiles, MD varied from 2.64 to 0.54, whereas RMSD ranged from 3.09 to 1.75,
which showed a decreasing trend.

Figure 8 shows the comparison of two suites of metrics using boxplots; metrics were selected to
compare dawn redwood (red plot) and poplar plots (green plot). The white-filled plot (left) represents
UAV-LiDAR metrics, whereas the gray-filled plot (right) represents UAV-DAP metrics. The transverse
line of each box represents the median value, and the circle within the plot represents the average value.
In total, all metrics were classified into four groups. In general, for height percentiles, poplar plots
showed slightly higher heights compared with dawn redwood. For both tree species, the similarities
between the two suites of metrics increased with increasing percent height. The difference in the
median and average value for poplar was larger than that for dawn redwood in general. The median
value of DAP was higher than that of LiDAR for all height percentiles in dawn redwood plots. Plots of
DAP metrics showed slightly higher heights compared with LiDAR metrics from Hps to Hsg, and then
become lower than LiDAR metrics. For density-based metrics, the variation of poplar plots was larger
than that of dawn redwood plots. For the Weibull parameters, the difference in « was smaller than
that in 8. Hmean and Hmax were similar between the two suites of metrics. Other metrics exhibited no
significant similarity.
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Figure 6. Scatterplots of UAV-LiDAR and UAV-DAP metrics in dawn redwood plots, including
(a) percentile height metrics (Hys, Hsg, H75, and Hos), (b) density-based metrics (D3, Ds, Dy, and Dy),
(c) canopy metrics (Open, Euph, Oligo, and Closed), and (d) other metrics (Hmean, Hev, @, B). Notes: Mean
difference (MD) represents the average difference between two suites of metrics, root-mean-square
deviation (RMSD) indicates the general level of difference, and r represents the correlation relationship
between UAV-LiDAR and UAV-DAP metrics. For metric descriptions, see Table 2.
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Figure 7. Scatterplots of UAV-LiDAR and UAV-DAP metrics in poplar plots, including (a) percentile
height metrics (Hps, Hsg, Hys, and Hys), (b) density-based metrics (D3, D5, D7, and Dy), (¢) canopy
metrics (Open, Euph, Oligo, and Closed), (d) other metrics (Hmean, Hev, &, B). Notes: MD represents
the average difference between two suites of metrics, RMSD indicates the general level of difference,
and r represents the correlation relationship between UAV-LiDAR and UAV-DAP metrics. For metric
descriptions, see Table 2.
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Figure 8. Boxplots of UAV-LiDAR and UAV-DAP metrics in all plots, including (a) percentile height
metrics (Hps, Hsp, H7s, and Hos), (b) density-based metrics (D3, D5, Dy, and Dy), (¢) canopy metrics
(«, B, Open, Oligo, Euph, and Closed), and (d) other metrics (Hmean, Hmax, Hev, and CCrean) Notes: 5
B/10; Hoy': Hey X 100%. Metrics are described in Table 2.

In this study, to further analyze the influence of forest conditions on DAP, we selected dawn
redwood plots with different heights and stem densities. Figure 9 shows a comparison between
two suites of metrics in dawn redwood plots, which were grouped by field-measured Lorey’s mean
height (i.e., low, medium, and high tree heights). In general, plots with high height presented greater
similarities than did low and medium height plots. The height percentiles seemed to be similar for all
plots, but the median line indicated a small difference in low and high heights and a lower variation
in medium- and high-height plots. For density-based metrics, plots with low height showed greater
variation than other height plots. For canopy volume metrics, plots with low height and high height
performed better. For other metrics, in Figure 9d, there was no obvious difference for all plots, except
for CCon. Therefore, considering height-grouped plots, plots with greater height were relatively stable
for both UAV-LiDAR and UAV-DAP.
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Figure 9. Boxplots of UAV-LiDAR and UAV-DAP metrics in dawn redwood plots, which were grouped
by field-measured Lorey’s mean height, including (a) percentile height metrics (Hps, Hsg, H7s, and
Hos), (b) density-based metrics (D3, D5, D7, and Dy), (¢) canopy metrics (, B, Open, Oligo, Euph, and
Closed), and (d) other metrics (Hmean, Hmax, Hev, and CCmean). Notes: f: B/10; Hey”: Hey X 100%.
Metrics are described in Table 2.

