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Abstract: Major earthquakes can cause serious vegetation destruction in affected areas. However,
little is known about the spatial patterns of damaged vegetation and its influencing factors.
Elucidating the main influencing factors and finding out the key vegetation type to reflect spatial
patterns of damaged vegetation are of great interest in order to improve the assessment of vegetation
loss and the prediction of the spatial distribution of damaged vegetation caused by earthquakes.
In this study, we used Moran’s I correlograms to study the spatial autocorrelation of damaged
vegetation and its potential driving factors in the nine worst-hit Wenchuan earthquake-affected cities
and counties. Both dependent and independent variables showed a positive spatial autocorrelation
but with great differences at four aggregation levels (625 × 625 m, 1250 × 1250 m, 2500 × 2500 m,
and 5000 × 5000 m). Shrubs can represent the characteristics of all damaged vegetation due to the
significant linear relationship between their Moran’s I at the four aggregation levels. Clustering of
similar high coverage of damaged vegetation occurred in the study area. The residuals of the
standard linear regression model also show a significantly positive autocorrelation, indicating that
the standard linear regression model cannot explain all the spatial patterns in damaged vegetation.
Spatial autoregressive models without spatially autocorrelated residuals had the better goodness-of-fit
to deal with damaged vegetation. The aggregation level 8 × 8 is a scale threshold for spatial
autocorrelation. There are other environmental factors affecting vegetation destruction. Our study
provides useful information for the countermeasures of vegetation protection and conservation,
as well as the prediction of the spatial distribution of damaged vegetation, to improve vegetation
restoration in earthquake-affected areas.

Keywords: Vegetation destruction; Spatial autocorrelation; Spatial autoregressive model; Wenchuan
earthquake; Multi-scale

1. Introduction

Major earthquakes are geologically disastrous and can trigger serious ecological degradation.
In addition to causing massive human casualties, such earthquakes induce vegetation destruction [1],
heavy economic losses [2], biodiversity reduction [3], aggravated sedimentation [4], and landscape
fragmentation [5]. Ecological restoration in earthquake-affected areas is a slow process due to the
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unstable, crude, and nutrient-poor soil conditions left in the wake of secondary geo-hazards [1,3,
6]. To improve the restoration process and to hasten vegetation recovery in earthquake-degraded
ecosystems, many researchers have opted to report the control factors of post-earthquake vegetation
cover and plant species compositions using remote sensing data and field surveys [6–9]. However,
the effects of topographic and seismic factors on vegetation destruction in a major earthquake have
not been reported, leaving a great need for insight into these factors when assessing vegetation loss
and predicting the spatial distribution of damaged vegetation after earthquakes worldwide. Hence,
during the design and implementation of restoration programs, it is necessary to elucidate the main
factors influencing the degree of vegetation damage.

The catastrophic 8.0 Ms Wenchuan earthquake struck Sichuan Province, China on May 12, 2008.
It killed at least 68,000 people and caused an estimated 845.1 billion Ren Min Bi (RMB) in direct
economic losses [10]. Wild and horticultural vegetation were also seriously damaged and subsequently
buried by debris flow, landslides, and formerly dammed lakes [1]. It is estimated that across the
Sichuan province, 32.867 × 104 ha of vegetation destruction and 2098.63 × 104 m3 of stocking volume
loss were caused by the earthquake and subsequent geo-hazards [11].

Vegetation can naturally recover from large disturbances via succession, but in the wake of
severe disturbances, such a recovery takes longer without human facilitation [12,13]. Therefore,
vegetation recovery programs are of great importance in the years after catastrophic earthquakes
and are a regular restoration method applied to degraded lands [14]. Several studies have assessed
post-earthquake vegetation recovery and its effects on soil erosion control [15–17]. These studies used
remote sensing images to analyze the recovery potential of damaged vegetation in earthquake-affected
areas. While such studies certainly improved vegetation recovery through informing restoration
protocols [17], there is still a need to evaluate which topographic and seismic factors significantly
influenced vegetation destruction, particularly with respect to specific countermeasures for different
vegetation types. However, such studies are lacking because unaided natural recovery occurred
in over half of the total restoration area [17]. Our study aims to fill in the gaps and contribute to
the growing body of knowledge on regionalized countermeasures for the vegetation and spatial
distribution prediction of vegetation destruction of earthquake-affected areas by presenting a spatial
autocorrelation analysis of the damaged vegetation and its influencing factors.

Conventional statistical methods based on linear and logistic regressions assume the data and
random distribution of their residuals to be statistically independent and identically distributed [18].
However, the spatial land use data have a spatial dependency, a phenomenon known as spatial
autocorrelation, which contains useful information but requires appropriate statistical methods to
analyze [19]. Spatial autocorrelation can be used to measure the degree of spatial association of random
variables with nearby variables across a geo-referenced space [18]. Though the spatial autocorrelation
analysis could be seen as a methodological disadvantage [19], applying it has successfully described the
spatial variability of land use [19–21]. Previous studies show that the released energy of the Wenchuan
earthquake caused a sudden dislocation in the approximate 300 km-long Yingxiu-Beichuan fracture
along the faults of the Longmengshan fault system [1,22], indicating that spatial dependency may exist
in the destruction of earthquake-affected areas. However, to our knowledge, the spatial autocorrelation
analysis has rarely been used to characterize the spatial structure of damaged vegetation, especially at
different aggregation levels. In addition, our study area was the main component of the restoration
areas where the Chinese government has carried out a nearly 160 billion USD recovery plan [23].
Our research provides meaningful targeted information for future vegetation recovery, vegetation
protection and conservation, and the prediction of vegetation destruction caused by earthquakes.

Nine severely damaged cities and counties—including Jiangyou, Mianzhu, Shifang, Beichuan
County, Anxian County, Maoxian County, Pingwu County, Qingchuan County, and Wenchuan
County—were chosen as our study area, where we collected data on topographic factors (including
slope angles, orientations, distance to river, and elevation), seismic factors (including seismic
intensity and distance to fault), human accessibility (including distances to road and residential
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area), and damaged vegetation. To thoroughly understand the relationship between the damaged
vegetation and influencing factors in the Wenchuan earthquake-affected area, we used a spatial
autocorrelation analysis to reveal the regional distribution, scale effect, and main influencing factors of
damaged vegetation.

