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Abstract: The most serious quality issue of natural resources for human consumption or medicinal
purposes is the contamination with pollutants harmful to consumers. Common blackberry (Rubus
fruticosus L.) is a sought-after nutraceutical and an important component in herbal medicine in many
places around the globe. The present study aims to analyze the level of heavy metal bioaccumulation
in blackberry organs, as well as its spatial distribution in two consecutive years immediately after
the interruption of the extended activity of the industrial source of pollution. The research was
conducted in one of the most polluted areas in Romania and Eastern Europe, within a 26 km radius
of the source of pollution. The Pb, Cd, Cu, and Zn concentrations in the leaves, flowers, and
unwashed blackberry fruits were analyzed spectrophotometrically through flame atomic absorption
spectroscopy (FAAS). The results show that blackberry is an important bioaccumulator of these heavy
metals—71% of the Pb concentration values and 100% of the Cd concentration values exceeded the
World Health Organization thresholds by up to 29 and 15 times, respectively. Also, the leaves are the
largest reservoirs of Pb and Zn (the median values: 51.4 mg/kg dry weight and 105.2 mg/kg d.w.,
respectively), and the flowers contained the largest quantities of Cd and Cu (2.54 mg/kg d.w. and
11.3 mg/kg d.w., respectively). The Pb concentrations decreased by a power function in relation to
the distance from the source of pollution. The implications of these results on the safety of the use
of blackberry are discussed. The urgent necessity for food education of the local population which
consumes contaminated nutraceutical products is emphasized.
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1. Introduction

In spite of all the qualitative changes which human activity has experienced over time,
the attraction for products provided directly and generously by nature has not diminished [1].
The diversity of uses which every natural resource offers is the most convincing evidence of its
value. For instance, blackberry is simultaneously edible, medicinal, and melliferous, thus it can be
classified as a highly interesting nutraceutical (Table 1).
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Table 1. The spectrum of traditional uses of blackberry.

Resource Utilization Information
SourcePart of Plant Species Range Product Uses/Disease

Whole plant Rubus fruticosus Romanian folk medicine tea, decoction leukorrhea [2]
Rubus sp. Native American folk medicine extract from fruit, root, and leaves hair and fabric dye [3]

Aerial parts Rubus fruticosus Europe various hypoglycemia [4]

Stem Rubus sp. Native American practices rope transport [3]

Young shoots
Rubus fruticosus,

R. ulmifolius Schott Sardinian and Sicilian traditional medicine decoction menstrual pain [5]

Rubus fruticosus Romanian folk medicine decoction bronchitis, diarrhea, dysentery [2]

Leaves

Rubus fruticosus, R. ulmifolius Sardinian and Sicilian traditional medicine fresh leaves for chewing strengthening spongy gums [5]

Rubus fruticosus Central Italy folk medicine maceration cicatrizant for skin, fungal infections,
skin abscesses [6]

Rubus villosus Aiton. around the world leaves for chewing bleeding gums [7]

Rubus fruticosus European folk medicine mouthwash, decoction strengthening spongy gums, mouth ulcers,
sore throats, diarrhea, hemorrhoids [8]

Fruits

Rubus sp. around the world jam, syrup, jelly, marmalade, cake stuffing, wine, liqueur, ice cream, in yoghurt,
drink and chewing gum dye [3,9]

Rubus fruticosus Romanian folk medicine
decoction in lard tuberculosis

[2]wine leukorrhea
Rubus fruticosus Ancient Greeks fresh fruit gout [3]

Fruits and leaves Rubus fruticosus Pakistani traditional medicine various skin diseases, itching, scabies, eczema [10]

Roots Rubus villosus around the world dried root tea used for edema, leaves and roots used for diarrhea, enteritis,
chronic appendicitis, leukorrhea, expectorant properties [7]
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Since the time of Hippocrates [11], the belief that food has therapeutic properties has gradually
consolidated [12] and has engaged a rich terminology, with interchangeable notions that have created
confusion and controversies [13]. A nutraceutical is a hybrid concept better located at the boundary
between food and drug [14]. It was introduced by DeFelice in 1989 and brought about a revolution in
nutrition [15]. In contrast to other food-derived products claimed to have benefits on human health,
nutraceuticals have a proven clinic efficiency in preventing and even treating certain pathological
conditions [16]. At least in Europe, the lack of nutraceuticals identity and insufficient clinical
evidence from in vivo experiments has kept down the formulation of shared regulatory framework for
nutraceuticals [17] that would guarantee consumers the efficacy and safety of this pharma-food.