Figure 10 shows another grouping method for assessing the two suites of metrics. All dawn
redwood plots were grouped into different stem densities (i.e., low, medium, and high stem densities),
according to the field-summarized stem density data. In general, Figure 10 indicates that plots with
lower stem densities had more similarity than other stem densities plots. For height percentiles, the
median line was closer for low-stem-density plots than for medium-stem-density plots, whereas the
variation of boxplots was the largest for high-stem-density plots. For density-based metrics, according
to the median line and the variation of boxplots, high-stem-density plots had more similarity. For
canopy volume metrics, plots with low stem density had more similarity in « and Open metrics than
did other grouped plots, whereas plots with high stem density had more similarity in §” than did
other grouped plots. For other metrics, low-stem-density plots were more similar than other plots in
Hynean and Hpax. In general, low-stem-density plots had relatively greater similarity for UAV-LiDAR
and UAV-DAP.
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Figure 10. Boxplots of UAV-LiDAR and UAV-DAP metrics in dawn redwood plots, which were
grouped by field-measured stem density, including (a) percentile height metrics (Hys, Hs, H7s, and
Hys), (b) density-based metrics (D3, D5, D7, and Dy), (c) canopy metrics («, B, Open, Oligo, Euph, and
Closed), and (d) other metrics (Hmean, Hmax, Hev, and CCrean). Notes: f: B/10; Hey': Hey X 100%.
Metrics are described in Table 2.

3.3. Forest Structural Attribute Modeling and Accuracy Assessment

In this study, a number of forest structural attributes were evaluated using the multi-regression
models with UAV-LiDAR and UAV-DAP metrics alone, as well as the integration of LiDAR and
DAP metrics (see Table 3). In general, the integration of LIDAR and DAP metrics performed the
best for predicting the forest structural attributes (Adj-R? = 0.73-0.95, r/RMSE = 7.20-22.40%). The
accuracies of UAV-LiDAR models were higher than those of UAV-DAP models; basal area exhibited
the smallest difference (AAdj-R? = 0.03, AYRMSE = 0.86%), and volume had the greatest difference
(AAdj—R2 =0.09, ArRMSE = 3.55%). The UAV-LiDAR model outcomes showed that the estimation of
Lorey’s mean height (Adj-R? = 0.91, "RMSE = 9.03%) and volume (Adj-R? = 0.79, rRMSE = 14.04%)
had the highest accuracies, followed by aboveground biomass (Adj-R? = 0.71, rRMSE = 19.75%), DBH
(Adj—R2 =0.69, r"RMSE = 19.92%), and basal area (Aclj—R2 =0.66, r/RMSE = 18.36%), whereas stem density
(Adj-R? = 0.58, rRMSE = 24.29%) had a relatively low accuracy. The UAV-DAP model outcomes
showed that the estimations of Lorey’s mean height (Adj-R? = 0.83, "/RMSE = 12.20%) and volume
(Adj-R? = 0.70, "/RMSE = 18.24%) had the highest accuracies, followed by aboveground biomass
(Adj-R? = 0.65, 'RMSE = 21.68%), basal area (Adj-R? = 0.63, rRMSE = 19.22%), and DBH (Adj-R? = 0.57,
rRMSE = 22.52%), whereas stem density (Adj-R? = 0.52, '/RMSE = 25.84%) had a relatively low accuracy.
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Table 3. A summary of predictive models and accuracy assessment results. Adj-R?: adjusted R?; RMSE:
root-man-square error; *RMSE: relative RMSE.

Attributes Predictive Models R? Adj-R? RMSE  rRMSE (%)
exp(—1.02 x InD3 + 1.12 x InDs + 0.40 X

DBHidar  1elosed + 3.75) » 1,09 072 0.69 457 19.92
Hyjdar ‘;Xigggiz . (1)1.131[3{)75;1.10'3? < InHos +0.09 g 001 191 9.03
Diidar 'ixfl’r(lgg'iz 61;‘5%50;70'41 xInDs =014 o 0.58 117.76 24.29
Glidar ler’l‘giofi.;?))mfifo%o'zg X InD7 =011 h69 066 458 18.36
Viidar f;:g;oe'z ® XZ;I;I)% FOAXINDs TOITXC 0gt 079 2681 14.04