The main objectives of this study are (1) to characterize the spatial variability of damaged
vegetation at different aggregation levels in the Wenchuan earthquake-affected area, (2) to identify the
representative components of damaged vegetation, and (3) to clarify the main influencing factors on
the spatial variability of damaged vegetation.

2. Materials and Methods

2.1. Study Area and Geological Setting

As seen in Figure 1, the nine cities and counties chosen for our study (N 30◦45′~33◦02′ and
E 102◦51′~105◦38′) cover about 26,249 km2 and are located at the eastern margin of the Tibetan Plateau
in the most severely earthquake-affected areas of west Sichuan Province, China. They are characterized
by semiarid hot and subtropical humid monsoon climates, with average annual precipitations of
about 506 mm and 1503 mm, respectively. The mean annual temperatures are 13.8 and 15.0 °C
respectively, and the mean annual evapotranspirations are 1392 mm and 1156 mm. From north to east,
the elevation gradually decreases from 5230 to 462 m above sea level (a.s.l.), with a slope from 0◦ to
76◦. The dominant soil types include brown soil, valley brown soil, and yellow soil.

The Wenchuan earthquake’s energy source was the famous active thrust Longmenshan fault,
located at the conjunction of the Sichuan Basin western margin and the eastern edge of the Tibetan
Plateau [24,25]. The Longmenshan fault initially formed in the Mesozoic and further developed
throughout the Cenozoic from the collision of the Indian Plate onto the Eurasian Plate, resulting in the
rapid uplift and tectonic deformation of the Longmenshan Mountain range [26]. The Longmenshan
fault includes three regions: the Back fault, the Central fault, and the Front fault. As reverse faults,
the Back and the Front faults consist of a series of reverse imbricate faults with a NE 250–450 orientation.
They extend from Wenchuan County to Maoxian County and from Pengxian County to Guanxian
County, respectively. Unlike the Back and the Front fault, the Central fault is a thrust fault with a
NE 350–450 orientation, extending from the town of Yingxiu to Beichuan County. The Central fault
and the Front fault both extend for 200 km and show dextral strike-slip movements along the eastern
margin of the Tibetan Plateau, with higher slip rates (1–10 mm·yr−1) than throw rates (<1 mm·yr−1)
since the Epipleistocene [25].

2.2. Data Collection

To investigate the spatial variation of damaged vegetation in the Wenchuan earthquake-affected
area, information on the vegetation damage (Table 1) was extracted from an overlay analysis between
the geo-hazard interpretations of remote sensing images from the China-Brazil Earth Resources Satellite
(CBERS-02B) (Figure 1) and pre-earthquake vegetation distribution supplied by the Sichuan Forest
Inventory and Planning Institution (SFIPI) [27]. The CBERS-02B images have a swath of 113 km and
5 wave bands, as seen in Table 2. To avoid the negative effects of cloud and haze on remote sensing
images, 49 CBERS-02B CCD images containing 5 spectral bands (including red, green, blue, NIR1, and
NIR2) with a pixel resolution of 19.5 m were acquired from May 14 to 28, 2008, excluding May 21 and
27 (Table 3). This was the period during which the Chinese government reset the orbit parameter of
CBERS-02B to monitor the geo-hazards daily following the Wenchuan earthquake. Due to spatial
incompatibility between band-5 and the other bands in the CBERS-02B CCD images, we used the
methods described by Li et al. [28] to re-project band-5 and then generated composite images using the
re-projected band-5 and the other four bands. We applied the geometric correction using a second-order
polynomial model with 24 ground control points (GCP) to ensure accuracy, based on primary scale
Chinese national topographic maps (1:50,000). The spatial inconsistency errors were bounded within
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1 pixel in this study. Subsequently, we interpreted the distribution of geo-hazards (including rock
avalanches, landslides, debris flows, and landslide-dammed lakes) and used the GIS overlay analysis of
pre-earthquake vegetation distribution, interpreted by SFIPI and the post-earthquake geo-hazards
distribution, to determine the distribution of damaged vegetation, which was defined as a certain
proportion of the pre-earthquake vegetation in a pixel, removed or destroyed by geo-hazards.
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Figure 1. The distribution of damaged vegetation in nine worst-hit cities and counties and the typical
CEBRS-02B image screenshots of damaged vegetation in the Wenchuan earthquake affected area.



Forests 2019, 10, 195 5 of 21

Table 1. The areas of different damaged vegetation types in nine worst-hit cities and counties (km2): Among all the vegetation types, we defined economic forests as
the plantation that produces fresh or dry fruits, edible oils, beverages, spices, industrial raw materials, and medicinal materials.

Vegetation
Type

Evergreen
Broadleaf

Forests

Deciduous
Broadleaf

Forests

Mixed
Evergreen and

Deciduous
Broadleaf

Forests

Mixed
Broadleaf and

Coniferous
Forests

Deciduous
Coniferous

Forests

Evergreen
Coniferous

Forests

Economic
Forests

Bamboo
Forests Shrubs Meadows Total

Area 69.74 122.64 120.15 42.24 10.50 184.99 268.12 5.71 338.60 86.79 1249.47
Patches 870 2245 2285 627 195 2669 4571 108 3165 691 17,426

Table 2. The 5 wavebands of a CBERS-02B CCD image.

Band No. Spectral Range/nm

1 0.45–0.52
2 0.52–0.59
3 0.63–0.69
4 0.77–0.89
5 0.51–0.73

Table 3. The CBERS-02B CCD images used for the interpretation of geo-hazards distribution.