Despite increasing research on the properties of bioactive compounds [18], nutraceuticals, as rich
substance mixtures [17], require: (1) a supplementary chemometric effort to identify the dietary markers
which enable the quality control of the products [19] and (2) robust clinical evidence to support their
use [20] and thus the transition from potential nutraceutical to established nutraceutical [15].

Taking into account the blackberry, the most important bioactive ingredients are: (1) the
ellagitannins, which, besides their usual antidiarrheal and antidysenteric astringency, inhibit the
growth of cancerous cells [3,21–23] and (2) the anthocyanins and other polyphenols, with their
significant antiradical, antioxidant, and chemoprotective activities [8,21–35].

In many places around the world, especially in rural and tribal areas, exploiting natural, food,
and medicinal resources is a survival issue, therefore a social factor [36] or, in any case, an alternative
source of income. In 2005, 14,837 t of wild blackberries were harvested, in addition to 154,578 t of
cultivated blackberries [37]. In Romania, 1 ha of forest land can yield up to 12.5 t of blackberries
per year [9]. In our researched area, there are over 17,400 people who have access to contaminated
natural products. With the cease of pollutant activity, 80% of employees were fired in 2009 and directed
towards other fields. Consequently, the interest for the exploitation of the agricultural, medicinal, and
nutritional potential of the area increased.

The large number of uses of vegetal products and their composition raises the often-times vital
issue of product safety. The contamination with pollutants, either local, regional, or cross-border,
endangers the health of consumers of such bio-products. Heavy metals, resulting from metallurgical
activities by means of the refining and burning of fossil fuels or fertilizing agricultural soils, enter the
food chain via the air, water, and soil, manifesting toxicity even in very small concentrations [38,39].
For instance, lead, cadmium, and zinc poisoning attacks the nervous system, causing a decrease in
intellectual performance, as well as aggressiveness, delinquency, and narcomania in youths [40–45].
Blackberry is more prone to cadmium accumulation than other fruit [46].

Impact studies on historical pollution of the chemical composition of blackberry were carried
out in Sudety Mountains SW, Poland [47]; Pirdop, Bulgaria [48]; Vladivostok, Russia [49]; Lori region,
Armenia [50]; Berlin, Germany [46]; Middle Spis, Slovakia [51]; and Moldova Nouă, Romania [52].
The level of heavy metal contamination in leaves, fruits, and products derived from blackberries
(blackberry leaf tea, blackberry wine) was also determined [53,54].

Our research aims to determine the recent pollution level through the concentration of certain
heavy metals in blackberry vegetal material (Rubus fruticosus L.), and to characterize its spatial
distribution in relation to the distance from the source of pollution and the site geomorphology.
The investigations were carried out in one of the most polluted areas in Romania and Eastern
Europe. The age and seriousness of the pollution in these areas prompted a variety of impact studies
on the environment and the living organisms—revised by Smejkal [55] and Micu [56]. However,
blackberry was not analyzed in these studies, in spite of its wide popularity among local and national
consumers [9].
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2. Materials and Methods

2.1. The History of the Pollution

The source of the pollution whose effects are analyzed in this article is the industrial park in
the town Copşa Mică (46◦06′59.10” N and 24◦13′15.43” E), in the center of Romania. Until now,
it produced large quantities of carbon black (for 58 years: 1935–1993), metallurgical and refined zinc,
electrolytic lead, bismuth, antimony, iron, cadmium powder, sulphuric acid, sulfur dioxide, sulfates,
sulfurs, carbon monoxide, nitrogen oxides, volatile arsenic compounds, and ammonia (for 70 years:
1939–2009).

