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Abstract: Forest growing stock volume (GSV) extraction using synthetic aperture radar (SAR) images
has been widely used in climate change research. However, the relationships between forest GSV and
polarimetric SAR (PolSAR) data in the mountain region of central China remain unknown. Moreover,
it is challenging to estimate GSV due to the complex topography of the region. In this paper, we
estimated the forest GSV from advanced land observing satellite-2 (ALOS-2) phased array-type
L-band synthetic aperture radar (PALSAR-2) full polarimetric SAR data based on ground truth
data collected in Youxian County, Central China in 2016. An integrated three-stage (polarization
orientation angle, POA; effective scattering area, ESA; and angular variation effect, AVE) correction
method was used to reduce the negative impact of topography on the backscatter coefficient. In the
AVE correction stage, a strategy for fine terrain correction was attempted to obtain the optimum
correction parameters for different polarization channels. The elements on the diagonal of covariance
matrix were used to develop forest GSV prediction models through five single-variable models
and a multi-variable model. The results showed that the integrated three-stage terrain correction
reduced the negative influence of topography and improved the sensitivity between the forest GSV
and backscatter coefficients. In the three stages, the POA compensation was limited in its ability to
reduce the impact of complex terrain, the ESA correction was more effective in low-local incidence
angles area than high-local incidence angles, and the effect of the AVE correction was opposite to
the ESA correction. The data acquired on 14 July 2016 was most suitable for GSV estimation in this
study area due to its correlation with GSV, which was the strongest at HH, HV, and VV polarizations.
The correlation coefficient values were 0.489, 0.643, and 0.473, respectively, which were improved
by 0.363, 0.373, and 0.366 in comparison to before terrain correction. In the five single-variable
models, the fitting performance of the Water-Cloud analysis model was the best, and the correlation
coefficient R2 value was 0.612. The constructed multi-variable model produced a better inversion
result, with a root mean square error (RMSE) of 70.965 m3/ha, which was improved by 22.08% in
comparison to the single-variable models. Finally, the space distribution map of forest GSV was
established using the multi-variable model. The range of estimated forest GSV was 0 to 450 m3/ha,
and the mean value was 135.759 m3/ha. The study expands the application potential of PolSAR
data in complex topographic areas; thus, it is helpful and valuable for the estimation of large-scale
forest parameters.
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1. Introduction

Forest carbon stocks are essential to our understanding of global climate change, and can be
represented through extracting forest parameters [1]. The forest growing stock volume (GSV) is a key
forest variable in the context of forest management and monitoring. Also, the forest GSV is referred
to as the total volume (m3/ha) of the boles or stems of all living trees, and can be converted into
above-ground biomass (AGB) by its density factor [2]. Therefore, the accurate quantification of forest
biomass or GSV is essential for understanding the spatial distribution of carbon in vegetation areas,
which can also provide effective predictions for the change trend of carbon stock [3]. In particular,
large-scale forest GSV retrieval has become a research hotspot in recent years.

At present, many methods have been reported for estimating forest GSV. Traditional forest
inventory approaches rely upon ground surveys by manually collecting the forest parameters of a
single tree at sample plots [4]. However, the large amount of time required, labor intensity, and cost
limit its application on a larger scale [5]. Remote sensing technology provides a possible solution
to overcome such limitations, in particular the spaceborne remote sensing technique, which plays
an important role in forest monitoring and management [6]. Optical remote sensing datasets (e.g.,
Landsat Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer, MODIS) can
be used to estimate forest GSV [7], mainly by analyzing the relationship between forest parameters
and vegetation indices (e.g., enhanced vegetation index (EVI), normalized difference vegetation
index (NDVI) and perpendicular vegetation index (PVI)) [8–11]. However, the retrieved GSV values
using optical remote sensing data are usually troubled with saturation effects, especially in the
high carbon stock forests [12]. Another problem is the impact of cloud cover on image collection,
constraining its application to moist regions (e.g., the tropical region) [13]. Light detection and
ranging (LiDAR) data provides high accurate forest parameters for GSV estimation [14–16]. However,
due to space discontinuous problems and complex data processing, LiDAR-derived GSV estimates
usually can only be obtained over limited areas [17]. HHHSynthetic aperture radar (SAR) enables
imaging in all-weather conditions and with continuous temporal coverage [18]. Now, it has been
successfully applied in various fields [19–22]. Especially, the long-wavelength SAR has a wide potential
in forestry applications [23–25]. Currently, the SAR techniques that have been utilized for the retrieval
of forest parameters mainly are polarimetric SAR (PolSAR) [23,26], interferometric SAR (InSAR) [27,28],
polarimetric interferometric SAR (PolInSAR) [29], polarization coherence tomography (PCT) [30–32],
and tomography SAR (TomoSAR) [33–35]. In this paper, the full polarimetric SAR technique will be
further used for retrieving forest GSV in subtropical mountain areas.

