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Abstract: Via providing various ecosystem services, the old-growth Hyrcanian forests play a crucial
role in the environment and anthropogenic aspects of Iran and beyond. The amount of growing
stock volume (GSV) is a forest biophysical parameter with great importance in issues like economy,
environmental protection, and adaptation to climate change. Thus, accurate and unbiased estimation
of GSV is also crucial to be pursued across the Hyrcanian. Our goal was to investigate the potential of
ALOS-2 and Sentinel-1’s polarimetric features in combination with Sentinel-2 multi-spectral features
for the GSV estimation in a portion of heterogeneously-structured and mountainous Hyrcanian forests.
We used five different kernels by the support vector regression (nu-SVR) for the GSV estimation.
Because each kernel differently models the parameters, we separately selected features for each kernel
by a binary genetic algorithm (GA). We simultaneously optimized R2 and RMSE in a suggested
GA fitness function. We calculated R2, RMSE to evaluate the models. We additionally calculated
the standard deviation of validation metrics to estimate the model’s stability. Also for models
over-fitting or under-fitting analysis, we used mean difference (MD) index. The results suggested
the use of polynomial kernel as the final model. Despite multiple methodical challenges raised from
the composition and structure of the study site, we conclude that the combined use of polarimetric
features (both dual and full) with spectral bands and indices can improve the GSV estimation over
mixed broadleaf forests. This was partially supported by the use of proposed evaluation criterion
within the GA, which helped to avoid the curse of dimensionality for the applied SVR and lowest
over estimation or under estimation.

Keywords: GSV; nu SVR; uneven-aged mountainous; polarimetery; multi-spectral; optimization

1. Introduction

Hyrcanian forests are known as remnants of the Pleistocene era that survived the frost period [1].
These forests are located in regions of northern Iran and part of Caucasus, and embrace a high
species and structural diversity of uneven-aged mountainous broadleaf forests distributed across
a high altitudinal gradient [1,2]. Recently, portions of these forests were inscribed in the list of
UNESCO World Natural Heritages [3]. The growing stock volume (GSV) is one of the important
allometric biophysical forest attributes. It is closely related to other forest quantities such as height
and aboveground biomass and is of great importance in the forest ecology, management, and carbon
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storage [4,5]. Tree-level biomass is conventionally derived by using species-specific allometric relations
and wood density from ground-based measurements. However, the high cost, time, and the limited
geographical coverage prohibitively challenge these methods. On the other hand, remote sensing
data from spaceborne SAR and multispectral sensors with proper radiometric and spatial resolution
and sufficient time intervals of data acquisition from the desired areas have been proven to provide
important proxies in forestry research [6,7]. Due to mentioned historical and environmental reasons,
development and implementation of remote sensing-assisted methods serve the overarching aim of
monitoring and sustainable management of Hyrcanian forests.

Amongst the recent attempts for GSV estimation by state-of-the-art multispectral data, Chrysafis
et al. (2017) [8] estimated the GSV by blending the Sentinel-2 and the Landsat data with the Random
Forest (RF) model, and concluded that near-infrared and the red edge domains greatly affect GSV
estimation. In addition, Mura et al. (2018) [9] estimated the GSV by the Sentinel-2, Landsat, and the
Rapideye sensors and concluded that, beside the near-infrared and red edge regions, the SWIR region
is also effective because of its sensitivity to the water content in the canopy. In both studies Sentinel-2
data were suggested to excess others in performance.

The radio detection and ranging (radar) sensors considerably contributed to solving the limitations
of optical sensors including their inability to penetrate the canopy and less sensitivity to the vertical
canopy structure. The ability of radar data to estimate biophysical forest characteristics is also less
susceptible to weather conditions and acquisition time, which eases monitoring of mountainous forests
that mostly occur in humid, cloudy, and foggy areas. However, changes in radar wavelength and
type of polarization results in differences in both analytical workflow and the achieved estimation
performance. Moreover, higher trunk volume leads to underestimation of actual GSV values due to the
saturation in the scattering form dense canopy, which improves with an increase in wavelength [10–12].
Gao et al. (2018) [13] estimated GSV by the Dual polarized ALOS-1 data and reported a higher
potential and later saturation of L-band HV cross-polarization channel than HH co-polarized
channel. By using multi-temporal dual polarized ALOS-1 sensor data, Antropov et al. (2013) [14]
concluded that the multi-temporal method was superior in prediction (with HH co-polarized channel
performing better for mature trees), yet the saturation happens in the high GSV values. In addition,
Chowdhury et al. (2014) [15] estimated the GSV by the ALOS-1 multi-temporal full polarimetric data,
from which covariance and coherency matrices, as well as the phase difference between HH & VV
channel and the coherency between HH and VV channels, were extracted. They showed that full
polarimetry data has a high ability for GSV estimation.