Date Image Scene (Path/Row) Number Data Quality

2008.05.14 12/63, 12/64, 12/65 3 Some cloud covered
2008.05.15 11/62 1 Cloud and haze free
2008.05.16 11/63, 11/64, 11/65, 11/66, 11/67 5 Some cloud covered
2008.05.17 12/63, 12/64, 12/65, 12/66, 12/67 5 Some cloud covered
2008.05.18 11/63, 11/64, 11/65, 11/66, 11/67 5 Some cloud covered
2008.05.19 11/64, 11/65, 12/63, 12/66, 12/67 5 Some cloud covered
2008.05.20 12/63, 12/64, 12/65, 12/66 4 Some cloud covered
2008.05.22 11/63, 11/64, 11/65, 11/66, 11/67 5 Some cloud covered
2008.05.23 12/63, 12/64, 12/65, 12/66 4 Cloud and haze free
2008.05.24 10/63, 10/64, 10/65 3 Cloud and haze free
2008.05.25 11/64 1 Cloud and haze free
2008.05.26 11/63, 11/66, 11/67 3 Some cloud covered
2008.05.28 11/63, 11/64, 11/65, 11/66, 11/67 5 Some cloud covered
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In this study, the digital elevation model (DEM) of the 25 m × 25 m cell size Sichuan Province
study area (Figure 2), provided by the Institute of Mountain Hazards and Environment, was used to
calculate and extract the topographic factors, including river systems, elevation, slope, and aspect
(Figure 2), with the spatial analyst tools in ARC/INFO 9.2. The fundamental geographic information
features of 1:250,000 for the Sichuan Province, including roads and residential areas, were chosen as
proxies for human accessibility. The fault data were extracted from the map of horizontal peak ground
acceleration (PGA) in the Wenchuan earthquake-affected area, created by Tang et al. [29]. In addition,
the seismic intensity zone data were extracted from the Ms 8.0 Wenchuan earthquake seismic intensity
map created by Xu et al. [30]. All data were combined with the damaged vegetation data using an
overlay analysis. In this study, a set of 19 potential drivers of earthquake damage degree (Table 4) were
selected for the damaged vegetation at four different aggregation levels. The highest resolution in the
data set is 1 × 1 (625 × 625 m) grid cells. With the accumulative data of 2 × 2, 4 × 4, and 8 × 8 grid
cells, a total of four aggregation levels were created to simulate different scales using the methods
described in Overmars et al. [19].
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Figure 2. The digital elevation model (DEM) of the 25 m × 25 m cell size (a), aspect (b), and slope (c) in
nine worst-hit cities and counties.
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Table 4. The damaged vegetation types and potential drivers used in the statistical analysis in nine
severely damaged cities and counties.

Variable Code Unit

Damaged vegetation types
Percentage of all damaged vegetation A

Percentage of bamboo forests B
Percentage of mixed broadleaf and coniferous forests C

Percentage of deciduous broadleaf forests D
Percentage of deciduous coniferous forests E

Percentage of economic forests F
Percentage of evergreen broadleaf forests G
Percentage of evergreen coniferous forests H

Percentage of meadows I
Percentage of mixed evergreen and deciduous broadleaf forests J

Percentage of shrubs K
Drivers

Elevation elevation m a.s.l.
Percentage of slope class 1 (0–10◦) slope0_10

Percentage of slope class 2 (10–20◦) slope10_20
Percentage of slope class 3 (20–30◦) slope20_30
Percentage of slope class 4 (>30◦) slope30

Percentage of north slope (270–360◦) 270_360
Percentage of west slope (180–270◦) 180_270
Percentage of south slope (90–180◦) 90_180

Percentage of east slope (0–90◦) 0_90
Percentage of flat area (0◦) flat

Distance to nearest urban centre county_dis km
Distance to nearest road road_dis km
Distance to nearest river river_dis km
Distance to nearest fault fault_dis km

Percentage of VII seismic intensity zone VII_area
Percentage of VIII seismic intensity zone VIII_area
Percentage of IX seismic intensity zone IX_area
Percentage of X seismic intensity zone X_area
Percentage of XI seismic intensity zone XI_area

2.3. Spatial Autocorrelation Analysis

Spatial autocorrelation is defined as the phenomenon of geographic proximity’s potential to
determine the values of random variables over distances that are similar or dissimilar to randomly
associated pairs of observations [31]. Researchers have used spatial autocorrelation to describe the
dependency and covariance of variables within a spatial neighborhood [32–34].

2.3.1. Global Spatial Autocorrelation Statistics

Correlograms calculated with univariate (Moran’s I or Geary’s c) and multivariate data (Mantel
correlogram) can be used to quantify the spatial dependency per distance class [35–37]. In this study,
we used correlograms of the Moran’s I as described in Overmars et al. [19]. The formula is expressed
as follows [31]:

Moran’s I for h 6= i:

I(d) =
(1/W)∑n

h=1 ∑n
i=1 whi(yh − y)(yi − y)(

1
n

)
∑n

i=1 (yi − y)2
(1)

where yh and yi are the values of the observed variable at sites h and i, respectively; the values of whi
are weight matrices; and W in a (n× n) weight matrix is the sum of the weights whi for a given distance
class, i.e., the number of pairs used to calculate the coefficient.

Moran’s I can be calculated using a free software, Geoda [38], in which the value of Moran’s I
generally ranges from −1 to 1. High positive Moran’s I values indicate a positive autocorrelation,
which implies the clustering of similar values; low negative values, by contrast, represent a negative
autocorrelation, which implies the clustering of dissimilar values. A value close to zero indicates no
autocorrelation [39–41].
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2.3.2. Local Spatial Autocorrelation Statistics

Global spatial autocorrelation may not pick up the aberrant local spatial pattern that causes
some local patterns to be opposite to the global spatial trend [41]. To assess the influence of aberrant
local spatial patterns on the magnitude of the global statistic, Anselin [42] outlined a class of local
indicators of spatial association (LISA) (1) to assess the extent of significant local spatial clustering
around an individual location, (2) to indicate the local pockets of spatial non-stationarity, and (3) to
identify outliers or spatial regimes. The formula expressed in the form of a LISA is as follows [42]:

Ii =
(yi − y)

∑n
i=1 (yi − y)2

n

∑
j=1

wij(yi − y) (2)

Local Moran’s I can also be calculated by “GeoDa” with some visualization results—the
significance map of Moran’s I and spatial clustering [38].