AGBjidar f;‘gioféa)l“fi?o; 60'17 X InDs =005 3 0.71 15.87 19.75

DBHpap fr)l(gl(o_sg;f ;;;;D; Ir gﬁ,l x InD7 +0.73 x4 6o 0.57 5.17 22.52
Hpap fﬁgf%zll;f 2;50%89 X InHos =035 a5 (g3 2.60 12.20
Dpap ler’l‘g%gizl%? 3 _1'84126 X InD7 +045x 56 052 12528 25.84
Gpar 8?‘_%((;8;: Fl]i‘g;ai ;82218 X InOligo + 066  0.63 4.79 19.22
Vbap ler’l‘gl(jsfs fol.rngfi Jrl%;g xInD3 =060 x 73 0.70 34.84 18.24

AGBpap 8?‘21’6(?& : iﬁfgia; 1‘52'(2)7 xInClosed + 67 065 17.42 21.68

DBH; p 8?‘01’7(0%831 ;Dhﬁg%;xoil.lozi InClosed,, + 0.75 0.73 426 16.64
Hip ‘;X}I’r%z‘:nz E‘g%%) - 2%; InD3. =005 495 095 1.60 7.20
Dip ‘i"iﬁ%‘jﬁ;ﬁgﬁ i§ . fﬁg; InDor =031 579 68 108.58 22.40
GLp exxfl’rg(;szllrg){f%?ém XDz +0.24 473 o7 451 18.09
Vip ixi%zfnz 1312135;) J;Ol‘.loglzx InDsp +017 g6 085 22.87 11.21

AGBLp exp(0.66 x InHosy, + 0.15 x InDsp, + 0.14 077 076 15.19 1851

x InBp +2.31) x 1.015

Notes. DBHj;4,r: mean diameter at breast height for UAV-LiDAR model; Hjjg,,: Lorey’s mean height for UAV-LiDAR
model; Djjg,,: stem density for UAV-LiDAR model; Gji4q,: basal area for UAV-LiDAR model; AGBj4,,: aboveground
biomass for UAV-LiDAR model; Vj;q,r: volume for UAV-LiDAR model; DBHpap: mean diameter at breast height
for UAV-DAP model; Hpap: Lorey’s mean height for UAV-DAP model; Dpap: stem density for UAV-DAP model;
Gpap: basal area for UAV-DAP model; AGBpap: aboveground biomass for UAV-DAP model; Vpap: volume for
UAV-DAP model; DBH| p: mean diameter at breast height for LIDAR-DAP model; H p: Lorey’s mean height for
LiDAR-DAP model; Dy p: stem density for LIDAR-DAP models; G.p: basal area for LIDAR-DAP models; AGB;.p:
aboveground biomass for LIDAR-DAP models; Vi _p: volume for LIDAR-DAP models; L in the lower right corner
of the variable represents the metrics of LIDAR; D represents the metrics of DAP. L-D represents the metrics of both
LiDAR and DAP.

For the selected metrics of the UAV-LiDAR and UAV-DAP predictive models, Hos (selected seven
times in total) and Closed (selected five times in total) were most frequently selected, indicating that
these metrics are sensitive and representative of the forest structural attributes. For all predictive
models, canopy volume metrics (including Open, Oligo, and Closed) contributed to models that
were selected by six out of the 12 total models. The model-predicted and the field-measured
results of forest structural attributes predicted by UAV-LiDAR and UAV-DAP metrics are shown
in Figure 11; Figure 12, as are the cross-validation results. Overall, the UAV-LiDAR models
(R? = 0.56-0.90, "/RMSE = 12.78-26.87%) performed better than the UAV-DAP models (R? = 0.50-0.82,
rRMSE = 15.42-27.65%).
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Figure 11. Scatterplots of forest structural attributes between field-measured and UAV-LiDAR
model-predicted results for cross-validation. (a) Mean diameter at breast height; (b) Lorey’s mean
height; (c) stem density; (d) basal area; (e) volume; (f) aboveground biomass. Notes: DBH: mean
diameter at breast height; H: Lorey’s mean height; D: stem density; G: basal area; V: volume; AGB:
aboveground biomass.
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Figure 12. Scatterplots of forest structural attributes between field-measured and UAV-DAP
model-predicted results for cross-validation. (a) Mean diameter at breast height; (b) Lorey’s mean
height; (c) stem density; (d) basal area; (e) volume; (f) aboveground biomass. Notes: DBH: mean
diameter at breast height; H: Lorey’s mean height; D: stem density; G: basal area; V: volume; AGB:
aboveground biomass.
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4. Discussion