The location of the industrial park on the wide valley of the Târnava river, which channels the
local circulation of air mass, allowed the pollutants to distribute over large distances. The hydrographic
fragmentation of the territory extended the pollution transversally to the secondary valleys. At the
nearest weather station, according to the climatic data provided by the National Meteorological
Agency [57], the mean annual temperature is 8.4 ◦C, the mean annual rainfall is 625.6 mm·year−1,
the annual wind frequency is 65.5%, and the speed of the wind with the highest frequency is 3.1 m·s−1.
The low amount of rainfall leads to the persistence of pollutants in the atmosphere and the high
percentage of atmospheric calm allows air mass stagnation and pollutant deposition.

The plant material was collected in two consecutive years, starting with the year when the activity
on the polluting industrial platform ceased. In the two years of sampling the mean temperatures were
9.4 and 9.1 ◦C and the rainfall levels were 648.4 and 782.3 mm·year−1, respectively [57].

2.2. Sampling Design

The distribution of pollutants in blackberry organs was examined in nine sampling plots, eight
of which were grouped in the first 8 km from the source of pollution (Figure 1), and one control plot,
located 26 km from the industrial park in Copşa Mică (type of site D). The target was the study of
pollution in various topoclimates. Each plot was identified geographically and geomorphologically,
using Global Positioning System coordinates, the side aspect, the exposure to the circulation of polluted
air (Table 2), and the distance to the main flue-gas stack for emissions—which is 250 m tall.
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Table 2. Classification of sampled sites according to the location in relation to the source of pollution.

Type of Site Site Description

A Site located in the main valley (where the source of pollution is found) with frontal exposure
to the source of pollution (slope facing the flue-gas stack).

B Site located in the main valley (where the source of pollution is found) with tangential
exposure to the source of pollution (slope not facing the flue-gas stack).

C Site located in a secondary valley with frontal exposure to the local circulation of air mass.
D Site located in a secondary valley, partially protected from the source of pollution.

The vegetal material samples were collected according to the regulations of the United Nations
Economic Commission for Europe-International Co-operative Programme on Assessment and
Monitoring of Air Pollution Effects on Forests- [58]. At least five blackberry dominant bushes were
chosen from every sampling plot. The material (20–30 g leaves, flowers/sampling plot and 100–200 g
fruits/plot) was collected systematically from the four cardinal sides of the bush. Only healthy samples
were considered [59], and great care was taken to avoid touching or contaminating them with the tools
used. The flowers were collected no later than 2–3 days after bloom or in the budding stage, to prevent
loss of pollen due to insect pollination. The leaves were collected in the second half of the growing
season, but before the autumnal senescence, when the heavy metal concentration peaks [60]. The ripe
fruits were harvested in the firm stage.

2.3. Processing the Material

The vegetal material was not washed, so as to identify the total pollutant concentrations in the
state in which the resource is used [61]. For instance, the blackberry long-lived leaves are eaten by
game, particularly by cervids [9], and blackberries are not washed before consumption. To avoid
pollen removal, which bioconcentrates an important fraction of heavy metals, the flowers were not
washed either.

The laboratory investigations followed Kelp’s [62] recommendations. The samples were
oven-dried to a constant mass at 60 ◦C, which did not affect the sanogenetic qualities of the product [9].
Mineralization was achieved after wet digestion [58], using the Berghof MWS-2 microwave oven.
The mixture of 0.3–0.5 g dried plant powder, 2 mL concentrated HNO3 (65% concentration, Merck
extra pure), and 3 mL H2O2 (30% concentration, Merck, Darmstadt, Germany) were introduced in
the microwave system (Berghof MWS-2, Eningen, Germany). Mineralization was carried out in three
steps, at temperatures of 145, 180, and 100 ◦C (Table 3).

Table 3. The settings for mineralization of samples.