Multi-sensor remote sensing approaches are highly capable for forest applications. In our study,
we percept GSV estimation over mountainous broadleaf forests from a slightly different perspective.
The biophysical characteristics of forest can be studied in multi-spectral approach by focusing on
the biochemical aspects such as chlorophyll and in SAR approach on radar wave penetration in the
canopy [16,17]. Mauya et al. (2019) [18] estimated GSV by the ALOS-2’s global mosaic, the Sentinel-1
and the Sentinel-2 sensors data. They concluded that using SAR data alone was unlikely to provide
a good estimation ability for GSV, while a combined use of Sentinel-1 and Sentinel-2 data were
advantageous. In Iran’s Hyrcanian region, recent investigations of the ability of remotely sensed data
and methods include Vafaei et al. (2018) [19] who estimated biomass by the ALOS-2 full polarimetric
and Sentinel-2A data. The Sentinel-2 returned the moderate accuracy, whereas the ALOS-2 individually
led to minimum estimation accuracy.

The overall objective of this research was to estimate the GSV in Hyrcanian uneven-aged
mountainous broadleaf forests based on leveraging a broad range of possibilities in optical and radar
data processing. To this aim, we used ALOS-2 full polarimetric, Sentinel-1 dual polarimetric and
Sentinel-2 multi-spectral data. We only concentrated on combined use of polarimetric and spectral
features. In addition, we compared five different kernels in support vector regression (SVR) for GSV
estimation. We additionally applied a heuristic feature selection by binary genetic algorithm, in which
we simultaneously optimized the root mean square error (RMSE) and coefficient of determination
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(R2) for each kernel separately. The workflow and findings of this study are mainly significant due
to multiple challenges associated with the structure and composition of our test site, including the
severe topography, limited field samples, highly mixed tree species in various ages, and complex
slope-aspect structure.

2. Materials and Methods

2.1. Study Area

The study area is located in Guilan province’s Nav-Asalem region in northern Iran (see Figure 1).
The altitude varies between 100 to 2000 m above sea level, and the slope ranges from 0 to 73 degrees.
The climate is temperate and cold, average annual rainfall is 1200 mm per year and the mean
temperature is 12.4-degrees Celsius. The forest comprises uneven-aged mountainous broadleaf stands
dominated by oriental Beech (Fagus orientalis Lipsky.) and hornbeam (Carpinus Betulus L.), accompanied
by other broadleaf shrub and tree species.

2.2. Field Data Inventory

Field data were collected during July 2014 to March 2015. The in situ measurements were
conducted in 148 circular plots with 18 m radius each and distributed in a randomly positioned
square grid, as prescribed by the technical bureau of the Iranian Forests, Rangelands and Watershed
Management Organization (FRWO) [20]. In each plot, the diameter at breast height (DBH; i.e., 1.5 m
above ground surface) and the species type were recorded for all trees. For a sample of trees, the
dominant species was recorded in each plot. Finally, the GSV values were calculated in each stand by
means of DBH and lookup tables for each species separately.

Plot center locations were collected by global positioning system (GPS) in the WGS84 coordinate
system. The original values of GSV in each plot were multiplied by 10 in order to be transformed from
m3 per 0.1 hectares to m3 per hectare. The inventoried GSV ranged between 98.60 and 385.8 m3 ha−1

(see Table 1).

Table 1. Summary of descriptive statistics of GSV.

Descriptor Value

Mean(m3 ha−1) 247.86
Minimum(m3 ha−1) 98.60
Maximum(m3 ha−1) 385.8

Standard deviation(m3 ha−1) 54.63
Number of plots 148
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Figure 1. The geographical location of the study area in the WGS 84 coordinate system. The red-points display the field plots locations. Background image is Sentinel-2
RGB image (Red: Band 4; Green: band 3; Blue: band 2).