Radar polarimetry is the technique of acquiring, processing, and analyzing the polarization state
of an electromagnetic field [36]. Forest characteristic information about the geometrical structure and
geophysical properties can be obtained by analyzing polarimetric SAR signatures [37]. In an earlier
study, the relationship between polarimetric signatures and forest GSV or AGB was studied by using
high-frequency SAR data (e.g., X and C-band). Due to the low penetration, the short wavelengths
interacted primarily with the forest canopy, and were suitable for low-carbon stock areas [38]. Lower
frequency SAR data have stronger penetrating capability and can interact with various components of
vegetation, and have been discovered to be more preferable than higher frequencies in high-carbon
stock forests [39,40]. The phased array-type L-band synthetic aperture radar (PALSAR-2) can capture
images in quad polarization modes, which provides an opportunity to study forest parameters using
multi-polarization and multi-temporal data [41–43].

The L-band backscatter coefficient is sensitive to the biophysical parameters of forest [44–46].
However, the sensitivity is affected by many factors (e.g., radar polarization, forest structure,
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environment conditions, and topography) [39]. Among these factors, the complex terrain conditions
can affect full polarimetric SAR data regarding both azimuth and distance, which is mainly reflected
in the following three aspects. (1) The azimuthal slope causes a change in the polarization state, which
leads to polarization orientation angles (POA) offsetting [47]. (2) Local terrain undulations cause a
change in the effective scattering area (ESA), which leads to the change of actual backscatter [48].
(3) In vegetation-covered areas, the local terrain causes variation in penetration depth and scattering
mechanisms, which are reflected in the angular variation effect (AVE) [49]. Zhao et al. [50] showed
that the correction of these three aspects (POA compensation, ESA correction, and AVE correction)
could reduce the topographic effect. However, in AVE correction, the critical correction factor n is
obtained only according to the impact of the entire forest area, without considering the impact of
different forest cover types. Meanwhile, the range of n values in different polarization channels in
subtropical mountain areas need to be further explored.

The main purposes of this study are to (1) understand the role of terrain correction in forest GSV
estimation; and (2) investigate the potential of PALSAR-2 L-band full polarimetric data for the retrieval
of forest GSV in the subtropical mountain regions.

2. Materials

2.1. Study Area

The work was carried out in the Youxian county in Hunan of central China (27◦05′ to 27◦24′ N,
113◦35′ to 113◦55′ E, see Figure 1). It is a field site ground for forest research at Central South University
of Forestry and Technology. The topography varies between 60–1386 m. The slope ranges from 0◦ to
84◦. The climate type is a subtropical monsoon humid climate. The annual mean temperature is 17.8 ◦C.
The average annual rainfall is 1410.8 mm, and most of rainfall occurs in the summer. The dominating
forest type is coniferous forest, including fir and pine. In addition, there are some other vegetation
types, such as bamboo and camphorwood.
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2.2. Field Inventory Data

Field data collection was conducted from June to July 2016, with the help of the Central South
University of Forestry and Technology, and the Chinese Academy of Forestry. A total of 60 forest
plots with the size of 30 m × 30 m were surveyed for the experiment (Figure 1). The center of each
plot was located by using a global positioning satellite (GPS) receiver, and the location (latitude
and longitude) of the central point was recorded. These plots were independent from one another
to avoid the spatial autocorrelation. Within each plot, the diameter at 1.3 m above the ground of
each individual tree was measured by the diameter at breast height (DBH) ruler, and the tree height
measurement was performed by the laser altimeter. The GSV was calculated using the method
presented by Fang et al. [51,52], and the GSV of 60 plots ranged from 6.88 m3/ha to 434.42 m3/ha,
with an average value of 194.75 m3/ha (Table 1). By random sampling, the plots were divided for the
training (n = 44) and validation (n = 16) of models into two groups.

Table 1. Main biophysical properties of 60 plots in the study area. DBH: diameter at breast height.