2.3.3. Spatial Autoregressive Models

To avoid the effects of the biased estimation of error variance, t-test significance levels, and
the overestimation of R2 caused by conventional statistical methods when dealing with spatial
autocorrelation, a commonly used spatial autoregressive model is Equation (3) created by Anselin [43].
From Equation (3), we can derive several specific models by imposing restrictions [19,44]. Setting
W2 × 0 produces a spatial lag model (SLM) or mixed regressive-spatial autoregressive model
(Equation (4)) and expresses how the magnitude of a decision variable for a geographical grid
depends on the magnitudes of the decision variables set by other grids [44,45]. This model can
explain the additional variation y over the spatial sample via additional explanatory variables in the
matrix X [43]. Setting W1 = 0 produces a spatial error model (SEM) (Equation (5)) and describes the
spatial autocorrelation in the disturbances [44].

y= ρW1y + Xβ + u u = W2u + ε ε ∼ N
(

0, σ2 In

)
(3)

y= ρW1y + Xβ + ε ε ∼ N
(

0, σ2 In

)
(4)

y = Xβ + u u = W2u + ε ε ∼ N
(

0, σ2 In

)
(5)

In Equations (3)–(5), y is an n × 1 vector of cross-sectional dependent variables and X contains an
n × k matrix of explanatory variables with an associated k × 1 regression coefficient vector β. W1 and
W2 are n × n spatial weight matrices describing the interconnections between different locations, ρ is
the coefficient of the spatially lagged dependent variable, λ is the coefficient of the spatially correlated
errors, and ε is a vector or random error term [19,46].

In this study, two spatial autoregressive models (Equations (4) and (5)) are used. The maximum
likelihood estimation is used to estimate the parameters in GeoDa, since an ordinary least squares
estimation for spatial autoregressive models is biased [38]. We use the pseudo R2 (defined as the ratio of
variance of the predicted values over the variance of the observed values for the dependent variable)
and the value of the maximized log likelihood (LIK) to assess the fit in the spatial autoregressive
models and all other models [19,44]. In addition, we select the ρ value and its significance as the
percentage of the prediction that is obtained using the spatial part and the significance of spatial
autocorrelation [19].

2.4. Data Analysis

GeoDa was used to calculate the Moran’s I statistic. The weight matrices were established
based on distance [47] and were equal within a lag. The lag sizes chosen were 625 m, 1250 m, 2500 m,
and 5000 m, respectively at the 1 × 1, 2 × 2, 4 × 4, and 8 × 8 aggregation levels. Correlograms
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were calculated and compared for all combinations of the four aggregation levels, driving factors,
and ten vegetation types. Within a same lag, we used correlograms pairs between the Moran’s I of
the percentage of all damaged vegetation and ten vegetation types to create regression models to
determine their relationships.

To calculate SLM and SEM, GeoDa was used as well. We used the independent variables selected
method of de Koning et al. [48] to remove insignificant variables one by one until a model with only
significant variables remained.

3. Results

3.1. Spatial Autocorrelation Testing

3.1.1. Relationships between Correlograms of All Destructed Vegetation and Ten Vegetation Types at
the Four Cell Levels

As seen in Figure 3, the correlograms of the Moran’s I (distances as 625 m, 1250 m, 2500 m, and
5000 m of a lag respectively) of the percentage of all the damaged vegetation and ten vegetation types
are presented in 1 × 1, 2 × 2, 4 × 4, and 8 × 8 cells. The correlograms showed large differences in
Moran’s I between vegetation types. All the damaged vegetation and ten vegetation types, represented
in Figure 3, showed a significantly positive spatial autocorrelation (P < 0.001), which decreased
gradually and still had a significant autocorrelation with distance at all four aggregation levels.
All damaged vegetation, economic forests, evergreen coniferous forests, meadows, and shrubs had
a comparatively high Moran’s I across the lag distances at all four aggregation levels. Moran’s I of
ten vegetation types were significantly related to that of all the destructed vegetation across the lag
distances at all four aggregation levels (Table 5), indicating that the components of all the destructed
vegetation could represent the characteristics of its spatial autocorrelation. However, unlike the other
vegetation types having exponential function or power function relationships with all destructed
vegetation, shrubs had linear function relationships with all the destructed vegetation at all four
aggregation levels (Table 5).
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Figure 3. The relationships between the correlograms of the Moran’s I of ten vegetation types and
those of all the destructed vegetation at four different aggregation levels including (a) the 1 × 1
aggregation level, (b) the 2 × 2 aggregation level, (c) the 4 × 4 aggregation level, and (d) the 8 × 8
aggregation level. The points in black are significant (P < 0.001). The vegetation type abbreviations are
defined in Table 4.
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Table 5. The regression models between the Moran’s I of ten vegetation types and those of all the destructed vegetation across the lag distance of 625 m, 1250 m, 2500
m, and 5000 m comparatively at four corresponding aggregation levels. The vegetation type abbreviations are defined in Table 4.

Vegetation
Types

Grid Cells

625 m 1250 m 2500 m 5000 m

Regression Model R2 P Regression Model R2 P Regression Model R2 P Linear Model R2 P

