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Abstract: Vegetation indices derived from remote sensing measurements are commonly used to
describe and monitor vegetation. However, the same plant community can have a different NDVI
(normalized difference vegetation index) depending on weather conditions, and this complicates
classification of plant communities. The present study develops methods of classifying the types of
plant communities based on long-term NDVI data (MODIS/Aqua). The number of variables is reduced
by introducing two integrated parameters of the NDVI seasonal series, facilitating classification
of the meadow, steppe, and forest plant communities in Siberia using linear discriminant analysis.
The quality of classification conducted by using the markers characterizing NDVI dynamics during
2003–2017 varies between 94% (forest and steppe) and 68% (meadow and forest). In addition to
determining phenological markers, canonical correlations have been calculated between the time
series of the proposed markers and the time series of monthly average air temperatures. Based on
this, each pixel with a definite plant composition can be characterized by only four values of canonical
correlation coefficients over the entire period analyzed. By using canonical correlations between
NDVI and weather parameters and employing linear discriminant analysis, one can obtain a highly
accurate classification of the study plant communities.

Keywords: boreal forests and ecosystems; NDVI (normalized difference vegetation index);
classification of plant communities; linear discriminant analysis

1. Introduction

Plant phenology is determined by the dates of the seasonal biological events in the plant life cycle
such as the emergence of leaves, the emergence of flowers, etc. The occurrence of phenological events
is influenced by plant interactions with the air, soil, and water flows, and, thus, phenology is one of
the most reliable indicators of plant seasonal dynamics. On the one hand, phenology is a sensitive
indicator of a changing climate and, on the other hand, phenology is related to the productivity and
biophysical properties of the ecosystem [1–4]. Thus, changes in phenology dynamics can correspond
to the effects of both local and global climate change on plant ecology [5,6]. Traditionally, observations
of phenological events are performed by people, but in the last four decades, these have been studied
using remote sensing-based products such as different vegetation indices [7–10]. Satellite data have
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considerable potential for monitoring vegetation dynamics on the regional and global levels, as airborne
sensors enable coordinated measurements on the spatial and temporal scales. Land surface phenology
(LSP) is the study of the spatial and temporal development of vegetation surface using satellite
measurements [11]. LSP is indirectly related to plant phenology through radiation absorption and
reflection, but it is influenced by changes in the state of the atmosphere, cloud and snow covers, effects
of reflection, and non-climatic factors such as biogenic or anthropogenic impacts [12]. Satellite-derived
vegetation indices are spectral indicators of plant photosynthesis and metabolic rates [13–16]. It is,
however, difficult to compare the data of the ground and satellite phenology because of the discrepancy
between their spatial-temporal scales. The main source of uncertainty is the errors arising from
comparing targeted ground observations with pixel calculations in remote sensing data. For instance,
traditional phenology monitors growth phases determined for a limited number of certain plants,
while airborne sensors record electromagnetic reflection from a large land plot [12,17,18].

Like ground phenological observations, satellite-derived data focus on the main dates of
phenological events, which are plotted on the annual curves of vegetation indices, e.g., the dates of
the beginning and end of the plant growing period, maxima of vegetation indices, etc. Methods are
being developed that could be used to extract phenological markers from the time series of vegetation
indices [11,19–22].

Studies of the dynamics of vegetation indices take into account both intra-annual and
interannual changes related to climate variations [23,24] or natural or human-induced changes
in the vegetation [25,26]. Thus, temporal trajectory of vegetation indices is used to describe ecosystem
dynamics, study vegetation types, detect damages, and monitor vegetation.

Different types of plants in communities show their individual responses to changes in the
temperature, humidity, and other weather phenomena. The individual sensitivity and the time of
response to climate change of each plant type constitute the specific response of the whole plant
community, which determines the dynamics of phenological sequences for each plant species and each
plant community [27–30].