Range Mean

DBH 4.06 to 30.10 cm 17.84 cm
Height 4.60 to 20.20 m 13.24 m

Number of Stems 30 to 350 96
Growing Stock Volume 6.88 to 434.42 m3/ha 194.75 m3/ha

2.3. Polarimetric SAR Data and Pre-Processing

Full polarimetric (HH, HV, VH, and VV polarizations) L-band SAR data over this experiment site
were acquired by the Japanese Aerospace Exploration Agency (JAXA) using the PALSAR-2. A total of
seven scenes data were ordered as L1.1 level with the single-look complex (SLC) format in slant range
geometry, and were acquired from June to October 2016 at approximately 4:22 local time. The central
location of these datasets is approximately 27.18◦ N–113.68◦ E, and the dimensions are 69 km in
azimuth and 25.8 km in range. The incidence angle ranges from 37.8◦ to 40.1◦. The azimuth resolution
is 2.97 m, and the range resolution is 2.86 m.

The basic data pre-processing steps were applied to reduce the geometric and radiometric
distortions and speckle effects. The radiometric calibration of these data was first performed [53].
The coherency matrix [T3] was generated and converted into the covariance matrix [C3], which could
represent the full polarimetric data. Then, these data were multi-looked with 7 × 10 in the azimuth
and range directions. A Lee filter with a 3 × 3 window was applied to reduce the speckle effects.
Geocoding was performed using shuttle radar topography mission (SRTM) elevation data (30-m spatial
resolution). Finally, the SAR images were re-sampled to 30-m spatial resolution. PolSARpro software
(Version 5.1.3, European Space Agency, Paris, France) was used to pre-process the SAR data. Gamma
software was used to perform geocoding and resampling.

2.4. Ancillary Data

The ancillary data used in this study mainly include the SRTM digital elevation model (DEM)
(https://earthexplorer.usgs.gov/) and land-use data product (http://www.dsac.cn/). The SRTM DEM
(Figure 2a) has a 30-m resolution and was created by the National Geospatial Intelligence Agency and
Jet Propulsion Laboratory. We used it to assist the SAR dataset geocoding. Besides, based on the SAR
imaging geometry, terrain correction factors (i.e., projection angle and local incidence angle) could also
be obtained from the DEM data. The land-use classification data (Figure 2b) with a spatial resolution
of 30 m was provided by the Geographical Information Monitoring Cloud Platform at the same time
as the PALSAR-2 dataset acquisition. According to the secondary classification of land use, the forest
was divided into four types: woodland, shrubbery, sparse woodland (S-Woodland), and other forest
(O-Forest), which would be used to assist the terrain correction factors.

https://earthexplorer.usgs.gov/
http://www.dsac.cn/
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3. Methodology

The processing flow chart presented in Figure 3 illustrates the framework of analysis steps.
We firstly carried out basic pre-processing for the SLC level 1.1 datasets, including radiometric
calibration, multi-looking, filtering, and geocoding. Secondly, POA and ESA correction were performed.
Then, we calculated the values of n for different polarization channels by analyzing the correlation
coefficients between the local incidence angles and backscatter coefficients. Thirdly, AVE correction was
performed for different forest cover types, and then the results were spliced for later analysis. Fourthly,
the correlations were analyzed between multi-temporal PolSAR data backscatter and forest GSV of
all the sample plots, and the optimal data was selected for GSV estimation. Finally, the estimation
models were constructed and compared by using the primary diagonal elements of the covariance
matrix. Then, we estimated and mapped the GSV for the whole experiment area.

3.1. Terrain Correction

3.1.1. Polarization Orientation Angle Correction

The azimuth slope was the main factor that caused the polarization ellipse to rotate, and then
affected the polarization state of the electromagnetic wave. To compensate for the impacts of the
azimuth slope, the polarization orientation angles could be obtained by the circular polarization
algorithm [54], as shown in Equation (1):

η =
1
4

[
arctan

(
2Re[T23]

T22 − T33

)
+ π

]
(1)

where η is the shift angle, and T22, T23, T33 are the corresponding elements of matrix [T]. After acquiring
the shift angle, a new rotated polarimetric covariance matrix (CPOA) can be formed by Equation (2):

CPOA =
[
U3(η)

]
[C3]

[
U3(η)

]T
(2)
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where C3 denotes a polarimetric covariance matrix that represents multi-looked PolSAR data, and U3(η)
is a rotation matrix. [

U3(η)

]
=

1
2

 1 + cos2η
√

2sin2η 1− cos2η

−
√

2sin2η 2cos2η
√

2sin2η

1− cos2η −
√

2sin2η 1 + cos2η

 (3)
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3.1.2. Effective Scattering Area Correction

The ratio between the radar cross-section and reference area was usually used to express the
backscatter coefficient [48]. The theoretical reference area was the pixel area, which did not change
with topographic fluctuation. However, in most practical applications, the reference area was defined
to be ground area (i.e., the effective area) that was affected by topographic fluctuation. The relation
between the effective area and the theoretical reference area is shown as Equation (4) [55]:

Aσ = Aβ/cosϕ (4)

where Aβ and Aσ represent the theoretical reference area and the effective area, respectively. ϕ is the
projection angle, and cosϕ is the correction factor for this step.