Forests 2019, 10, 641 5 of 18

2.3. Remotely Sensed Data

2.3.1. Sentinel-2 Data

Sentinel-2 satellite carries a multi-spectral sensor in 13 bands from 400 nm to 2400 nm with spatial
resolutions of 10, 20, and 60 m [21]. The 60-m resolution bands include B1 (430 nm), B9 (940 nm)
and B10 (1340 nm) that are mainly used for atmospheric correction. The Sentinel-2 data in Level1C
was acquired on 21 June 2016 and downloaded from European Space Agency (ESA) repository.
After performing the atmospheric and geometric correction incorporating SRTM 1 aSec DEM [22],
the spectral features were extracted from Sentinel-2 data. Since the acquired Level1C data represents
the top-of-atmosphere (TOA) reflectance, we used Sen2Cor algorithm for atmospheric correction
to calculate Level 2A data representing the bottom-of-atmosphere (BOA) reflectance. The sen2cor
algorithm is an image-based correction that performs image correction based on lookup tables extracted
from RadTran algorithm [23], with the main benefit that it does not need local meteorological data for
correction. We only used the original bands and vegetation indices (see Table 2) for GSV estimation.
Due to the different spatial resolutions of the Sentinel-2 imagery, we used the 5 × 5 local window for
bands and indices with 10 m spatial resolution, whereas 3 × 3 local window was used for bands and
indices with 20 m spatial resolution. The mean values of data extracted in each local window over
each field plot inventory were applied for GSV estimation. The entire process was performed in SNAP
V6 software [24].

Table 2. Sentinel-2 spectral features.

Feature Used Bands Resolution Feature Used Bands Resolution

B2, B3, B4, B8 Original band 10 m GEMI [25] B8, B4 10 m
SAVI [26] B8, B4 10 m ARVI [27] B2, B4, B8 10 m

TSAVI [28] B8, B4 10 m NDVI [8] B4, B8 10 m
MSAVI [29] B8, B4 10 m B5, B6, B7, B8a

B11, B12
Original bands 20 m

MSAVI2 [29] B8, B4 10 m NDI45 [30] B4, B5 20 m
DVI [8] B8, B4 10 m MTCI [31] B4, B5, B6 20 m
RVI [32] B8, B4 10 m MCARI [33] B3, B4, B5 20 m
PVI [8] B8, B4 10 m REIP [34] B4, B5, B6, B7 20 m

IPVI [35] B8, B4 10 m S2REP [34] B4, B5, B6, B7 20 m
WDVI [36] B8, B4 10 m IRECI [34,37] B4, B5, B6, B7 20 m
TNDVI [32] B8, B4 10 m PSSRa [38] B4, B7 20 m
GNDVI [39] B3, B8 10 m

B2 (490), B3 (560), B4 (665), B5 (705), B6 (740), B7 (783), B8 (842), B8a (865), B11 (1610), B12 (2100), Unit = nm.

2.3.2. Sentinel-1 Data

Sentinel-1 is equipped with a synthetic aperture radar (SAR) antenna that scans the Earth in
dual polarization mode in VV and VH channels in the C band. Our study area was scanned in
dual polarization mode on 22nd of July 2017 and data was downloaded from the ESA repository.
The data was scanned in single look complex (SLC) mode using the interferometric wide (IW) method.
The dataset was primarily calibrated. Since the data was in dual polarimetry mode, the calibration
was performed in the complex calibration manner to preserve the phase information. For extracting
polarimetric information, we first extracted the C2 matrix (non-coherent covariance matrix) from the
calibrated data. For dual polarimetric data, we used the Equation (1) to calculate the C2 matrix [40].
Data was scanned by IW method and was thus required to be debursted by the Sentinel-1 TOPS
deburst method. For squared pixels, we applied the multi-looking operator with five looks in the
azimuth direction and one look in the range direction to reach the 17-meter resolution, i.e., the spatial
resolution close to the field sample plot size. For protecting polarimetric information, we applied the
polarimetric refined Lee filter (7 × 7 local window) on the debursted C2 matrix to decrease the speckle
noise [39]. The range-doppler terrain correction method with the SRTM 1Sec HGT DEM [22] was used
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to georeference the C2 matrix. Finally, the dual-polarimetric H-A-Alpha decomposition was applied
on the georeferenced C2 matrix [40]. Consequently, we used a 3 × 3 local window due to the available
17 m spatial resolution to extract information on sample plot level. The entire analysis was performed
in SNAP V6 software [24]. The extracted features are summarized in Table 3.