B y = 0.0038e7.1518x 0.9856 <0.001 y = 0.0038e5.8931x 0.9889 <0.001 y = 0.2607x1.3364 0.9863 <0.001 y = 0.7096x − 0.0223 0.9928 <0.001
C y = 0.7278x1.7546 0.9988 <0.001 y = 0.7235x1.6897 0.9990 <0.001 y = 0.0183e5.2466x 0.9911 <0.001 y = 0.7119x1.3877 0.9798 <0.001
D y = 0.7577x1.5143 0.9912 <0.001 y = 0.6330x1.2145 0.9888 <0.001 y = 0.7096x − 0.0223 0.9958 <0.001 y = 0.7636x − 0.0202 0.9964 <0.001
E y = 0.0160e4.9371x 0.9861 <0.001 y = 0.6781x1.6046 0.9930 <0.001 y = 1.0191x1.6421 0.9926 <0.001 y = 0.0142e6.0289x 0.9909 <0.001
F y = 0.9241x1.3444 0.9999 <0.001 y = 0.8630x1.2584 0.9988 <0.001 y = 0.8497x − 0.0413 0.9943 <0.001 y = 0.7695x − 0.0224 0.9941 <0.001
G y = 0.8571x1.7323 0.9978 <0.001 y = 0.7468x1.6324 0.9996 <0.001 y = 0.0174e5.3293x 0.9791 <0.001 y = 0.3571x0.9674 0.9819 <0.001
H y = 0.7944x1.3188 0.9938 <0.001 y = 0.6699x1.1353 0.9920 <0.001 y = 0.6377x + 0.0033 0.9946 <0.001 y = 0.7324x + 0.0241 0.9889 <0.001
I y = 0.9775x − 0.0922 0.9982 <0.001 y = 1.1385x1.5587 0.9996 <0.001 y = 0.7920x1.4135 0.9834 <0.001 y = 0.5267x1.1235 0.9817 <0.001
J y = 0.0400e4.0595x 0.9911 <0.001 y = 0.6667x1.1313 0.9966 <0.001 y = 0.7435x − 0.0207 0.9986 <0.001 y = 0.8440x + 0.0360 0.9982 <0.001
K y = 0.9305x − 0.0324 0.9995 <0.001 y = 0.9545x − 0.0321 0.9989 <0.001 y = 0.9729x − 0.0339 0.9958 <0.001 y = 0.8864x − 0.0100 0.9945 <0.001
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3.1.2. Correlograms of Potential Driving Factors at the 1 × 1 Cell Level

Except for four slope aspects (the east, south, west, and north slopes) with comparatively lower
Moran’s I (Moran’s I < 0.200), all potential driving factors showed a significantly positive spatial
autocorrelation (P < 0.001) with a comparatively high Moran’s I (ranging from 0.338 to 0.793) at the
1 × 1 cell level, which also decreased gradually with distance (Figure 4a–d).
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3.1.3. LISA Map of All Damaged Vegetation at the 1 × 1 Cell Level

As seen in Figure 5, the cluster and significance maps of LISA for all damaged vegetation at the
1 × 1 aggregation level indicate that the high-high zone occupied 4146 out of 4854 grid cells with
<0.05 significance levels. This means that a clustering of similar high coverage of damaged vegetation
occurred in the Wenchuan earthquake-affected area, causing a highly fragmented wildlife habitat at
range-wide scales and the loss of a global biodiversity hotspot [17,49].
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3.1.4. Spatial Autocorrelation in Residuals

In this study, we used the residuals of the standard linear regression models in the first lag
constructed by Overmars et al. [19] to determine the scale threshold of the aggregation levels.
The residuals’ spatial autocorrelation in the first lag of all aggregation levels were significant in all the
destructed vegetation and ten vegetation types with Moran’s I > 0.130 except for the bamboo forest
vegetation type at the aggregation level 8 × 8 (Table 6). Moreover, the residuals’ spatial autocorrelation
weakened at aggregation levels 4 × 4 and 8 × 8, suggesting that the aggregation level 8 × 8 may be a
scale threshold for spatial autocorrelation.

Table 6. Moran’s I of the residuals in the first lag at different aggregation levels.

Vegetation Type Aggregation Level

1 × 1 2 × 2 4 × 4 8 × 8

All damaged vegetation 0.319 0.332 0.335 0.273
Bamboo forests 0.284 0.168 0.133 0.066

Mixed broadleaf and coniferous forests 0.336 0.280 0.323 0.289
Deciduous broadleaf forests 0.376 0.329 0.329 0.265
Deciduous coniferous forests 0.333 0.270 0.329 0.310

Economic forests 0.365 0.338 0.354 0.257
Evergreen broadleaf forests 0.399 0.293 0.274 0.170
Evergreen coniferous forests 0.403 0.318 0.242 0.268

Meadows 0.485 0.450 0.352 0.263
Mixed evergreen and deciduous broadleaf forests 0.424 0.347 0.340 0.307

Shrubs 0.425 0.392 0.405 0.301

The numbers in bold font are not significant (P > 0.001).

3.2. Results of Spatial Autoregressive Models

We used the standard linear model based on ordinary least squares, spatial lag model (SLM), and
spatial error model (SEM) as spatial autoregressive models to illustrate their differences in all damaged
vegetation at aggregation level 1 × 1 (Table 7).

Table 7. The model parameters of three different models for all damaged vegetation at aggregation
level 1 × 1.

Variable Coefficient S.D. t-Statistic Probability

(1) Linear model
Constant 0.0041 0.0019 2.1762 0.0296

Distance to nearest river (km) −0.0076 0.0002 −37.5753 0
Distance to nearest fault (km) −0.0017 0.0001 −12.2201 0
Distance to nearest road (km) −0.0014 0.0002 −7.2000 0

Distance to nearest urban centre (km) 0.0032 0.0003 11.8087 0
Elevation (m a.s.l.) 2.14 × 10−5 1.75 × 10−6 12.2063 0

Percentage of slope class 2 (10–20◦) 0.1960 0.0114 17.1561 0
Percentage of slope class 3 (20–30◦) 0.1566 0.0088 17.7884 0
Percentage of slope class 4 (>30◦) 0.1915 0.0082 23.3667 0

Percentage of south slope (180–270◦) −0.0155 0.0076 −2.0262 0.0428
Percentage of VIII seismic intensity zone 0.1022 0.0072 14.2505 0
Percentage of IX seismic intensity zone 0.0928 0.0074 12.4649 0
Percentage of X seismic intensity zone 0.1497 0.0076 19.6639 0
Percentage of XI seismic intensity zone 0.1987 0.0080 24.9411 0

R2 0.5053
Log likelihood (LIK) 54592.9
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Table 7. Cont.