Then, a general correction equation for σ0 could be obtained, which was the product of β0 and
cosϕ. For full PolSAR data, we corrected each element in the polarimetric covariance matrix using the
same correction factor, and the equation could be written as follows:

CESA = [C3]× cosϕ (5)
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Here, C3 is the polarimetric covariance matrix that has been POA corrected and geocoded.
The projection angle ϕ is complementary to the smallest angle between the surface normal and the
image plane, and can be obtained by DEM and orbit information.

3.1.3. Angular Variation Effect Correction

Since the local scattering mechanisms within the forest structure vary with the local incidence
angles, further AVE correction was needed after the ESA correction. A simple cosine model was
derived to reduce the angular effect [56]:

σ0
corr(θloc) = σ0 ×

( cosθre f

cosθloc

)n

(6)

where σ0
corr represents the terrain corrected backscatter, θloc denotes the local incidence angle,

σ0 denotes the uncorrected radar backscatter coefficient, θre f is the radar incidence angle, and n
is a parameter that needs further discussion.

In a similar way, the polarimetric covariance matrix can be corrected by a 3 × 3 correction
coefficient matrix [K3] [50], and the expression is given as:

CAVE = [C3]× [K3] (7)

where C3 is the polarimetric covariance matrix that has been corrected by the previous two steps,
and K3 is the correction coefficient matrix.

According to Equation (6), the local scattering mechanisms are mainly affected by the local
incidence angles. Therefore, the optimal correction factor n of different polarizations can be obtained
through calculating and evaluating the correlation results between the local incidence angle and the
corrected backscatter coefficient, which is:

np,q(z) = argmin
{∣∣ρ(θloc, Ci,j

)∣∣} (8)

where ρ denotes the correlation between two parameters, Ci,j represents the elements of the corrected
covariance matrix, z represents the different types of forest cover, and p and q represent different
polarization channels. According to Equation (7), only the values of n corresponding to the primary
diagonal elements of the covariance matrix need to be obtained. Considering the impact of forest
characteristics on terrain correction, we try to calculate n corresponding to different types of forests in
this paper in order to effectively reduce the topographic effect. The initial ranges of the n values are
from zero to two. In addition, considering the computational complexity and accuracy of the n value,
we set the interval of n to 0.01. The optimal n is determined by the absolute value of the correlation.

3.2. Retrieval of GSV

We performed terrain correction on all the full PolSAR data, and then selected the most
relevant data for forest GSV estimation through time series analysis. The elements on the
diagonal of the covariance matrix (corresponding to backscattering intensity of different polarization
channels) were used as variables of estimation models. A few studies reported that individual
backscattering measurements could be used to extract forest biological parameters [57,58]. Therefore,
five single-variable models (Equations (9) to (13)) were first fitted to analyze the relationship
between the single variables and the GSV. Among the five models, model (e) was derived from
the parameterization of the improved Water-Cloud model, which we named the Water-Cloud
analysis model.
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(a) Linear function:
σ0 = β1 + β2GSV (9)

(b) Logarithmic function:
σ0 = β1 + β2ln(GSV) (10)

(c) Quadratic function:

σ0 = β1 + β2ln(GSV) + β3(ln(GSV))2 (11)

(d) Exponential function:
σ0 = β1 + β2sqrt(GSV) (12)

(e) Water-Cloud analysis function:

σ0 = β1 + β2e(β3GSV) (13)

In addition, we also constructed a multi-variable regression model using three elements (HH, HV,
and VV backscatter) on the diagonal of the covariance matrix, and compared it with the above five
models to find a suitable model for forest GSV estimation and mapping.

ln(GSV) = a + b1σ0
HH + b2

(
σ0

HH

)2
+ c1σ0

HV + c2

(
σ0

HV

)2
+ d1σ0

VV + d2

(
σ0

VV

)2
(14)

4. Results

4.1. Acquisition of Terrain Correction Factors

Before implementing terrain correction, the correction factors of each correction stage should be
obtained. These correction factors could be divided into two categories: angular factors and parameter
n, where the angular factors include the POA shift angle, projection angle, incidence angle, and local
incidence angle. All of the angular factors are shown in Figure 4. Here, it is worth noting that the
projection angle and local incidence angle of a single pixel are not complementary, especially in the
terrain undulating regions. In order to show the correction parameters and correction effects, we chose
one scene of data as an example to display the results. Here, the data acquired on 14 July 2016 was
randomly selected.