Temperature (◦C) 145 180 100

Power (%) 75 90 40
Time (min) 5 10 10

After mineralization, samples were filtered through a 0.45 mm filter and brought to a volume of
50 mL in a volumetric flask with ultrapure water with a specific resistance of 18.2 MΩ/cm obtained
from a Direct Q3UV Smart (Millipore SAS, Molsheim, France). The digested samples were analyzed
by flame atomic absorption spectroscopy (FAAS) with ZEEnit 700 Atomic Absorption Spectrometer
(Analytik Jena AG, Jena, Germany). Calibrating standard solutions of Cd, Cu, Pb, and Zn were
prepared daily by the accurate dilution of the respective stock standard solutions (1000 mg/L).
Ultrapure water with a specific resistance of 18.2 MΩ/cm obtained from a Direct Q3UV Smart
(Millipore SAS, Molsheim, France) was used to prepare the standard solutions. For quality control
purpose, blanks and triplicates samples (n = 3) were analyzed during the procedure. The variation
coefficient was under 5%. The operation conditions were those recommended for each metal in the
instrument’s method (Table 4).
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Table 4. Instrumental parameters for metal determination by flame atomic absorption spectroscopy
(FAAS).

Standard Conditions
Element

Cd Cu Pb Zn

Wavelength, λ (nm) 228.8 324.8 283.3 213.9
Slit width (nm) 1.2 1.2 1.2 0.5

Hollow-cathode lamp current (mA) 3 3 3 4
Background correction Deuterium Deuterium Deuterium Deuterium

Flame C2H2/air C2H2/air C2H2/air C2H2/air
Fuel flow (N L/h) 50 50 65 50

The sensitivity of the FAAS method was estimated using the limit of detection (LOD) and the
limit of quantification (LOQ). The LOD and LOQ (Table 5) were calculated based on the standard
deviation of the response and the slope [63–66]. A total number of 171 spectrometric determinations
were carried out.

Table 5. Limit of detection (LOD) and limit of quantification (LOQ) of the flame atomic absorption
spectroscopy method.

Parameter
Element

Cd Zn Pb Cu

Linear working range (mg/L) 0–1 0–1 0–1 0–3
Limit of detection (mg/L) 0.012 0.013 0.083 0.036

Limit of quantification (mg/L) 0.039 0.042 0.276 0.119

2.4. Data Processing

Data analysis was performed using Microsoft EXCEL 2007 and STATISTICA 8.0. The results were
related to the World Health Organization [67] limits for heavy metals in products with ecosanogenetic
qualities (Table 6).

Table 6. Tolerable limits for heavy metals in food supplements and herbal drugs.

Reference Pb (mg/kg) Cd (mg/kg) Zn (mg/kg) Cu (mg/kg)

[68] 10.0 0.5 - -
[67] 10.0 0.3 - -
[62] 5 4 - -
[69] - - - 5 (berries and small fruits)
[62] 5 0,5 - -

3. Results and Discussions

3.1. The Level of Heavy Metal Contamination in Blackberry

The concentrations of the studied microelements were found to be strongly scattered around
the mean (high coefficients of variation—Table 7). Thus, the arithmetic mean was no longer relevant
and was replaced with the median to express the central tendency. Most of the lead and cadmium
concentration values greatly exceeded the toxicity thresholds (Table 7). Furthermore, these thresholds
were exceeded in the control plot as well, which was believed to be unaffected by the influence
of the pollution caused by the industrial park in Copşa Mică. As such, 40% of the measured lead
concentrations, 100% of the cadmium concentrations, and 67% of the copper concentrations in the
control plot exceeded the WHO permissible limit. This result is proof of the area expansion of heavy
metal pollution. The other sampling plots are located up to 8 km from the source of pollution and
have pollutant concentrations which exceeded the permissible limit for lead by up to 29.1 times,
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the permissible limit for cadmium by up to 14.9 times, and the permissible limit for copper by up to
38.8 times. Approximately a quarter of the values of lead concentration exceeded the permissible limit
by at least 5 times. More than half of the values of cadmium concentration exceeded the permissible
limit by at least 5 times.

Table 7. Statistics of heavy metal content in the blackberry samples from Copsa Mică area, Romania.