Over the past four decades, the number of studies devoted to classification of plant communities
based on analysis of the time series of vegetation indices has been increasing steadily [31]. Vegetation
is categorized using various methods, e.g., supervised machine learning algorithms [32–36]. Other
methods include singular value decomposition [37,38] and methods based on regression and correlation
analysis, which are used more often [39–47]. To detect changes in the vegetation based on analysis of
long-term satellite datasets, a number of authors propose using wavelet decomposition [48,49] and
Fourier analysis [50,51]. In these studies, analysis of time series involves separation of the signal
from noise and, depending on the method employed, researchers perform a certain transformation
aimed at selecting the dominating components of the time series signal variation. These methods are
used to mark changes in the time series that are caused by seasonality and interannual variations in
weather conditions for data analysis. The existing methods of detecting changes minimize seasonal
variations and enable researchers to focus on certain periods of the year (such as the growing period)
or investigate the properties of the obtained time series of the vegetation indices [52–54] instead of
taking seasonality into account explicitly. Maximum likelihood estimation [55,56] and artificial neural
networks [57,58] are used to increase the accuracy of classifications. There are also different software
products for observing phenological dynamics [59,60].

A number of LSP studies show that not only climatic factors but also fires, land degradation, attacks
of insects, floods, deforestation, etc. considerably affect phenology of plant communities [12,61–64].
Therefore, a more reliable approach is needed to reveal long-term phenological variations, which are
determined by changes in the composition and boundaries of the plant communities caused by the
effects of climate or other factors. The concept of a significant change in plant community should be
defined. It is important for researchers to be able to track and reveal changes in space and time.

The purpose of this study is to develop methods of classification of plant communities
based on long-term NDVI data. In order to reduce the number of variables, we introduce two
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integrated parameters of the seasonal NDVI series as markers of phenological dynamics characterizing
plant community.

2. Materials and Methods

2.1. Data

We investigated plant communities growing in five study areas. The study areas were sufficiently
large to enable decoding of the data with 250 m spatial resolution provided by MODIS imaging sensor
mounted on TERRA & AQUA satellites.

Study area no. 1 (Figure 1) represents forest-steppe vegetation. The area is located 40 km away
from the city of Krasnoyarsk and is geographically positioned in the Krasnoyarsk Forest-Steppe,
which is located in the south of Middle Siberia. The study area is flat terrain with micro-depressions.
The elevation of the area at the northern point is 200 m above sea level, declining gradually. Mixed forest,
consisting largely of pine and birch trees (Betula pendula Roth, Pinus sylvestris L.), grows in the north and
south of the area, and herbaceous plants occupy its central part (Bromus inermis (Leyss.) Holub), Stipa
pennata L., Poa pratensis L., Potentilla tanacetifolia Wild. Ex Schltdl., Elytrigia repens (L.) Nevski).
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Figure 1. Location of the study areas.

Study areas no. 2–4 are located in the central part of the Shira District, in the steppe and
forest-steppe zones of the Republic of Khakassia in the south of the Krasnoyarsk Territory, in the
Minusinsk Depression. The area is undulating-flat terrain, with flat regions separated from each other
by monoclinic cuesta ridges with strongly asymmetric. The Minusinsk Depression has an extreme
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continental climate, with considerable yearly and daily temperature variations, low precipitation,
strong winds, and low humidity. The amount of precipitation differs depending on the season: about
50%–60% of the total amount occurs in summer and no more than 10% in winter. The plant growing
period is 130–160 days (academic and practical guide on climate of the USSR [65]).

The study areas are occupied by steppe plant communities dominated by herbaceous perennials
(Table 1) with long growing periods. The Khakassia steppes, being very old and providing favorable
conditions for plants, show high species saturation (study areas no. 2 and 3). Study area no. 4
represents lowland meadows located in riverine valleys and topographic lows. The northern slopes of
the hills and low mountains are covered by mixed birch-larch forests (Larix sibirica L., Betula pendula
Roth.), study areas no. 3 and 4.

Study area no. 5, which is located 45 km away from Krasnoyarsk (Figure 1), is covered by
coniferous forest (fir and pine trees (Abies sibirica Ledeb., Pinus sylvestris L.). This is the forested part
of the Krasnoyarsk Forest-Steppe. The plant growing period in the Krasnoyarsk Forest-Steppe is
130–150 days, and the freeze-free period is 90 days. The annual of precipitation is 366 mm, 70% of
which occurs from May through September.