Variable Coefficient S.D. Z-value Probability

(2) Spatial lag model
ρ 0.5566 0.0032 172.0463 0

Constant −0.0037 0.0016 −2.3945 0.0166
Distance to nearest river (km) −0.0034 0.0002 −20.4096 0
Distance to nearest fault (km) −0.0006 0.0001 −5.5366 0
Distance to nearest road (km) −0.0010 0.0002 −6.3301 0

Distance to nearest urban centre (km) 0.0010 0.0002 4.3178 0
Elevation (m a.s.l.) 1.24 × 10−5 1.44 × 10−6 8.6397 0

Percentage of slope class 2 (10–20◦) 0.1097 0.0094 11.7252 0
Percentage of slope class 3 (20–30◦) 0.0965 0.0072 13.3727 0
Percentage of slope class 4 (>30◦) 0.1080 0.0067 16.0661 0

Percentage of south slope (180–270◦) −0.0048 0.0062 −0.7753 0.4382
Percentage of VIII seismic intensity zone 0.0546 0.0059 9.2862 0
Percentage of IX seismic intensity zone 0.0523 0.0061 8.5668 0
Percentage of X seismic intensity zone 0.0755 0.0063 12.0679 0
Percentage of XI seismic intensity zone 0.0942 0.0066 14.3581 0

R2 0.6685
Log likelihood (LIK) 64938.3

(3) Spatial error model
ρ 0.5923 0.0036 163.659 0

Constant 0.0149 0.0009 16.5203 0
Distance to nearest river(km) −0.0049 0.0003 −19.5888 0
Distance to nearest fault(km) −0.0007 0.0002 −3.8453 0.0001
Distance to nearest road(km) −0.0026 0.0003 −10.4537 0

Distance to nearest urban centre(km) −3.43 ×
10−5 0.0004 −0.0942 0.9250

Elevation (m a.s.l.) 1.68 × 10−5 2.15 × 10−6 7.8162 0
Percentage of slope class 2 (10–20◦) 0.1028 0.0106 9.6784 0
Percentage of slope class 3 (20–30◦) 0.1052 0.0085 12.4366 0
Percentage of slope class 4 (>30◦) 0.1174 0.0080 14.6208 0

Percentage of VIII seismic intensity zone 0.0908 0.0075 12.1203 0
Percentage of IX seismic intensity zone 0.0935 0.0076 12.2432 0
Percentage of X seismic intensity zone 0.1377 0.0080 17.3240 0
Percentage of XI seismic intensity zone 0.1769 0.0086 20.5106 0

R2 0.6416
Log likelihood (LIK) 61732.3

The standard linear model contains thirteen significant variables (P > 0.05) selected using a
stepwise regression from a set of 19 potential drivers with parameters including the measure of fit
(R2), coefficient estimate, standard error, t-test value, associated probability, and log likelihood (LIK)
(Table 7(1)). We used the LIK to compare the goodness-of-fit of three spatial models. From Table 7(2),
we found that the spatial lag model had smaller estimated regression coefficients and standard errors,
as well as a higher R2, using the same variables in the standard linear model. The significance of the
parameters decreased as well, and the variable “Percentage of south slope (180–270◦)” was no longer
significant (P < 0.05). Moreover, the spatial lag model has a higher LIK than the standard linear model,
indicating a better goodness-of-fit.

Based on the results of the spatial lag model, we excluded the insignificant variable to construct
the spatial error model. From Table 7(3), we found that the pseudo R2 and the LIK of the spatial
error model decreased from 0.6685 to 0.6416 and from 64,938.3 to 61,732.3 compared with the spatial
lag model, indicating that excluding the insignificant variable only results in a slight reduction of
the goodness-of-fit.
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The spatial autocorrelation in the residuals of spatial lag and spatial error models weakened
(Figure 6). Furthermore, the difference in their spatial autocorrelations was negligible. Compared to
the spatial lag and spatial error models, the standard linear model had larger residuals with a positive
spatial autocorrelation. For example, as seen in Table 8, more grids with a comparatively higher/lower
original value of the residuals of the standard linear model are switched from positive/negative to
negative/positive or less positive/negative. Therefore, the residuals of the spatial error model are
considerably lower.

Table 8. The grids and percentages of the residuals of the standard linear model switched to the spatial
error model at aggregation level 1 × 1.

Grids of Positive Residuals of the
Standard Linear Model

Grids of Negative Residuals of the
Standard Linear Model

Switched to the
spatial error model

Negative/Less positive More positive Positive/Less negative More negative
264/2110

(2.50%/19.94%) 1854 (17.52%) 741/4439
(7.00%/41.95%) 1173 (11.09%)

Coverage of all
damaged

vegetation > 60%
1079 (10.20%) 465 (4.39%) - -

Coverage of all
damaged

vegetation < 20%
32 (0.30%) 69 (0.65%) 4332 (40.94%) 808 (7.64%)
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Figure 6. The correlograms of the Moran’s I of all damaged vegetation in the residuals of three models
at the aggregation level 1 × 1. The points in black are significant (P < 0.001). The points in red are
insignificant (P > 0.001). OLS: the standard linear model based on the ordinary least squares; SLM:
spatial lag model; and SEM: spatial error model.

We list some models’ outputs for all the destructed vegetation and ten vegetation types (Table 9).
Based on the guidance of Overmars et al. [19], which states that the significance of ρ is a criterion of
whether to apply the spatial error model, 43 out of our 44 models qualified for applying the spatial
model. All ρ values at all four aggregation levels were significant except for bamboo forests at the
8 × 8 aggregation level, indicating that the vegetation types may have a patch size smaller than the cell
size over the 8 × 8 aggregation level. Therefore, the aggregation level 8 × 8 may be a scale threshold
for spatial autocorrelation in damaged vegetation of the Wenchuan earthquake-affected area.
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Table 9. A summary of the spatial error model for all vegetation types at four aggregation levels.