4.1. Comparison of UAV-LiDAR and UAV-DAP Point Clouds and Metrics

In this study, we demonstrated the capabilities of UAV-acquired LiDAR and DAP data for
estimating forest structural attributes in a coastal planted forest of East China. Although both LiDAR
and DAP data can provide three-dimensional information on forest structure, there are differences
in detecting the vertical distribution of the canopy [6], resulting in a difference of the variations of
LiDAR and DAP metrics. Previous studies [16,21,26,28,59-62] often acquired the LiDAR and DAP
data using airborne platforms or used UAV-DAP data (normalized by the airborne LiDAR-generated
DEM) to update forest inventory information [63]. Only a few studies used UAV platforms to acquire
both LiDAR and DAP data at the same time [40,43], and the assessments of both types of metrics are
limited. In this study, we found UAV-DAP point clouds had similarities with UAV-LiDAR point clouds
in the vertical height distribution. The point clouds of the two sensors showed similarity in dawn
redwood plots, but not in poplar plots. We visually compared the difference between UAV-LiDAR
and UAV-DAP data in six plots with different forest types (coniferous and broadleaved) and different
stem densities using point cloud profiles (Figures 4 and 5). Three sample plots (with different stem
densities) of each tree species, including dawn redwood (coniferous) and poplar (broadleaved), were
selected for a visual comparison. Most UAV-DAP point clouds were limited to the upper canopy, as
shown in Figures 4 and 5, because the method lacked the ability to penetrate below the canopy as can
UAV-LiDAR, except for the UAV-DAP point clouds of the dawn redwood plot in medium stem density
(Figure 4). This effect is likely due to the large gaps (regarding the crown width of an individual tree
according to LiDAR point clouds), which may have been caused by harvesting of the individual trees
due to their illness. Then, the information for the large gaps was captured by high-resolution images
and the image matching algorithm.

Compared with UAV-DAP point clouds of the poplar plots, UAV-DAP point clouds of the dawn
redwood plots were more similar to UAV-LiDAR point clouds. This similarity may exist because the
dawn redwood has a more regular tree crown shape than the poplar, which facilitated identification
by the algorithm. For plots with different stem densities (Figures 4 and 5), visually, UAV-DAP point
cloud profiles had similar canopy shapes to those of UAV-DAP, and dawn redwood plots were less
different than were poplar plots. Canopy height distribution (CHD) profiles were fitted by Weibull
curves. Parameter « represented the shape parameter (i.e., the vertical scaling and positioning factor),
and  represented the scaling parameter (the capability to control the increase or decrease in the width
of the distribution). We found that the Weibull shapes of UAV-LiDAR were slightly steeper than those
UAV-DAP, while the Weibull scales of UAV-LiDAR were slightly larger than those of UAV-DAP. This
difference may be caused by the concentrated distribution of LiDAR point clouds and the relatively
wide distribution of DAP point clouds. In this study, we compared the correlation of UAV-LiDAR
and UAV-DAP metrics using traditional metrics and canopy metrics (Figures 6 and 7) for different
tree species. The comparison results between the UAV-LiDAR and DAP metrics showed that the
metrics of upper percentiles (r = 0.95-0.96, 0.94-0.95) exhibited a higher correlation than the lower
percentiles (r = 0.92-0.93, 0.90-0.92), whereas the metrics of upper canopy return density (r = 0.21-0.24,
0.14-0.15) exhibited a lower correlation than those of lower canopy return density (r = 0.32-0.68,
0.31-0.52). The Weibull « parameter indicated a relatively higher correlation (r = 0.70-0.72) than the
Weibull B parameter (r = 0.07-0.60) for both dawn redwood and poplar plots. Because DAP was
limited to characterizing the outer canopy, most point clouds were focused on the surface of the canopy,
whereas the capability to acquire understory forest information was limited. The upper metrics of
DAP reflected the canopy surface, which was able to be well characterized by LiDAR. In contrast, the
lower metrics did not adequately represent the structural characteristics of the understory. In general,
dawn redwood plots (Figure 6) had greater correlation than poplar plots (Figure 7). The difference of
Hjs and Hys in the poplar plots between UAV-LiDAR and UAV-DAP metrics was greater than that in
the dawn redwood plots, because poplar (broadleaf) has structural instability and is easily disturbed
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by strong wind or heavy snow. The Hey of UAV-LiDAR was larger than that of UAV-DAP, indicating
the ability of LIDAR to penetrate through the forest canopy and obtain the below-canopy information,
and highlighting the limitation of DAP in characterizing the outer canopy information; the same trend
was reported in previous studies [6].