In each study area, we considered several pixels of MODIS data (Tables 1 and 2) to be further used
to obtain time series of NDVI values, conduct discriminant analysis, and classify plant communities
growing in these areas.

Table 1. Description of plant communities growing in study areas.

Area
No. Latitude/Longitude Plant Communities Number of

Pixels

1 56.352/93.013
Steppes (Bromus inermis (Leyss.) Holub, Stipa pennata L., Poa pratensis
L., Potentilla tanacetifolia Wild. Ex Schltdl., Elytrigia repens (L.) Nevski); 2

Coniferous-deciduous forests (Betula pendula Roth., Pinus sylvestris L.). 2

2 54.486/90.425
Steppes (Stipa capillata L., Carex pediformis C.A. Mey., Koeleria cristata

(L.) Pers., Festuca valesiaca Gaudin, Taraxacum officinale Wigg.); 2

Meadows (Iris biglumis Vahl, Elytrigia repens (L.) Nevski, Festuca
pseudovina Hack. Ex Wiesb., Plantago media L.). 1

3 54.702/90.527

Steppes (Stipa capillata L., Carex pediformis C.A. Mey., Koeleria cristata
(L.) Pers., Festuca valesiaca Gaudin, Artemisia frigida Willd., Taraxacum

officinale Wigg.);
3

Coniferous-deciduous forests (Larix sibirica L., Betula pendula Roth.). 1

4 54.520/89.744

Meadows (Iris ruthenica Ker-Gawl., Ranunculus polyanthemos L.,
Phleum phleoides (L.) Karst, Helictotrichon schellianum (Hack.) Kitag.,

Artemisia tanacetifolia L.);
3

Coniferous-deciduous forests (Larix sibirica L.„ Betula pendula Roth.).). 4

5 56.146/92.204 Coniferous forests (Abies sibirica Ledeb., Pinus sylvestris L.). 2

Table 2. Photos of plant communities growing in study areas.

Area No.1
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2.2. Method

Vegetation indices are commonly used to study the state and integrated changes in the vegetation
cover on different spatial scales. In the present study, plant communities were classified using
normalized difference vegetation index (NDVI), which is based on the difference between the red and
near infrared light reflected by vegetation detected by satellite sensors [66]. NDVI is successfully used to
estimate the state and changes of the vegetation cover, as NDVI values are related to photosynthetically
active radiation. In the present study, NDVI was calculated from the standard formula

NDVI =
NIR − Red
NIR + Red

(1)
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where NIR and Red are reflectance of sunlight values in the near infrared and red spectral bands for
a given point on Earth’s surface. The biophysical interpretation of NDVI is the fraction of absorbed
photosynthetically active radiation.

MOD09Q1/MYD09Q1 data of MODIS Terra/Aqua sensor were used to calculate NDVI vegetation
indices. These data are the reflectance values of NIR and Red spectral bands with spatial resolution
(pixel size) of 250 meters, with a time step of 8 days. For each 8-day period, the best possible value is
selected from the source information of the regular daily survey according to the maximum quality
criterion taking into account atmospheric conditions (absence of clouds and shadows from clouds,
transparency of the atmosphere). The data were obtained from the Earth Observing System Data
and Information System EOSDIS [67]. NDVI values are given for the period from 2003 through 2017.
A typical seasonal NDVI time series is shown in Figure 2.
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Figure 2. A typical NDVI(n,i) time series (where n is the number of the day in a year; i is the number of
the year, study area no. 4, meadow, i = 2003). (1) a seasonal time series of NDVI, (2) filtered series 1,
(3) series 2 clipped at critical value NDVIFcrit = NDVIFmin + 0.2(NDVImax − NDVImin), (4) parabolic
approximation of series 3; (5) critical value of NDVI (n).