Based on Equation (8), the distribution of correlation coefficients at different polarization channels
can be obtained with a 0.01 interval. As shown in Figure 5, the different polarization channels are
labeled with solid lines in different colors: HH polarization in red, HV polarization in blue, and VV
polarization in green. The black dotted lines represent the position corresponding to the optimal n
value. In order to effectively reduce the topographic effect, we have obtained the distribution of the
correlation coefficients for different forest cover types, i.e., woodland (Figure 5a), shrubbery (Figure 5b),
sparse woodland (Figure 5c), and other forest (Figure 5d).

From these figures, we can see that the variation trend of the correlation coefficients of different
polarization channels is consistent for different forest cover types, increasing with the increase of
parameter n values. After obtaining the correlation coefficient distribution, we can easily extract the
optimum values of n by using Equation (8) in all four forest cover types.

In addition to the data acquired on 14 July 2016, the optimum n values of the remaining six scene
data (16 June 2016, 30 June 2016, 25 August 2016, 22 September 2016, and 6 October 2016) are also
calculated, and the results are shown in Table 2. From Table 2, it can be seen that the optimum n values
of HV polarization is within the range of zero to one, while the HH and VV polarizations are greater
than one.
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Figure 4. The geocoded angular factors for terrain correction. (a) Polarization orientation angle (POA)
shift angle; (b) Project angle; (c) Incidence angle; and (d) Local incidence angle.
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Table 2. Results of the optimum n values. S-Woodland: sparse woodland, O-Forest: other forest.

Data Woodland Shrubbery S-Woodland O-Forest

HH

16 June 2016 1.31 1.27 1.60 1.48
30 June 2016 1.20 1.41 1.50 1.37
14 July 2016 1.24 1.23 1.52 1.42

11 August 2016 1.11 1.09 1.30 1.22
25 August 2016 1.13 1.06 1.36 1.25

22 September 2016 1.16 1.12 1.37 1.24
6 October 2016 1.32 1.35 1.58 1.46

HV

16 June 2016 0.91 0.83 0.93 0.77
30 June 2016 0.76 0.67 0.79 0.57
14 July 2016 0.82 0.74 0.82 0.63

11 August 2016 0.74 0.65 0.65 0.48
25 August 2016 0.74 0.63 0.67 0.47

22 September 2016 0.70 0.56 0.65 0.44
6 October 2016 0.85 0.79 0.83 0.64

VV

16 June 2016 1.14 1.24 1.44 1.38
30 June 2016 1.04 1.14 1.36 1.26
14 July 2016 1.09 1.20 1.39 1.29

11 August 2016 1.01 1.11 1.20 1.14
25 August 2016 1.01 1.06 1.22 1.11

22 September 2016 1.01 1.10 1.23 1.13
6 October 2016 1.13 1.29 1.42 1.34
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4.2. Results of Terrain Correction

Terrain correction of all the data was performed by using the correction factors obtained in the
previous section. In the AVE correction stage, the forest area was divided into four cover types through
using the land-use data product, and then the final correction results were merged for analysis. In this
section, only the data results of 14 July 2016 were presented to analyze the effects of each correction
stage. Figure 6 presents the backscatter coefficients’ variation of the original data and each correction
stage in different polarization channels. The horizontal axis and vertical axis are the longitude
and latitude of the image, and the different colors represent the intensity of backscatter coefficients.
Figure 6a1, b1, and c1 show the backscatter coefficients’ distribution of different polarization channels
in the original data, and the results after POA compensation are shown in Figure 6a2, b2, and c2.
According to a visual inspection, no evident differences can be seen in the corresponding polarization
channels. This means that the contribution of POA compensation to terrain correction is limited.
That is because the impact of the azimuth slope is relatively weak compared to the distance direction
for the full polarimetric data. Figure 6a3, b3, and c3 show the results of ESA correction. Obviously,
the topographic effects have been improved in all of the polarization channels. However, there are still
some topographic effects in high elevation areas, such as the ridge where local incidence angles are
usually relatively large, which requires further correction through the AVE correction stage. As shown
in Figure 6a4, b4, and c3, in the three polarization channels, the topographic effects of ridges have
effectively been removed.

Figure 6. Cont.
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Figure 6. Backscatter coefficient variation of the original data and each correction stage in different
polarization channels (HH, HV, and VV). Original data: a1, b1, c1; POA correction stage: a2, b2, c2;
Effective scattering area (ESA) correction stage: a3, b3, c3; Angular variation effect (AVE) correction
stage: a4, b4, c4.