The boxplot of UAV-LiDAR and UAV-DAP metrics (Figure 8) showed that the difference in
height-based metrics was the smallest and that the ranges of plots varied closely. Compared with
the median line of plots, as the height percentiles increased, UAV-LiDAR and UAV-DAP data were
closer to each other, indicating the similarity of the two suites of metrics, which is the same trend
as that exhibited by the height percentile metrics in Figures 6 and 7. There were similar increases
for UAV-LIiDAR and UAV-DAP data as the height percentiles increased, as Vastaranta et al. (2013)
found [59]. In this study, in order to further analyze the influence on forest conditions for DAP, we
selected dawn redwood plots with different heights and stem densities to assess the variations of the
plots (Figures 9 and 10). In general, the higher similarity between the UAV-LiDAR and DAP metrics
appeared in the dawn redwood plots with higher height and lower stem density. One of the reasons
may be that, in more open forest, the DAP point clouds resemble more the LiDAR ones since it is
possible to obtain photogrammetric points in canopy gaps, thus providing more height variation
in DAP point clouds. In this study, by comparing the different stem densities of dawn redwood
plots, it was found that lower-stem-density plots had more similarity than other plots. The reason for
this similarity may be that, in a mature forest, low-stem-density plots are related to taller trees and,
thus, can provide more distinguishing characteristics. To meet the needs of silvicultural treatments in
planted forests, young trees were usually planted with high density. With the increase in tree height
and canopy width, thinning was applied to ensure the robust growth of the stand, which reduced the
stem density. Therefore, in this study, the medium- and high-density plots were mostly young and
middle-aged forest stands, while the low-density plots were mature forests. Mature forests have a
relatively stable stand structure and canopy information, which increases the probability that the image
matching algorithm will capture feature elements, thus improving the similarity between UAV-LiDAR
and UAV-DAP.