Metal

The
Significance

of the
Differences

between
Individual

Values *

Range Arithmetic
Mean Median

Coefficient
of

Variation
(%)

Relative
Frequency (%)

of Values
Which Exceed

the World
Health

Organization
Threshold

The Significance
of the Differences

between
Blackberry
Organs **

(Kruskal–Wallis
Test)

t p H p

Pb (mg/kg dry
weight) 4.64 <0.001 1.67–291.39 34.72 20.27 141.59 70.5 14.27 <0.001

Cd (mg/kg d.w.) 11.49 <0.001 0.32–4.46 1.86 1.61 57.08 100.0 8.18 0.02
Zn (mg/kg d.w.) 10.01 <0.001 10.91–193.54 76.03 70.29 65.49 - 23.05 <0.001
Cu (mg/kg d.w.) 7.84 <0.001 1.23–34.08 8.51 7.18 69.89 83.3 9.34 0.01

* All values of heavy metals concentrations either from leaves, either from fruits or flowers were merged; ** The
differences refer to the concentrations of Pb, Cd, Zn and Cu grouped according to the three blackberry organs
(leaves, fruits, flowers).

Based on the blackberry average yield in Romania [9], this means that a hectare of blackberry
shrubs from the Cops, a Mică area sequesters yearly through leaves, flowers, and fruits: 2.17 kg Pb, 0.17
kg Cd, 7.52 kg Zn, and 0.77 kg Cu.

The fact that these discovered values are greater than those highlighted in pollution literature is
worrisome for the local consumers. Gasser et al. [70] processed the database of the German Medicines
Manufacturers’ Association and indicated that the following values of Cd and Pb concentrations
range in blackberry leaves: <0.07–0.32 mg/kg dry weight and <0.4–2.8 mg/kg d.w., respectively.
Shikhova [49] highlighted average concentrations of 15.07 mg/kg d.w. Pb in Rubus sachalinensis H. Lév.
from the suburban forest phytocenosis in Vladivostok. After analyzing samples of Rubus fruticosus
harvested from different sampling plots in Berlin, von Hoffen and Säumel [46] found average cadmium
concentrations of 0.0081 mg/kg d.w., and lead concentrations of 0.0595 mg/kg d.w.

Investigations of heavy metal content in blackberry were also carried out in areas with historical
pollution of mining or metallurgical origin. Micu et al. [52] identified average concentrations of 12 ppm
Cu, 0.03 mg/kg d.w. Cd, and 19 mg/kg d.w. Pb in the blackberry leaves on the spoil heaps of Moldova
Nouă (Romania). Wisłocka et al. [47] found in washed Rubus idaeus L. leaves grown on uranium mine
dumps in the Sudety Mountains range heavy metal concentrations of 17.6–41.0 mg/kg d.w. for Pb,
0.40–1.60 mg/kg d.w. for Cd, 1.20–10.50 mg/kg d.w. for Cu, and 27–88 mg/kg d.w. for Zn, which were
consistent with their concentrations in the soil. In the Middle Spis (Slovakia), which was affected by
acid and heavy metal pollution for decades, Vollmannova et al. [51] found the following range of toxic
metal concentrations: 0.30–1.19 mg/kg d.w. Pb, 0.18–0.42 mg/kg d.w. Cd, 5.50–6.50 mg/kg d.w. Cu,
and 16.1–30.7 mg/kg d.w. Zn in dry blackberry leaves, as well as 0.03 mg/kg d.w. Pb, 0.03–0.05 mg/kg
d.w. Cd, 0.48–0.99 mg/kg d.w. Cu, and 2.08–3.13 mg/kg d.w. Zn in fresh blackberries. Compared to
our results, the investigations carried out by Teofilova et al. [48] in the area of the copper foundry in
Pirdop (Bulgaria) reported higher average values of copper content (62.5 mg/kg d.w.), the same values
for zinc (80 mg/kg d.w.), and lower values for lead (8.5 mg/kg d.w.) and cadmium (0.275 mg/kg d.w.)
in blackberry fruits.