Vegetation Type Aggregation Level ρ
Number of Variables

(Number of Variables in the
Standard Linear Model)

All damaged vegetation 1 × 1 0.5923 12 (13)
Bamboo forests 1 × 1 0.4611 7 (7)
Mixed broadleaf and coniferous forests 1 × 1 0.5196 6 (8)
Deciduous broadleaf forests 1 × 1 0.5581 11 (11)
Deciduous coniferous forests 1 × 1 0.5322 7 (8)
Economic forests 1 × 1 0.5779 10 (10)
Evergreen broadleaf forests 1 × 1 0.6012 8 (10)
Evergreen coniferous forests 1 × 1 0.6118 7 (9)
Meadows 1 × 1 0.6629 11 (11)
Mixed evergreen and deciduous broadleaf forests 1 × 1 0.6115 11 (11)
Shrubs 1 × 1 0.6545 9 (12)
All damaged vegetation 2 × 2 0.6077 11 (12)
Bamboo forests 2 × 2 0.3080 7 (7)
Mixed broadleaf and coniferous forests 2 × 2 0.4397 6 (6)
Deciduous broadleaf forests 2 × 2 0.5287 11 (11)
Deciduous coniferous forests 2 × 2 0.4317 7 (8)
Economic forests 2 × 2 0.5511 10 (10)
Evergreen broadleaf forests 2 × 2 0.4752 9 (10)
Evergreen coniferous forests 2 × 2 0.5428 7 (8)
Meadows 2 × 2 0.6579 9 (10)
Mixed evergreen and deciduous broadleaf forests 2 × 2 0.5497 11 (11)
Shrubs 2 × 2 0.6457 10 (12)
All damaged vegetation 4 × 4 0.6153 9 (11)
Bamboo forests 4 × 4 0.2422 5 (5)
Mixed broadleaf and coniferous forests 4 × 4 0.5062 4 (6)
Deciduous broadleaf forests 4 × 4 0.5233 9 (9)
Deciduous coniferous forests 4 × 4 0.4699 2 (5)
Economic forests 4 × 4 0.5750 10 (10)
Evergreen broadleaf forests 4 × 4 0.4180 5 (6)
Evergreen coniferous forests 4 × 4 0.4301 5 (6)
Meadows 4 × 4 0.5295 6 (7)
Mixed evergreen and deciduous broadleaf forests 4 × 4 0.5408 10 (10)
Shrubs 4 × 4 0.6505 7 (9)
All damaged vegetation 8 × 8 0.5261 7 (7)
Bamboo forests 8 × 8 0.0943 * 5 (5)
Mixed broadleaf and coniferous forests 8 × 8 0.5005 4 (4)
Deciduous broadleaf forests 8 × 8 0.4285 9 (9)
Deciduous coniferous forests 8 × 8 0.5050 2 (5)
Economic forests 8 × 8 0.4681 9 (9)
Evergreen broadleaf forests 8 × 8 0.2883 2 (5)
Evergreen coniferous forests 8 × 8 0.5270 6 (6)
Meadows 8 × 8 0.4574 6 (7)
Mixed evergreen and deciduous broadleaf forests 8 × 8 0.5462 6 (10)
Shrubs 8 × 8 0.5303 6 (8)

* Not significant (P < 0.05).

In this study, the spatial error model accounts for 46.11–66.29% of the prediction at the 1 × 1
aggregation level. There are additional environmental factors, including other independent variables,
affecting the vegetation destruction in the Wenchuan earthquake-affected area.

4. Discussion

It has been proven that spatial autocorrelation is present in most data and that traditional methods
such as linear regression are positively misleading [50–52]. Spatial autocorrelation allows us to
understand spatial patterns and can help avoid pitfalls in multiple regression analyses at macro or small
scales. However, it cannot explain the variation in research objectives because the adjacent cells do not
represent the response of research objectives to variations in the driving environmental factors [51,53].
Hence, spatially structured environmental factors that are independent of the variable of interest
can cause objectives to be spatially structured [54]. In addition, to our knowledge, there is almost
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no information in the literature about whether the components of research objectives can be a valid
indicator that reflects the characteristics of research objectives’ spatial autocorrelation. To elucidate the
main factors influencing the degree of vegetation damage and to find out the key vegetation type to
reflect the spatial autocorrelation of destructed vegetation is the basis of regionalized countermeasures
in vegetation protection and conservation in earthquake-affected areas. Thus, statistical models
should be applied to explain the correlation between vegetation destruction, its components, and
the driving environmental factors using methods such as spatial generalized least-squares (GLS) or
autoregressive models [31].

Vegetation destruction caused by the Wenchuan earthquake reached 1249.47 km2 in our study
area, accounting for 4.76% of the area of the nine worst-hit cities and counties [1]. There was
a significantly positive spatial autocorrelation in all the damaged vegetation and its components.
However, the Moran’s I values of the surface percentage within cells of the 11 vegetation types are
clearly different at all four aggregation levels. This means that vegetation types have different patterns
and different spatial characteristics within the different categories of all damaged vegetation. In fact,
any categorization made with our prior knowledge can cause the differences (yh − yi) for any distance d,
independent of the location where the differences are calculated [31]. Therefore, each vegetation
category reflecting the spatial distribution of all the damaged vegetation or not may show similar or
different spatial patterns to all the damaged vegetation. To assess the importance of each vegetation
category in the whole and to determine the main damaged vegetation type contributing substantially
towards the design of restoration programs by demonstrating the importance of accounting for
species selection and local conditions, we set up regression models between the Moran’s I of ten
vegetation types and those of all the destructed vegetation across the corresponding lag distances
at all four aggregation levels. We found that the Moran’s I of ten vegetation types had significant
relationships (including exponential function, power function, and linear function) with that of all
the destructed vegetation. However, unlike the other vegetation types, only shrubs had significantly
positive linear relationships with all the destructed vegetation at all four aggregation levels, indicating
that the Moran’s I of shrubs decreases with distance following the same rule as all destructed
vegetation. In other words, shrubs can represent the characteristics of the spatial structure of all
damaged vegetation to a certain extent and may play an important proxy role in designing vegetation
restoration plans for the Wenchuan earthquake-affected area. Similar effects to shrub vegetation
type were reported in previous studies, showing that it is the main vegetation type distributed
between 1800 and 3400 m a.s.l. for headwater and animal habitat conservation efforts in our study
area [1,55]. The other vegetation types show a significant exponential function or power function with
all destructed vegetation, indicating that their spatial autocorrelation attenuate more quickly than
all the destructed vegetation with increasing distance. This means that the other vegetation types
cannot reflect the spatial autocorrelation of all the destructed vegetation except shrubs when the patch
size is smaller than the cell size over a certain distance. This result is consistent with other studies
demonstrating significant impacts of patch size on spatial structure [19].