4.2. Forest Structural Attribute Modeling and Accuracy Assessment

As reported by Wallace et al. (2016) [43] with respect to the estimation of forest attributes, more
forest structural attributes should be examined with the rapid development of sensor technology and
the application of new analysis methods to data collected from UAVs [34,64]. In this study, we assessed
more forest structural attributes (i.e., DBH, Lorey’s mean height, stem density, basal area, volume,
and aboveground biomass) using UAV-LiDAR and UAV-DAP metrics combined with field-measured
data. The accuracies of UAV-LiDAR (Adj-R? = 0.58-0.91, "/RMSE = 9.03-24.29%) predictive models
for forest structural attributes were relatively higher than those of UAV-DAP (Adj-R? = 0.52-0.83,
rRMSE = 12.20-25.84%) models. We found the greatest difference between UAV-LiDAR and UAV-DAP
predictive models for volume (AAdj-R? = 0.09, ArRMSE = 4.20%) and the lowest difference for basal
area (AAdj—R2 =0.03, ArRMSE = 0.86%). The UAV-LiDAR model outcomes showed that the estimation
of Lorey’s mean height (Adj-R? = 0.91, P/RMSE = 9.03%) and volume (Adj-R? = 0.79, P/RMSE = 14.04%)
had the greatest accuracies, followed by aboveground biomass (Adj-R? = 0.71, r"RMSE = 19.75%),
DBH (Adj-R2 = 0.69, Y/RMSE = 19.92%), and basal area (Adj—R2 = 0.66, Y/RMSE = 18.36%), whereas
stem density (Adj-R? = 0.58, FRMSE = 24.29%) had a relatively lower accuracy. The UAV-DAP model
outcomes showed that the estimation of Lorey’s mean height (Adj-R? = 0.83, "/RMSE = 12.20%) and
volume (Adj-R? = 0.70, rRMSE = 18.24%) had the greatest accuracies, followed by aboveground
biomass (Adj—R2 = 0.65, r/RMSE = 21.68%), basal area (Adj—R2 = 0.63, r/RMSE = 19.22%), and DBH
(Adj-R? = 0.57, rRMSE = 22.52%), whereas stem density (Adj-R?> = 0.52, "/RMSE = 25.84%) had
a relatively lower accuracy. Hall et al. (2005) [65] used airborne LiDAR data to estimate stand
structural attributes in the Colorado Front Range, USA. The results showed that Lorey’s mean height
(R? = 0.87, standard error = 0.69) had the highest accuracies, followed by aboveground biomass
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(R? = 0.74, standard error = 0.20) and stem density (R? = 0.67, standard error = 0.36). Bottalico et al.
(2017) [66] modeled several forest structural attributes using airborne LiDAR-derived metrics in
Italy. The model results indicated that Lorey’s mean height had the highest accuracy (R? = 0.83,
rRMSE = 10.5%) among all the extracted attributes. White et al. (2015) [28] selected complex
coastal natural forest as the study area. LiDAR and DAP metrics were separately derived from
airborne LiDAR and DAP point clouds; then, the point cloud metrics and plot-level models for
Lorey’s height, basal area, and gross volume were compared. The results showed that the most
significant difference in the predicting models of the two data sources was for Lorey’s mean height
(ArRMSE = 5.04%), followed by gross volume (ArRMSE = 3.63%), and the lowest difference was for
basal area (ArRMSE = 2.33%).

There are two reasons explaining the higher accuracies of UAV-LiDAR models than those of
UAV-DAP models. One is that DAP point clouds have limited capability to penetrate through the
forest canopy and acquire the vertical distribution information for the whole canopy, which leads
to a lower ability to estimate forest structural attributes [28,59,67]. The other is that DAP data can
be affected by image quality, thereby further impacting the image matching algorithm [27,59]. The
lower accuracies of models for UAV-DAP can be partly attributed to shadows and occlusions from
surrounding trees or the occasional shaking of leaves, especially in broadleaf stands, which may
impact the algorithm. Zhang et al. (2017) [47] used airborne LiDAR data and extracted canopy
metrics to estimate forest structural parameters in a north subtropical secondary forest. The results
indicated that the estimation accuracies of Lorey’s mean height (Adj-R? = 0.61-0.88) and aboveground
biomass (Adj-R? = 0.54-0.81) models were the highest, followed by volume (Adj-R? = 0.42-0.78), DBH
(Adj-R? = 0.48-0.74), and basal area (Adj-R? = 0.41-0.69), whereas stem density (Adj-R? = 0.39-0.64)
models were relatively lower. The models showed lower accuracies than in the study for Lorey’s mean
height (Adj-R? = 0.83-0.91), aboveground biomass (Adj-R? = 0.65-0.71), volume (Adj-R? = 0.70-0.79),
DBH (Adj-R? = 0.57-0.69), basal area (Adj-R? = 0.63-0.66), and stem density (Adj-R? = 0.52-0.58). It was
likely that the planted forest in this study had a simpler and more homogeneous forest structure than
the secondary forest, resulting in higher estimation accuracies.

4.3. Limitations of DAP Point Clouds and Future Works

The results of this study indicated that DAP with a lower point density than LiDAR may not
strongly affect the estimation accuracies of plot-level forest structural attributes, although DAP point
clouds exhibited higher density than LiDAR in some other studies [26,28,60]. Recently, Lin et al.
(2011) [68] found that, compared to airborne LiDAR, UAV-based LiDAR improved point density
to support forest measurement with higher precision. Dandois and Ellis (2015) [69] used the SFM
algorithm to produce DAP point clouds of temperate deciduous forests at different UAV altitudes and
image overlaps. They found that accurate estimates of canopy height were obtained under higher
overlap (>80%) conditions, while no significant differences were found in height error at different
altitudes (20-80 m) with their own GSD (0.8-3.4 cm). The authors considered the overlap to be crucial
for DAP. According to their research, based on UAV-DAP data, the accuracy of estimations of forest
structural attributes may be enhanced with higher overlap. However, due to the large difference
between altitudes, this possibility deserves further studies to assess the variations of DAP and LiDAR
metrics across different altitudes.