The curve of NDVI(n) seasonal dynamics has a complex shape (Figure 2), and to simplify the
description of this curve, we propose the following procedure of the ‘reduction’ of the NDVI(i) seasonal
time series in year i:

1. Determine the NDVI (i)max and NDVI (i)min for season i.
2. Filter the NDVI(n) time series in the range of values between n0(i) and nf(i) with a high-frequency

moving average filter including five points:

NDVIF (n) = 1
5 (NDVI (n − 2) + NDVI (N − 1) + NDVI (n) + NDVI (N + 1) + NDVI (N + 2)) (2)

3. Determine the NDVIF(i)crit for the season: NDVIF(i)crit = NDVIFmin + 0.20 (NDVIF(i)max −

NDVIF(i)min).
4. Determine the n0(i)—the starting time point, before which all NDVIF values of the current year

are below NDVIF(i)crit, and nf(i)—the end point, after which all NDVIF values of the current year
are below NDVIF(i)crit.

5. Approximate the filtered series NDVIF(n,i) with the parabolic Equation (3) using the nonlinear
least squares method. Now the NDVIF(n) seasonal dynamics in the (n0, nf) range of values is
characterized by three parameters: a(i), b(i), c(i).

NDVIF (n, i) = a (i)n2 + b (i)n + c (i) (3)
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6. Instead of parameters a(i), b(i), c(i), use two new variables determined from the NDVIF (n, i)
Equation (4) (Figure 3): the maximum seasonal value NDVIF(i)max, determined using a common
procedure from equation:

dNDVIF (n, i)
dn

= 2a (i) n + b (i) = 0

nmax =
−b (i)
2a (i)

; NDVIF(i)max = a (i)n2
max + c(i) (4)

the rate NDVIF(i)
dn = 2a(i)n 1

2
+ b(i) of the NDVIF increase at point n1/2 (i) =

(nmax(i)−n0(i)
2 + n0(i),

located in the middle of the range between points n0(i) and nmax(i). This parameter corresponds
approximately to the date of emergence of leaves [68]. The procedure for recalculating of the
NDVI seasonal dynamics curve is shown in Figure 3.
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Figure 3. Procedure for recalculating of the NDVI seasonal dynamics curve. Point 1 (nmax, NDVIFmax);

point 2 (
nmax− n0

2 + n0 ); point 3 (n0, NDVIF(i)crit), α =
dNDVIF (i)

dn = 2a(i)n 1
2
+ b(i)

In the first stage of the analysis, plant communities were classified using the NDVImax and
dNDVI/dn datasets for 2003–2017 (i.e., 15 data pairs were used for each NDVI image). The NDVImax

and dNDVI/dn datasets for the areas with different plant communities (meadow, steppe, forest) were
compared using linear discriminant analysis [69] in order to differentiate the ranges of NDVImax and
dNDVI/dn values for different plant communities and to rate the classification of plant communities
based on these parameters using the classification template.

Canonical correlation analysis was used to relate the remote sensing data to weather
parameters [70–72]. This method is used to measure the strength of association between different
types of value sets {xn} and {yn} and determine correlations (canonical correlations) between linear
combinations a1 x1 + ... + anxn and b1y1 + ... + bnyn of each of the sets analyzed. To determine
canonical correlations between remote sensing data and weather data for each NDVI image, we
created an 11×2 template N, composed of 11 lines of yearly values of two parameters-NDVIFmax and
dNDVIF/dn—for the period of 2006–2015 and for 2017 (the data for these years were available at [73]),
and 11 × 2 templates T(k), composed of the average temperatures and amounts of precipitation of the
kth month (April, May, June, and July) of the same years. The weather data were obtained at the Shira
Weather Station (54◦29′ N, 89◦58′ E)-the station located nearest to the study areas. The calculations for
each NDVI pixel provided four values of the canonical correlation coefficient for the four months of
the growing season, which were then used to perform discriminant analysis.
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Two procedures were proposed to test the approach based on using the variables NDVIF(i)max

and dNDVIF/dn (Figure 3).
Procedure 1 included the following steps:

a. Choose the area with known types of plant communities;
b. Choose seasonal NDVI data for m seasons from earthdata.nasa.gov;
c. Determine parameters n0, a,b,c, NDVImax, dNDVI/dn on the selected areas for all years using the

curve of NDVI seasonal dynamics;
d. Carry out discriminant analysis for different types of plant communities based on

NDVI parameters;
e. Estimate the accuracy of the classification of plant communities based on NDVIF(i)max and

dNDVIF/dn using the discriminant analysis classification template.