C2 =

[
〈|SVV |

2
〉 〈SVVS∗VH〉

〈SVHS∗VV〉 〈|SVH |
2
〉

]
(1)

Table 3. Sentinel-1 features.

Feature Elements

C2 matrix C11, C12_real, C12_image, C22
H/A/Alpha Entropy, Anisotropy, Alpha

2.3.3. ALOS-2 PalSar Data

The ALOS-2 satellite features a fully polarimetric synthetic aperture radar (SAR) antenna.
This sensor scans the Earth in HH, HV, VH, and VV polarization channel in L band. We downloaded
the data acquired on 10th of June 2015 over our study site from the repository provided by the Japan
Aerospace Exploration Agency (JAXA). This data was scanned in SLC mode with Stripmap-2 method.
The data preprocessing was performed solely for the polarimetric features. For preserving phase
information, the raw data was initially calibrated in the complex calibration manner. The T3 coherency
matrix was extracted from the calibrated data (Equation (2)) [41]. One may note the negative effects
caused by the severe topography on scattering from the scatterers and consequently on the polarimetric
information [42]. One crucial effect of topography is the rotation of radar wave in the line of sight
because of the slope in the azimuth direction. This phenomenon is known as polarization orientation
angle (POA) and is compensated by applying Equations (3)–(5) [41–43]. The multi-looking operator
with six looks in azimuth direction and four looks in range direction was applied to the T3 matrix
for the squared pixel and speckle noise reduction. Finally, we reached the 15-m spatial resolution
that was close to those of field sample plots. As already mentioned for Sentinel-1 data processing,
we used refined Lee speckle filter to simultaneously reduce speckle noise and preserve polarimetric
information [41,44,45]. The filter was applied with 7 × 7 local window, 3 × 3 target window, and sigma
of 0.9 to the T3 matrix. Following these steps, the T3 matrix was consequently georeferenced by SRTM
1Sec HGT DEM [22] using the range-doppler terrain correction method. In this research, we only
extracted the polarimetric features (see Table 4). We used a 3× 3 local window to extract the information
on sample plot level. Similar to the preceding steps, the processes were performed in SNAP V6 [24].

Table 4. ALOS-2 polarimeteric features.

Feature Elements

H/A/Alpha [41] Anisotropy, Alpha, Entropy, Beta, Delta, Gamma, Lambanda
Alpha (1,2,3), Lambanda (1,2,3)

Yamaguchi [46] Surface, Double, Volume, Helix
Van zyl [47] Surface, Double, Volume
Cloude [41] Surface, Double, Volume

Generalized Freeman-Durden [48] Surface, Double, Volume

Touzi [49] Psi, Tau, Phi, Alpha
Psi (1,2,3),Tau (1,2,3), Phi (1,2,3), Alpha (1,2,3)

RVI [41] RVI
SPAN [41] SPAN

Pedestal height [41] Pedestal height
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S =

[
SHH SHV

SVH SVV

]
.
→

k =
1
√

2


SHH + SVV

SHH − SVV

2SHV

 .T3 =
→

k
→

k ∗T (2)

δ =
1
4

tan−1

 −4Re
(
〈(SHH − SVV)S∗HV〉

)
−〈|SHH − SVV |

2
〉+ 4〈|SHV |

2
〉

+ π

 (3)

V =
1
2


1 + cos 2δ

√
2 sin 2δ 1− cos 2δ

−
√

2 sin 2δ 2 cos 2δ
√

2 sin 2δ
1− cos 2δ −

√
2 sin 2δ 1 + cos 2δ

 (4)

TPOA
3 = VT3VT (5)

In the equations S is the stocke’s matrix, SHH to SVV are the four polarizations, k is the Pauli target
vector for calculating T3 matrix, and δ is the POA angle.