To further illuminate the effects of terrain correction, we show the relationship between the local
incidence angle and the backscatter coefficients of different polarization channels. The results are
shown in Figure 7, where the red dashed line is the fitting curve of the backscatter coefficients and
local incidence angle, and the different colors represent the density of points. We notice that there is
a linear relationship between the backscatter coefficients and local incidence angle. The linear slope
is relatively large in the POA compensation stage, but the linear slope becomes smaller following
ESA correction and AVE correction. It indicates that POA compensation is limited in its ability to
eliminate the impact of local complex terrain. In addition, the effect of the ESA correction stage is more
considerable at low-local incidence angles than at high-local incidence angles, where it can effectively
limit the overestimation of backscatter intensity. As shown in Figures 7a and 7d, in the range of 5◦ to
15◦, the distribution of backscatter coefficients is from −20 dB to −5 dB at the ESA correction stage,
which is much lower than that of the POA correction stage (−10 dB to 5 dB). However, in the range
of 70◦ to 80◦, the distribution range of backscatter coefficients does not change in the two correction
stages, staying between −10 dB and −20 dB. In contrast, after AVE correction, the distribution of
backscatter coefficients is from −15 dB to 0 dB, while it remains unchanged at low-local incidence
angle areas. It indicates that the AVE correction method is more effective at high-local incidence angles
than at low-local incidence angles, and it can limit the underestimation of backscatter intensity at
high-local incidence angle areas.
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4.3. Backscatter Sensitivity to Forest GSV

In this section, we analyze the sensitivity between forest GSV of all 60 plots and the individual
polarization channel backscatter in seven scenes of PALSAR-2 data. As an example, Figure 8 shows
the scatterplots for different polarizations on 14 July 2016, which describe the relationship between the
forest GSV and backscatter coefficents of the original and terrain-corrected data.

Compared with terrain correction, the dynamic range of these scatters is larger in the original
data (Figure 8a–c) and shows low sensitivity to forest GSV. After POA compensation (Figure 8d–f),
the correlation coefficient values are 0.129, 0.29, and 0.122 at HH, HV, and VV polarization, respectively,
which indicate that the sensitivity has not been improved. After ESA correction (Figure 8g–i),
the correlation coefficients are increased by 0.227, 0.27, and 0.24 at HH, HV, and VV polarization.
The AVE correction stage also contributes to enhancing the sensitivity between forest GSV and
backscatter where the correlation coefficients are 0.489, 0.643, and 0.473, respectively (Figure 8j–l).
Clearly, the terrain correction can improve the sensibility between forest GSV and backscatter
coefficients in this study area. However, we note that sample plots with too low GSV values (less than
37.06 m3/ha) still have negative effects on the sensitivity between forest GSV and backscatter at the
HH and VV channels.
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Figure 8. The relationship between forest growing stock volume (GSV) and backscatter coefficents of
different polarzation channels. Original data: (a) HH, (b) HV, and (c) VV; After POA compensation:
(d) HH, (e) HV, and (f) VV. After ESA correction: (g) HH, (h) HV, and (i) VV; After AVE correction:
(j) HH, (k) HV, and (l) VV.

We also compare the correlations between forest GSV and backscatter coefficients of all the SAR
data to select the most relevant data for GSV estimation. The results are summarized in Table 3.
We find that the correlation coefficient values are different for data acquired on different dates, and the
acquired data on 14 July 2016 are much higher than other data. Moreover, the HV backscattering
intensities of each scene of PALSAR-2 data show stronger correlations with the GSV than with HH
or VV. Therefore, the PolSAR data obtained on 14 July 2016 is selected for further analysis, and the
element HV backscatter is used as an individual measurement for single-variable regression models.
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Table 3. Correlation coefficients between GSV and backscatter coefficent of all data.