One limitation of DAP point clouds generated from the SFM algorithm is that the accuracy and
effectiveness of SEFM may be affected by the collection of imageries under different forest conditions.
As this study indicated, the imageries were difficult to match, and resulted in higher error rates when
using forests with the condition of lower mean tree height and higher stem density. Additionally, to
some extent, shadows and occasional vibrations of the UAV platform and tree leaves from the canopy
could be responsible for the final matching results. In this study, different tree species were considered
and analyzed. Dawn redwood (a coniferous tree with a conical crown) and poplar (a broadleaf tree with
an ellipsoid crown) were chosen because of their typical crown architecture. However, similar studies
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on different species should be carried out in other forest conditions, such as in different climatic zones
and forest types (e.g., natural and secondary forest). UAV-acquired DAP data help provide low-cost,
high-resolution, and continuously updated forest information for sustainable forest management. DAP
has the potential to provide 3D point clouds similar to those provided by LiDAR on the canopy surface,
but its limited ability to penetrate the canopy surface makes it difficult to acquire DEM, especially in
dense-canopy forests [6], where LIDAR can provide highly accurate DEM.

In the future, a cost-effective and convenient means of updating forest inventory information
by integrating LiDAR-derived DEM and multi-temporal DAP data should be developed. Moreover,
not only can the canopy structural information be acquired by DAP, but spectral indices and texture
information can also be obtained from spectral sensors. It will be valuable to assess the effects on the
accuracies for estimating forest attributes by combining structural and spectral metrics. In this study,
for dawn redwood (coniferous tree), DAP point clouds provided more similar structural attributes
with LiDAR than for poplar (broadleaf tree). It is worth testing DAP-based tree segmentation and then
obtaining individual tree information to enhance the accuracy of estimations of structural attributes.
In addition, UAV-based DAP provides a top-down view to acquire information on the upper canopy,
whereas ground-based DAP technology can characterize the understory of canopy structure [70]; the
next logical step is to integrate UAV and ground-based DAP to obtain the complete forest vertical
structure in a timely and cost-effective manner.

5. Conclusions

In this study, we used UAV-based LiDAR and DAP data to acquire two suites of point clouds,
and compared the performance and similarity of point cloud-based metrics, as well as the accuracies
of forest structural attributes predicted by the metrics, in a subtropical planted forest of east China.
Since DAP data can characterize forest upper canopy structure at a lower cost and have the potential
to provide 3D point clouds as with LiDAR, the comparison of UAV-LiDAR and DAP metrics was
performed across plots among different conditions (i.e., a range of tree species, height, and stem density)
to provide deeper assessments of the planted forest. The results indicated that low-cost UAV-DAP data
had the ability to provide estimations of forest structural attributes with similar accuracies compared to
those provided by UAV-LiDAR data in the planted forests. The results showed that a higher similarity
between both suites of metrics appeared in the dawn redwood plots with greater height and lower
stem density. The accuracies of UAV-LiDAR forest structural attribute predictive models were higher
than those of UAV-DAP models. This study proved that the high-resolution and low-cost UAV-DAP
data are useful and comparable to LiDAR for forest inventory and sustainable forest management in
planted forests, by accurately estimating their structural attributes.
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Appendix A
Table A1l. Equations used in this study for calculating volume.
Tree Species Equations Parameters
A =0.000058777042, B = 1.9699831, C = 0.89646157,
Dawn redwood V =A x DB x ((E+F x eGxDnHH)C E =1.000438, F = —0.00024755,

G = —0.07897864, H = 7101.252.

A =0.000050479055, B = 1.9085054, C = 0.99076507,
Poplar V=AxDB x ((E+F x eG>xDHHC E = 0.9236004, F = 0.0502109,
G = —0.09686479, H = —37.80742.

Note: Tree-level volumes of dawn redwood and poplar were calculated using the equation V = A x DB x ((E + F x
e(G xD)YM)C where D is the DBH (ecm) and A, B, C, E, E, G, and H are coefficients.
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