The large discrepancy with the literature data is partly due to the way our samples were prepared,
i.e., without pre-washing. We intended to quantify the total bioaccumulation of heavy metals in the
blackberry organs, as they are used directly by consumers (humans, cervids, bees) and thus the input
to the trophic chain through the contaminants is more widely dispersed in the ecosystem structure.
The data from the literature of other species reveal that, by washing, the heavy metal concentrations
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were reduced by 3.09–85.79% for Pb, 4.00–86.11% for Cd, 0.78–84.85% for Zn, and 0.76–86.41% for
Cu, varying by species, organ harvested, culture system, sampling period, and degree and type of
pollution [71–76]. We assume that even in the case of blackberry, as a species with hirsute organs,
the deposition of heavy metals at least at the surface of the leaves is considerable. It has been shown
that Pb and Cd concentrations are 10 times higher in hirsute plants than in those with a smooth
surface [77].

The non-parametric Kruskal–Wallis test (Table 8) led to the stratification of the values of metal
concentration according to the blackberry organs.

Table 8. The significance of the differences between the heavy metal concentration values by some
nonbiological factors.

Independent Variable

Dependent Variable

Pb Cd Zn Cu

p from Kruskal–Wallis Test (0.05 is the
Threshold Value for Statistical Significance) *

Distance from source of pollution 0.005 0.13 0.36 0.80
Altitude 0.01 0.31 0.27 0.07
Aspect 0.08 0.92 0.59 0.70

Exposure to air circulation 0.09 0.01 0.15 0.48
Year of sampling 0.26 0.41 0.89 -

* Kruskal-Wallis p-values for the effects of independent nonbiological factors on heavy metal concentration in
blackberry organs sampled across air pollution gradients in Cops, a Mică area, Romania.

The values in the content of lead, cadmium, zinc, and copper in fruits are noticeably different
compared to those in flowers and leaves (Figure 2). Of the sampled blackberry organs, the fruits
retained the smallest metal quantities, except for copper—the copper content had the highest variation
in the fruits. The leaves contained 4.5 times more lead than the fruits. The flowers contained 3 times
more cadmium and 3.8 times more zinc than the fruits. The flowers contained 2.2 times more copper
than the leaves (Figure 2).

This means that the risk to consumers of such resources, quantified for a portion of 100 grams of
fresh blackberries, with an average moisture content of 91.4% (own data), consists in the ingestion of
8.51 mg Pb, 0.74 mg Cd, 19.64 mg Zn, and 5.71 mg Cu.

Yedoyan and Yedoyan [50] found notable differences between blackberry organs which were
polluted anthropogenically, especially in terms of lead and copper content. For instance, the root was
found to be an important copper reservoir.

Concerning other species besides blackberry, from the Cops, a Mică area, Alexa et al. [78]
spectrometrically measured the heavy metal content. The comparisons emphasized the fact that
trees are more important heavy metal bioaccumulators than blackberry. In June 2001, in full industrial
season, up to 620 mg/kg d.w. lead and up to 8.5 mg/kg d.w. cadmium were found in locust leaves [78].

The net differentiation of blackberry organs in heavy metals storage is the consequence of
their different and asynchronous lifespan, the morphological characteristics of their surface, and the
exposure to the pollutant flow. Blackberry leaves—long-living, hirsute on both sides, and more exposed
to atmospheric pollutants—are the largest reservoirs of heavy metals (Figure 2). The consistency and
morphology of the floral tissue and the synchronization of the flowering stage with the rainiest months
reduce the retention of heavy metals in flowers compared to leaves. Blackberries themselves, sheltered
by leaves and slowly ripening, accumulate smaller amounts of heavy metals (Figure 2).

The unnoticeable differences of heavy metal concentrations between the two years of sampling
(Table 8) suggest a long-lasting soil pollution and a strong sequestration of these pollutants in the
blackberry organs, which goes beyond the rainfall increase in the second year.
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3.2. The Spatial Variability of the Heavy Metal Content in Blackberry

The factors of influence on the metal content in the vegetal material were identified by using
the non-parametric Kruskal–Wallis test, when the majority of dependent variables had non-Gaussian
distributions. The results show that only the lead content is more sensitive to location change (Table 8).
It decreases by a power function according to the distance from the source of pollution (Figure 3).
In the first 3 km, the higher dispersion of lead concentrations and the more pronounced decay with
the distance in the case of the leaves were noted. The matrix of the sign test (not listed) indicated that,
in fact, the variation of lead content according to altitude is due only to the lowest altitude, which had
the largest lead quantities. The zinc and copper concentrations were changeless from one sampling
plot to another. The cadmium concentration depended on the exposure of the location to the local
circulation of polluted air. The differences between the sampled years were not statistically significant
(Table 8).