The accuracy of classification of forest, steppe, and meadow plant communities using Procedure 1
was between 68% and 94%.

Procedure 2 included the following steps:

a. Calculate the average temperatures of the air and amounts of precipitation for April, May, June,
and July for the m analyzed seasons using the weather database;

b. Determine coefficients of canonical correlation between the weather data template over m
seasons for each of the four months and the NDVIF(i)max, dNDVIF/dn data template over the
same years;

c. Carry out discriminant analysis based on coefficients of canonical correlation for the study areas;
d. Estimate the accuracy of the classification based on parameters of canonical analysis using the

discriminant analysis classification template.

The accuracy of classification of forest, steppe, and meadow plant communities in Khakassia
using Procedure 2 reached 100%.

3. Results

Thus, two ‘integrated’ parameters of phenological dynamics of plant communities— NDVIF(i)max

and dNDVIF/dn—were proposed for classifying plant communities. These phenological indicators
of vegetation dynamics of plant communities can be used to reduce the number of variables for
analysis and classification. If classification is based on remote sensing data for m years, 2m integrated
parameters instead of 46m variables will be used, i.e., the number of variables will be 23-fold lower.

For analysis of NDVI images of different plant communities, the values of the parameters were
analyzed in the (NDVIFmax, dNDVIF/dn) plane. The data for the steppe and forest communities in
Khakassia in the seasons of 2003–2017 are shown in Figure 4.

The values of NDVIFmax and dNDVIF/dn for different communities varied widely in different
seasons (the NDVIFmax for the steppe plant communities varied between 0.3 and 0.8 in different years
and the NDVIFmax for the forest communities—between 0.6 and 0.9) (Figure 4).

To distinguish between the steppe and forest communities based on the values of NDVIFmax and
dNDVIF/dn, we conducted discriminant analysis (Table 3).

The sufficiently low values of the λW and p statistics indicated the high level of discrimination
between the forest communities and the steppe ones based on NDVI parameters. The error of
classification of the steppe and forest communities was 4% (Table 3). Rather good discrimination based
on the NDVIFmax and dNDVIF/dn was achieved between the steppe and meadow communities in
Khakassia (Table 3). The parameters for the meadow and steppe study areas for 2003–2017 are given in
the (NDVIFmax, dNDVIF/dn) plane (Figure 5).

earthdata.nasa.gov
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Figure 4. Characterization of the NDVIF seasonal curves in the (NDVIFmax, dNDVIF/dn) plane for the
steppe (1) and forest (2) communities in Khakassia.

Table 3. Parameters of discriminant analysis for plant communities *.

Community m*k λW F p ** S, %

Forest–steppe 148 0.243 228.66 0.00001 96
Meadow–steppe 134 0.571 49.49 0.00001 81.48
Meadow–forest 148 0.825 15.61 0.001 68.7

Forest (Khakassia)–forest (Krasnoyarsk) 106 0.872 7.47 0.0009 71.42
Coniferous forest–mixed forest 46 0.209 79.70 0.00001 97.8

Steppe–forest (10 years) 100 0.253 143.11 0.00001 95
Steppe–forest (5 years) 50 0.220 83.53 0.0001 98

Steppe–forest (canonical correlation) 11 0.13 9.61 0.0089 100
Steppe–forest–meadow (canonical correlation) 14 0.102 4.26 0.0066 100

* m—the number of the seasons analyzed, k—the number of NDVI images; λW—Wilk’s Lambda statistic; F—Fisher’s
F test; p—significance level; S—percentage of the accurately determined seasonal remote sensing data. ** The critical
value was chosen at p = 0.05.
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Figure 5. NDVIFmax and dNDVIF/dn for the meadow (1) and steppe (2) communities in Khakassia.