2.4. Modeling by Machine Learning

2.4.1. Support Vector Regression

Support vector machine (SVM) is known as powerful, flexible, and robust-to-noise machine
learning method. The main goal of SVM is to minimize the sum of squares error (SSE) in Equation (6)
during the model training procedure. The support vector regression (SVR) is a regression version of
SVM [50,51]. There are two main methods for SVR, ε and υ regression. In ε regression, an insensitive
tube defines by ε parameter, but this parameter is user-defined and the procedure affects model
accuracy by only involving noisy observation in the big values of ε or the non-important observation
data in the small values of ε, which results in non-generalized model that cannot model different
behaviors of the phenomena [50,52,53]. In the υ regression method, the υ parameter defines the
fraction of support vectors number involved in the modeling procedure [52]. In this method, the
ε is automatically calculated in the algorithm and better controls support vectors. Therefore, both
caveats of the ε method including challenge of the selection of proper ε value and its effect on accuracy
could be resolved [52]. Therefore, we used the υ regression. The kernel based solution was used for
accommodating the non-linear and complex behaviors. The used kernel passes the features into a new
feature space [53], following which the model is trained in the new feature problem [51]. Whereas there
are various kernels for SVR, the choice proper kernel for each problem depends on the nature of the
problem [49]. We tested five different kernels (see Table 5). We tuned the hyper-parameters by repeated
cross-validation based on RMSE (see Section 2.4.3). Besides the kernel’s hyper-parameter, the cost
parameter was also tuned with each kernel to maintain the model’s flexibility [51].

min

1
2
‖w‖2 + C

νε+ 1
l

l∑
i=1

(
ξi + ξ∗i

)
 (6)

In Equation (6), C regularization constant, υ parameter between 0 and 1, ε value and ξ∗i is slack
variable. We analyzed the results of three different experiments. In the first experiment, the GSV was
modeled using a single sensor approach. In the second experiment, we modeled the GSV using all the
features obtained through the multi-sensor approach. Finally, in the third experiment, we model the
GSV using the GA selected features.
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Table 5. Applied SVR kernels [54].

Kernel Hyper-Parameter

Laplace Sigma, Cost
RBF Sigma, Cost

Polynomial Degree, Offset, Scale, Cost
Sigmoid Scale, Offset, Cost
Bessel Sigma, Order, Degree, Cost

2.4.2. Feature Selection

Feature selection is an essential task in working with hyper-dimensional data, in which the
best subset from all features is selected based on lower cost of model training and higher accuracy.
This solution is essential in the presence of a large number of extracted features and small sample
size to avoid the prohibitive effects of the curse of dimensionality on model performance and
interpretability [55]. Therefore, a proper method for feature selection cares for the low training cost
while avoiding the curse of dimensionality in the modeling [56]. The genetic algorithm (GA) is an
evolutionary method for optimization. The method is inspired by natural selection in the real world,
with the main idea of incorporating a wide range of suitable solutions that leads to selection of an
optimum solution [57]. We used binary GA for feature selection. First, a population of chromosomes
with 0 and 1 genes was randomly generated in which each chromosome is considered as a solution.
The goodness of each solution was determined by the fitness function. The solutions with higher
goodness had a higher chance to create a new solution. The new solution was then created by crossover
procedure from two randomly selected solution with a high fitness value. The mutation operator
changed the random genes with little probability and was used to maintain genetic diversity from
one generation of a population of genetic algorithm chromosomes to the next. Finally, the algorithm
was iterated until the fitness value remained unchanged [58]. Here, we selected the features for each
kernel individually by cross-validation (see Section 2.4.3). The fitness function pursued the goal to
simultaneously RMSE and R2 values (see Figure 2). For this purpose, the fitness function as defined in
Equations (7)–(9) was proposed. In this fitness function, the highest fitness value could potentially
occur in R2 equal to 1 and RMSE equal to 0, i.e., a fitness value equal to 190.

Figure 2. Applied fitness function.