Acquisition Time HH HV VV

16 June 2016 0.418 0.495 0.370
30 June 2016 0374 0.561 0.216
14 July 2016 0.489 0.643 0.473

11 August 2016 0.435 0.564 0.377
25 August 2016 0.469 0.563 0.428

22 September 2016 0.182 0.545 0.123
6 October 2016 0.381 0.487 0.349

4.4. GSV Estimation and Mapping

Based on the results mentioned in Section 4.3, the PolSAR data obtained on 14 July 2016 was
used to estimate forest GSV. The three elements of the diagonal of covariance matrix generated by
this data are used as variables of regression models; among them, the element HV backscatter is used
as an individual measurement for the single-variable regression models. Table 4 provides the results
of all the models’ fitting based on the training sample dataset. The fitting curves generated by the
single-variable models are shown in Figure 9. The decisive coefficients’ R2 values are 0.539 (Direct
linear model, Figure 9a), 0.601 (Logarithmic model, Figure 9b), 0.603 (Quadratic model, Figure 9c),
0.579 (Exponential model, Figure 9d), and 0.612 (Water-Cloud analysis model, Figure 9e), respectively.
The direct linear relationship (Figure 9a) between the backscatter coefficient and forest GSV is weak,
but this phenomenon can be improved through the transformation of parameters, such as the natural
logarithmic transformation of forest GSV (Figure 9b). In addition, the Water-Cloud analysis model is
found to be the most reliable in the capacity of single-variable regression models, as it produces the
highest coefficient of determination in the five models. Howeve, from Figure 9e, when the forest GSV
is greater than 300 m3/ha, the change of the fitting curve tends to be gentle, which may limit its ability
regarding estimation in higher GSV areas.

Table 4. Summary of regression model results.

Model Regression Equation R2

Direct linear σ0
HV = −17.525 + 0.013GSV 0.529

Logarithmic σ0
HV = −26.608 + 2.296ln(GSV) 0.601

Quadratic σ0
HV = −28.155 + 2.941ln(GSV)− 0.066(ln(GSV))2 0.603

Exponential σ0
HV = −19.914 + 0.377sqrt(GSV) 0.579

Water-Cloud analysis σ0
HV = −12.932− 7.163 exp(−0.008GSV) 0.612

Multi-variable
ln(GSV) = −2.611+ 0.531σ0

HH + 0.031
(
σ0

HH
)2− 1.693σ0

HV − 0.063
(
σ0

HV
)2

+0.255σ0
VV + 0.01

(
σ0

VV
)2 0.674
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Compared with the Water-Cloud analysis model, the established multi-variable model may have
greater potential to provide useful GSV estimation. We validate this possibility based on the test
sample dataset, and the results are displayed in Figure 10. The validated plot of the Water-Cloud
analysis model is characterized by a correlation coefficient R2 value of 0.417, whose root mean square
error (RMSE) is 91.075 m3/ha. For the multi-variable model, the correlation coefficient R2 value is
0.630, whose RMSE is 70.965 m3/ha. Obviously, the accuracy of the multi-variable model inversion
is higher than that of the Water-Cloud analysis model inversion. Therefore, the multi-variable
model is used to estimate the forest GSV for the whole study region. The results are shown in
Figure 11. Figure 11a is the schematic diagram for the spatial distribution of the forest GSV at the
pixel scale, which shows that the range of the estimated forest GSV is 0 to 450 m3/ha. Figure 11b
is the histogram of the GSV map. The mean and standard deviation of the GSV in the region are
135.759 m3/ha and 47.255 m3/ha. Furthermore, we also calculated the GSV of different land-cover
types. The mean GSV of woodland, shrubbery, sparse woodland, and other forest were 137.701 m3/ha,
130.541 m3/ha, 125.991 m3/ha, and 113.759 m3/ha, respectively. The standard deviations were
45.906 m3/ha, 42.172 m3/ha, 56.274 m3/ha, and 62.051 m3/ha, respectively.
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5. Discussion

PALSAR-2 L-band full polarimetric data has been widely used in the estimation of forest
parameters. However, its use for the estimation of forest GSV presents a challenge in subtropical
mountain areas, where the underlying topography is complex and diverse, seriously affecting the
radiometric quality of SAR images [59]. We performed terrain correction through integrating three
stages (POA, ESA, and AVE) to reduce the negative influence of topography on the full polarimetric
data. In these three steps, the AVE correction step is based on a semi-empirical cosine model, which
can be considered as a function of parameter n (Equation (6)). Therefore, the key to the effectiveness of
the AVE correction is whether the value of n can be accurately obtained. A traditional way to obtain
the value of n is to use an empirical value of one [60,61], which corrects the experimental data as
a whole, and does not need to mask non-forest areas. However, it ignores the difference between
polarization channels and the influence of forest features, which is often used for the terrain correction
of single-polarimetric and dual-polarimetric data [39,62,63]. In this study, we calculated and evaluated
the correlation results between the local incidence angle and the backscatter coefficient to generate
the correction factor n of different polarization channels. It is adaptive and takes into account the
difference between polarization channels. In addition, according to the results of Figure 5 and Table 2,
we would like to stress the necessity of land-cover types for reducing the impact of microtopography
in AVE correction, although it has many classification criteria.