Discriminant analysis was carried out to distinguish between the steppe and meadow communities,
too (Table 3). The values of the λW statistic were greater than the corresponding values obtained by the
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discriminant analysis of the forest and steppe communities in Khakassia, suggesting the poorer quality
of classification of the meadow and steppe plant communities based on NDVI parameters.

The average percentage of the steppe and meadow plant communities accurately classified using
remote sensing data was 81.48%. The classification of the meadow and forest communities based on
long-term remote sensing measurements was somewhat less accurate (Table 3).

How close are the NDVIFmax and dNDVIF/dn for the plant communities of the same type but with
different geographical positions? To answer this question, we compared clusters in the (NDVIFmax,
dNDVIF/dn) plane (Figure 6) for mixed forests with different species compositions (Table 1) located in
Khakassia (Study areas no. 3 and 4) and at Krasnoyarsk (Study area no. 1).
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Figure 6. NDVIFmax and dNDVIF/dn for forest communities in the Krasnoyarsk Territory (1) and
Khakassia (2) for 2003–2017.

Discriminant analysis produced accurate classification of 71% of the data for these study areas
(Table 3). At the same time, only 20% of the forest communities in the Krasnoyarsk Territory were
classified accurately.

Finally, analysis based on NDVIFmax and dNDVIF/dn (Figure 7) discriminated between the
coniferous forest (Study area no. 5) and the mixed forest (Study area no. 1).
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Figure 7. NDVIFmax and dNDVIF/dn for 2003–2017 for (1) coniferous forest; (2) mixed forest.
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4. Discussion

The plant communities inhabiting the study areas differ in their phenological dynamics during the
growing season. Each of the plant species that constitute plant communities show different sensitivity
and time of response to changes in the temperature of the air, amount of precipitation, and other
weather phenomena. The species composition of each plant community determines the specific features
of its phenological dynamics in each growing season, which differ from the seasonal phenological
dynamics of other plant communities. However, the ranges of values of these variables for different
plant communities had different positions on the (NDVIFmax, dNDVIF/dn) plane. Is the classification
approach proposed in the present study competitive with other well-known approaches? A study by
Miklashevich and Bartalev [73] suggested using the start of the growing season, SOS, as a phenological
parameter for classifying vegetation. In research based on remote sensing data, the start of the growing
season is often defined as the first day of the year corresponding to the start of the ascending trend in
the time series of the normalized difference vegetation index (NDVI) values [74]. The SOS values were
used during one year to classify vegetation types such as forests, open stands, tundra, herbaceous
vegetation of wetlands, and vegetation-free areas in West Siberia, Russia [73]. That study showed the
following SOS values: between 150 and 216 days per year for tundra, between 135 and 151 days per
year for forest tundra, and between 105 and 136 days per year for taiga.

To compare that classification approach with the methods used in the present study, several
plots with the known SOS data for the period between 2003 and 2017 were chosen for each of the
vegetation types considered here (meadow, steppe, coniferous-deciduous forest (Betula pendula Roth,
Pinus sylvestris L.), and coniferous forest (Abies sibirica Ledeb., Pinus sylvestris L.). SOS distribution
functions for every year of the study period were constructed for each vegetation type (Figure 8).

Forests 2019, 10, x FOR PEER REVIEW 11 of 17 

 

The plant communities inhabiting the study areas differ in their phenological dynamics during 

the growing season. Each of the plant species that constitute plant communities show different 

sensitivity and time of response to changes in the temperature of the air, amount of precipitation, and 

other weather phenomena. The species composition of each plant community determines the specific 

features of its phenological dynamics in each growing season, which differ from the seasonal 

phenological dynamics of other plant communities. However, the ranges of values of these variables 

for different plant communities had different positions on the (NDVIFmax, dNDVIF/dn) plane. Is the 

classification approach proposed in the present study competitive with other well-known 

approaches? A study by Miklashevich and Bartalev [73] suggested using the start of the growing 

season, SOS, as a phenological parameter for classifying vegetation. In research based on remote 

sensing data, the start of the growing season is often defined as the first day of the year corresponding 

to the start of the ascending trend in the time series of the normalized difference vegetation index 

(NDVI) values [74]. The SOS values were used during one year to classify vegetation types such as 

forests, open stands, tundra, herbaceous vegetation of wetlands, and vegetation-free areas in West 

Siberia, Russia [73]. That study showed the following SOS values: between 150 and 216 days per year 

for tundra, between 135 and 151 days per year for forest tundra, and between 105 and 136 days per 

year for taiga. 