The spatial structures of 19 potential driving factors also showed a significantly positive spatial
autocorrelation (Figure 4). This means that the characteristics of damaged vegetation may be explained
by driving forces, depending on the response of land use and cover to driving factors [19]. Cluster and
significance maps of LISA can enable us to assess the interactions between sites in close proximity to
each other by comparing their values to their neighbors and identifying the local spatial structure and
instability [41]. In this study, LISA maps delineated damaged vegetation zones in accordance with the
types of spatial autocorrelation. Therefore, spatial autoregressive models should be used to detect the
relationships between damaged vegetation and driving factors.

In all the destructed vegetation and ten vegetation types at all aggregation levels (Figure 3 and
Table 6), the residuals’ spatial autocorrelation of the standard linear regression is less than that of
the original data, indicating that the selected driving factors used in the linear regression model
are partly responsible for vegetation destruction or that damaged vegetation is a response to the
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spatially autocorrelated selected driving factors. However, the residuals’ spatial autocorrelation is still
significant, indicating that the standard linear model is not enough to explain all spatial patterns.

Spatial autoregressive models can be used to reduce or remove the spatial patterns of standard
linear model residuals [53]. Though the pseudo R2 in spatial models cannot be used in comparison
with the traditional R2 in the standard linear model for a measure of fit, the value of the maximized
log likelihood (LIK) can be used to determine the goodness-of-fit of different models [44]. In this study,
spatial autoregressive models have a higher LIK than the standard linear model, indicating a better
goodness-of-fit (Table 7). Comparing the residuals of the spatial lag model and spatial error model with
the standard linear model (Figure 6), we found that they are considerably lower when using the spatial
models. Though it may seem controversial or unsatisfactory that the prediction of a variable should
use neighboring values, unlike the standard linear model which only focuses on the dominant effects
caused by responses to driving forces, spatial models can deal with spatial interactions that cannot
be included in the standard linear model [18,31]. Moreover, compared to the spatial error model,
low original values result in large negative residuals and high original values result in large positive
residuals in the standard linear model (Table 8). However, our study showed that the residuals of the
spatial lag model and spatial error model still had significant spatial autocorrelations. This may be
due to the absence of some important environmental variables which are not available at a required
spatial resolution [53,56]. Therefore, more comprehensive spatial modeling techniques considering the
multicollinearity of environmental variables may be a strategy to improve the model fit [53,57].

There is a scale threshold in aggregation levels that causes lower and even insignificant spatial
autocorrelation at the 8 × 8 aggregation level than aggregation levels 4 × 4 (Table 6). Although the
omission of variables may cause a loss of information in explaining the spatial pattern of damaged
vegetation, the spatial error model is recommended because it has a higher percentage of the prediction
with a higher ρ value by excluding the insignificant variable (Table 7). However, the spatial error
model only explains 46.11–66.29% of the prediction at the 1 × 1 aggregation level, suggesting that we
might not include all relevant environmental variables [51,53,56]. A possible way to improve this is to
include new variables or exclude the grids that were only slightly affected by the earthquake.

All damaged vegetation showed a significantly negative relationship with the distances to the
nearest river, road, and fault (Table 6). This result is consistent with previous investigations, which
highlighted that the earthquake damage degree decreased with the increase of these distances [1,24].
Moreover, this result shows a significantly positive relationship with comparatively steep slopes
(20–30◦ and >30◦) and percentage of high seismic intensity zone, indicating that a high potential energy
in steep slopes induced secondary geo-hazards to destroy vegetation growing on the slope surface.
This result is also consistent with the findings of Su and Cui [58] and Xu et al. [30], who observed that
serious damage was caused in the IX, X, and XI seismic intensity zones and the areas with unstable
steep slopes.

Our study has great significance in the context of vegetation protection and conservation and
post-earthquake recovery in China because the Wenchuan earthquake-affected area is one of the
twenty-five global hotspots for biodiversity conservation defined by the Conservation International
and World Wildlife Fund [59]. Our findings suggest that the spatial clustering of high-value damaged
vegetation zones occurred in the Wenchuan earthquake-affected area, indicating that restoration
programs should give top priority to the high-high associations in high coverage of damaged vegetation.
Also, our work took an integrative approach to predict the spatial distribution of damaged vegetation
after earthquakes worldwide, according to the maps of horizontal peak ground acceleration, seismic
intensity, river systems, slope, and pre-earthquake vegetation distribution in earthquake-occurred areas.
In addition, our results suggest that shrubs can represent the characteristics of all damaged vegetation
to a certain extent. Thus, we could assess promptly the vegetation loss and can choose adaptive
restoration programs according to the most representative components of the whole. Furthermore,
our results might help to identify the spatial structure of land use and cover using its decisive
components rather than to analyze the total data.



Forests 2019, 10, 195 18 of 21

5. Conclusions

We studied the spatial autocorrelation of damaged vegetation in the Wenchuan
earthquake-affected area. We found that there was a positive spatial autocorrelation in all
the damaged vegetation and its components, as well as in the driving factors. Spatial autocorrelation
showed great differences at different aggregation levels due to the nonlinear relationship between
Moran’s I and distance. Shrubs can represent the spatial structure of all damaged vegetation due to the
significant linear relationship between their Moran’s I. LISA maps of all damaged vegetation showed
clustering of similar high coverage in damaged vegetation. The residuals’ spatial autocorrelation of
the standard linear regression was also significant, indicating that the standard linear regression
model cannot explain all the spatial patterns in damaged vegetation. Spatial autoregressive models
had the better goodness-of-fit to deal with damaged vegetation, even when excluding one or more
insignificant variables. The aggregation level 8 × 8 may be a scale threshold for spatial autocorrelation
because higher aggregation levels exceed the occurrence of spatial patterns. Though we do not
consider the main environmental factors including annual rainfall, soil properties, temperature,
cumulative temperature, etc., this study still provides a reference for regionalized countermeasures
in vegetation protection and conservation according to the spatial structure of damaged vegetation
after an earthquake. It also helps us to predict the spatial distribution of damaged vegetation
by its representative components and influencing factors, which could improve vegetation loss
assessment and restoration in earthquake-affected areas. Future research will need to examine other
environmental factors that also affect vegetation destruction.
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