3.3. Safety in Herbal Medicine

In spite of the growing popularity of natural products, one must be realistic and admit that none
can be completely free from various contaminants. The risk of contaminated nutraceuticals intake
is much higher in the absence of specific legislation, as manufacturers are not compelled to oversee
the nature, safety, and therapeutic and nutritional efficacy of these products [11]. Furthermore, the
preference for nutraceuticals is fueled by consumers’ false belief that the natural product is inevitably
healthy and safe [19].

Food products consumed by people undoubtedly contain metals and metalloids [38,79]. Even if it
comes up in a biotope where the anthropogenic pressure is low, the collected raw material may be
contaminated due to certain non-hygienic harvesting techniques or poor storage and conditioning.
Heavy metals can bioaccumulate in plants in concentrations which exceed the maximum limits
permitted by the environmental regulations, where they can reach the human or animal organism
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directly or indirectly through the food chain. A lot of metals give rise to toxicity even with
reduced concentrations.
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Figure 3. The variation of lead content in relation to the distance from the main source of pollution
(control plot is excluded).

Important lead, cadmium, and zinc concentrations were found in consumer finished food or
medicinal products, such as tea and blackberry wine [53,54]. Small quantities of these metals in Rubus
species were found in Himalaya as well [34].

The smaller the quantities of non-essential heavy metals in traditional nutraceutical products,
the lower will be the risk to the consumers health Small quantities of non-essential heavy metals in
traditional nutraceutical products as their absence eliminates the risk of noxious effects on health [80].
Consequently, it is necessary to implement a qualitative assessment of wild resources consumed
directly or used in ethnomedicine, before using or processing them, by determining the heavy metal
content [81].

Resources, such as blackberry in Copşa Mică, are consumed by the local population in raw or
processed forms. At the observed lead and cadmium concentrations (Table 7, Figure 2), the therapeutic
value of the blackberry active ingredients decreases.

The International Agency for Research on Cancer classifies the anorganic compounds of Pb into
group 2A—probably carcinogenic to humans. The symptoms of lead poisoning are abdominal pain,
constipation, nausea, cramps, vomiting, anorexia, and weight loss [82]. Chronic exposure to high
levels of Pb produces significant accumulations in the bones, as well as disorders of the central nervous
system, hepatic and renal disorders, gout, and high blood pressure. Furthermore, it affects the optimal
functions of the male and female reproductive system, with negative effects on pregnancy [83–88].

As a non-essential metal, Cd accumulates in the environment continuously, with one of its main
sources being the atmospheric deposit. Chronic exposure to Cd causes kidney failure, increased risk of
pre-diabetes and diabetes, high blood pressure, osteoporosis, and cancer [89–92]. In our researched
area children represent the age range most exposed to the risk of contamination by eating blackberries.
The poor education of some people maintains this risk. Hence, an acute need for food education for all
social categories from the area is felt.
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4. Conclusions

Blackberry is a popular nutraceutical, but unfortunately it is also an important heavy metal
bioaccumulator. The extended industrial activity (which began in 1935) of metallurgical and chemical
production in Copşa Mică led to the remnant contamination of blackberry with lead, cadmium,
zinc, and copper. Shortly after the interruption of the pollution emission, the lead concentrations
in blackberry were found to exceed the recommended threshold by up to 29 times in 71% of cases.
Furthermore, all the cadmium concentrations exceeded the WHO threshold by up to 15 times, and 83%
of the values of copper concentration exceeded the permissible limit by up to 39 times. The organs of
blackberry store these elements differently—the flowers and leaves are the largest bioaccumulators.
The lead bioaccumulation was found to have a definite spatial distribution. Conversely, the zinc and
copper concentrations were changeless from one sampling plot to another. The results indicate a wide
geographic expansion of pollution with these metals, within a radius of at least 26 km.
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