To compare that classification approach with the methods used in the present study, several 

plots with the known SOS data for the period between 2003 and 2017 were chosen for each of the 

vegetation types considered here (meadow, steppe, coniferous-deciduous forest (Betula pendula Roth, 

Pinus sylvestris L.), and coniferous forest (Abies sibirica Ledeb., Pinus sylvestris L.). SOS distribution 

functions for every year of the study period were constructed for each vegetation type (Figure 8). 

Figure 8. SOS distribution functions for the period between 2003 and 2017. (1) meadow, (2) steppe, 

(3) deciduous forest (Betula pendula Roth, Pinus sylvestris L.), (4) coniferous forest (Abies sibirica Ledeb., 

Pinus sylvestris L.). 

SOS-based classification could be effective if intersection regions of SOS distribution functions 

for different vegetation types were minimal. However, there are many intersections of SOS 

distribution functions (Figure 8), the modes of SOS distribution functions and ranges of SOS values 

almost coincide, and, thus, it is impossible to distinguish between the vegetation types using long-

term SOS data. A possible reason for the disagreement between our results and the data presented in 

the study [73] is that the authors of that study considered vegetation types that differed considerably 

in their species composition, such as forest and tundra. For the vegetation types that grow on a rather 

limited area, which are examined in our study, the differences in the phenology of plant communities 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120 140 160 180

Day of year

P
a

rt
 o

f 
d

a
y

s

1

2

3

4

Figure 8. SOS distribution functions for the period between 2003 and 2017. (1) meadow, (2) steppe, (3)
deciduous forest (Betula pendula Roth, Pinus sylvestris L.), (4) coniferous forest (Abies sibirica Ledeb.,
Pinus sylvestris L.).

SOS-based classification could be effective if intersection regions of SOS distribution functions for
different vegetation types were minimal. However, there are many intersections of SOS distribution
functions (Figure 8), the modes of SOS distribution functions and ranges of SOS values almost coincide,
and, thus, it is impossible to distinguish between the vegetation types using long-term SOS data.
A possible reason for the disagreement between our results and the data presented in the study [73] is
that the authors of that study considered vegetation types that differed considerably in their species
composition, such as forest and tundra. For the vegetation types that grow on a rather limited area,
which are examined in our study, the differences in the phenology of plant communities are far less
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significant. Therefore, the approach proposed in the present study is effective for distinguishing
between the adjacent plant communities growing in the same territory.

Thus, the long-term integrated parameters of NDVIFmax and dNDVIF/dn seasonal dynamics
used to classify the types of plant communities can effectively (with a probability no less than 0.95)
distinguish between forest and steppe and between coniferous forest and mixed forest. The proposed
parameters were used somewhat less effectively (with a probability of about 0.69) to distinguish
between meadow and forest vegetation types.

In the present study, a number of calculations were undertaken to answer the question: Will the
quality of classification change if, instead of the whole dataset, the data for, say, 10 years are used?
Discriminant analysis was carried out based on the 10-year data (2008–2017) for the steppe and forest
communities in Khakassia (λW = 0.25 and S = 95%) (Table 3). The steppe and forest communities in
Khakassia can be classified using the 5-year NDVI data (2013–2017) (λW = 0.25 and S = 98%) (Table 3).
Thus, if the depth of the analysis based on the proposed phenological markers is reduced from 15 to
5 years, the quality of classification is not affected.

Different types of plant communities show dissimilar responses to weather conditions, and, thus,
NDVIFmax and dNDVIF/dn response to weather changes can be used to improve classification of
plant communities. Relationships between the variables characterizing NDVI and weather variables
(average temperatures and amounts of precipitation in April, May, June, and July) were found using
the method of canonical correlations. Plants are obviously unaware of calendar dates, and dissimilar
conditions in the same months of different years will produce different effects on plant phenology, but
one can try to reveal relationships between the templates of NDVI parameters for m years and the
templates of weather parameters for these years.