In this paper, the SRTM DEM is used as an auxiliary data for SAR dataset geocoding and terrain
correction. According to the results of Figures 7 and 8, the effects of removing terrain and improving
sensitivity are obvious. However, the DEM data are digital surface models (i.e., DSM), not digital
terrain models (i.e., DTM). Thus, the experimental process is carried out under the assumption that the
fluctuation of the forest canopy top is consistent with that of the underlying topography. For coarse
resolution SAR data, this assumption is not a serious limitation, because it is difficult to reflect the
information of individual canopy fluctuation in DSM data with coarse resolution [50]. Therefore, in the
premise of multi-look processing of SAR data, SRTM DEM (30 m or 90 m) can be used to assist terrain
correction [50,61]. Based on the resolution of DEM data being far lower than the original PolSAR
data, we used the projection angle method instead of the area integration method [48] in the ESA
correction stage. Although the use of globally shared DEM products can reduce the impact of terrain,
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it is still worth looking forward to obtaining high-precision and high-resolution DTM data through
PolInSAR technology.

Forest GSV has different sensitivity to PolSAR data backscatter coefficients from different dates,
even for the same polarization channel (Table 3). This phenomenon may be related to external
environmental conditions (e.g., moisture and wind speed variations). This is because irregular
variation of the environment affects the interaction between the electromagnetic waves and vegetation
components. Although multi-temporal SAR data with significant climatic difference have been used to
assess the relationships between the backscatter coefficients and forest parameters [28,42], the specific
impact of the external environment on PolSAR data in subtropical regions is still unknown, and should
be further studied. In addition, from Table 3, we find that the cross (HV)-polarized backscatter intensity
of each scene of PALSAR-2 data is more sensitive to forest GSV than co (HH, VV)-polarization in
subtropical mountain areas. The most likely reason is that the cross-polarized backscatter mainly occurs
from multiple scattering within the tree canopy, and is less affected by the external environment [13].

We use five single-variable models to establish relationships between the GSV and the
backscatter coefficients of the HV polarization (Table 4 and Figure 9). The results suggest that the
direct linear relationship between the backscatter coefficient and forest GSV is weak. However,
this phenomenon can be improved through the transformation of parameters, such as natural
logarithmic transformation of forest GSV. Through the contrast analysis of the fitting performance
of the five models, the Water-Cloud analysis model is found to be the most reliable. However, the
multi-variable model has greater potential to provide a useful estimation of GSV than the Water-Cloud
model. In fact, the correlation coefficient R2 values of the two models only differ by 0.062, but the
former has a higher accuracy of GSV estimation than the latter in the model test. This indicates
that co-polarization can also make a certain contribution in GSV estimation. Therefore, our study
recommends using the multi-variable model to map the GSV in the study area.

6. Conclusions

This research investigated the capability of full polarized L-band backscattering for the estimation
of forest GSV in a subtropical mountain region of eastern Hunan, China. However, it was challenging
to estimate GSV due to complex topography of the region. In this paper, we proposed a strategy
for fine terrain correction through integrating three stages (POA, ESA, and AVE) and taking into
account the impact of land-cover types. In the AVE correction stage, we calculated and evaluated
the correlation results between the local incidence angle and the backscatter coefficient to generate
the correction factor n of different polarization channels. We found that the optimum n values of HV
polarization were within the range of zero to one, while the HH and VV polarizations were greater
than one. The results of terrain correction demonstrated that the terrain correction strategy effectively
reduced the negative influence of topography and improved the sensitivity between the forest GSV
and backscatter coefficients. The results also showed that the land-cover types were necessary data for
reducing the impact of microtopography in AVE correction. In the three primary diagonal elements
of the PolSAR covariance matrix, the cross-polarized backscatter was more sensitive to forest GSV
than co-polarization, and could be used as a single variable for GSV estimation. To estimate and map
the GSV of the study area, five single-variable models and a multi-variable model were built using
field measurements and corrected PolSAR data. The multi-variable model that was constructed by
combining three diagonal elements had greater potential to provide a useful estimation of GSV than
the single-variable models, whose correlation coefficient value was 0.630 and RMSE was 70.965 m3/ha.
Therefore, our study recommended using the multi-variable model to map the GSV in the study area.
The range of estimated forest GSV was 0 to 450 m3/ha. The mean value and stander deviation were
135.759 m3/ha and 47.255 m3/ha, respectively. The study expands the application potential of PolSAR
data in complex topographic areas; thus, it is helpful and valuable for the large-scale (e.g., national or
global scale) estimation of forest parameters.
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