The canonical correlation coefficient will characterize the level of the relationship between weather
parameters of the month and NDVI parameters for each type of the plant communities studied here.
To calculate canonical correlations between weather parameters and NDVIFmax and dNDVIF/dn for
the steppe and forest plant communities, we used the data from the Shira Weather Station, which is
situated close to the plant communities in Khakassia (Study areas no. 2–4).

The coefficients of canonical correlation for April, May, June, and July between weather parameters
(the average temperatures of the air and amounts of precipitation) and integrated parameters NDVIFmax

and dNDVIF/dn for the forest and steppe plant communities are listed in Table 4.

Table 4. Canonical correlation coefficients for the study areas and long-term annual average canonical
correlations for the forest, steppe, and meadow plant communities

Plant
Communities

Stat.
Parameters

Month

April May June July

Meadow
average 0.800 0.563 0.310 0.777
st. dev. 0.114 0.188 0.056 0.140

Forest
average 0.616 0.616 0.488 0.702
st. dev. 0.153 0.166 0.192 0.121

Steppe average 0.493 0.588 0.732 0.758
st. dev. 0.082 0.099 0.071 0.042

Long-term annual average coefficients of canonical correlation between the proposed markers of
phenological dynamics, NDVIFmax and dNDVIF/dn, and weather parameters in April were significantly
higher for the forest and meadow communities than for the steppe communities (Table 4). By contrast,
in June, long-term annual average coefficients of canonical correlation between the proposed NDVI
markers of phenological dynamics and weather parameters were significantly lower for the forest and
meadow communities than for the steppe communities. These relationships can help discriminate
further between plant communities by using both integrated NDVI variables and the coefficients of
canonical correlation between these variables and weather parameters in different months.
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Canonical correlations between the integrated NDVI data and weather parameters over the
growing season can be a tool for perfect discrimination between the steppe, forest, and meadow plant
communities (S = 100).

5. Conclusions

Using remote sensing data to describe vegetation is an attractive idea, as data on the state
of vegetation all over the world can be collected rapidly and inexpensively. NDVI parameters,
however, vary rather widely both in one season and between seasons, as weather factors considerably
influence the current values obtained by remote sensing techniques. The same plant community
can have a different NDVI depending on weather conditions, and this complicates classification of
plant communities.

New integrated variables, NDVIFmax and dNDVIF/dn, determined from the NDVI time series,
were proposed in the present study in order to achieve effective classification of plant communities
using remote sensing data. These markers of phenological dynamics of plant communities are regarded
as the key parameters of a plant community. These parameters were tested as the basis for classifying
plant communities. The data obtained for the study areas with plant communities were considered
as ‘clouds’, and the ‘clouds’ for different communities were separated using linear discriminant
analysis. The quality of classification (the average percentage of the yearly data for study areas
accurately classified by the plant composition) achieved using this approach varied between 94% (in
discriminating between forest and steppe communities) and 68% (in discriminating between meadow
and forest communities). Thus, using the parameters describing NDVI seasonal dynamics proposed
in this study, one can reduce the time series of NDVI seasonal dynamics to two parameters with
limited variance.

A definite advantage of the approach to classification of plant communities proposed in the
present study is the transition from using only remote sensing data to using the method including
both remote sensing data and weather parameters. Weather is clearly a key phenological factor, and
NDVI of different vegetation types should be sensitive to weather changes. The use of the canonical
correlations to estimate differences between vegetation types such as steppe, forest, and meadow
enabled classification of these vegetation types with a probability of 1. Integration of remote sensing
and land data may be effective for classifying vegetation types.

To reduce the NDVI measurement data more substantially, this study proposed using the method
of canonical correlations between weather parameters and the integrated markers of phenological
dynamics of NDVI. As a result of using this approach, each study area was characterized by only four
values of canonical correlation coefficients over the entire period analyzed. Discriminant analysis of
the parameters of canonical correlation demonstrated that these parameters could be used to classify
plant communities.
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