α = 90− tan−1
( RMSE

100×R2

)
(7)
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d =

√
RMSE2 + (100×R2)2 (8)

f itness = α+ d (9)

2.4.3. Validation

The validation of model performance is the essential step in modeling [20]. Due to the most
common case of limited sample size, using the k-fold cross-validation was necessary to avoid noisy
and unstable predictions [18,50]. The RMSE, R2 (Equations (10)–(11)) were used as error diagnostics
based on their proven usefulness in assessing prediction of forest parameters [18,59]. In addition,
the model stability in the presence of limited field sample size was checked by the repeated k-fold
cross-validation. The model was assessed as more stable if the standard deviation (Equation (13)) of
each of the diagnostic metrics was closer to zero [60]. Also we used MD (see Equation (12) for models
over-estimation or under-estimation analysis. The higher positive values indicates the over-fitting and
higher negative values indicates the under-fitting problem [61]. We used the 5-fold cross validation
with 20 repetitions for more stable feature selection in the GA (Section 2.4.2), kernel’s hyper-parameter
tuning (Section 2.4.1) and finally, the model validation. The statistical modeling and the feature
selections were implemented in open source domain in R using the kernlab, caret, and GA libraries.

RMSE =

√√ n∑
i=1

(
yobs

i − ypred
i

)2
/n (10)

R2 =

√√ n∑
i=1

(
ypred

i − y
)2

/
n∑

i=1

(
yobs

i − y
)2

(11)

MD =
1
n

n∑
i=1

(
ypred

i − yobs
i

)
(12)

SD =

√√ m∑
i=1

(
Pi − P

)2
/m (13)

In the Equations, the yobs
i is the observed GSV in plot i, ypred

i is the predicted GSV, n is the number
of samples in fold, y is the GSV’s average in fold, Pi is the validation metric in each fold, P is the
metric’s average and m is the number by which the model was trained with different data.

3. Results

3.1. Single Sensor Models

3.1.1. Sentinel-2

Here, the 31 features extracted from the Sentinel-2 data were used for the GSV modeling
(see Table 2). As previously mentioned in Section 2.3, the SVR model was employed using five different
Kernels. The kernel’s hyper-parameters were tuned with repeated cross-validation. The results can be
seen in Table 6.
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Table 6. Sentinel-2 modeling with 31 features.

Kernel RMSE R2 MD RMSE_SD R2_SD

Laplace 31.793 0.673 −0.003 2.919 0.071
RBF 31.644 0.673 −1.194 2.639 0.072

Sigmoid 31.693 0.674 −2.07 2.642 0.074
Polynomial 31.553 0.677 −0.62 2.630 0.071

Bessel 31.536 0.676 −1.38 2.662 0.072

As can be seen in Table 6, from the perspective of performance, the Bessel kernel with RMSE = 31.536
and R2 =0.676 provided a better performance compared to other kernels. The polynomial kernel presented
a very close performance to the Bessel Kernel. From the perspective of model stability (see Section 2.3.3),
the Polynomial kernel with RMSE_SD = 2.630 and R2_SD = 0.071, provided more stable results than other
kernels. The RBF kernel was the second more stable kernel (Table 6). The MD index shows that the all
models are under estimate the GSV.

By considering both the models performance, stability and MD analysis the polynomial kernel
exceeded other kernels, while all models generally showed close performance. Finally, no significant
difference was observed amongst the kernels in the GSV modeling using the features extracted from
Sentinel-2 (see Figures 3–5).
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3.1.2. ALOS-2

Here, 45 features were extracted from ALOS-2 data (see Table 4). The results are shown in Table 7.

Table 7. ALOS-2 modeling with 45 features.

Kernel RMSE R2 MD RMSE_SD R2_SD

Laplace 46.959 0.306 6.93 6.508 0.124
RBF 46.588 0.318 6.99 6.510 0.123

Sigmoid 46.086 0.327 7.09 6.543 0.124
Polynomial 46.691 0.311 7.1 6.583 0.121

Bessel 46.576 0.316 6.97 6.516 0.122

As shown in Table 7, the sigmoid kernel with provided a better performance compared to other
kernels by returning RMSE = 46.086 and R2 = 0.327. This was closely followed by the RBF kernel with
RMSE = 46.588 and R2 = 0.318. Concerning the stability, the RBF kernel was more stable than other
kernels (RMSE_SD = 6.510 and R2_SD = 0.123), followed by Bessel kernel. The Laplace kernel showed
similar stability to that of Bessel kernel, yet a considerably lower performance compared with other
kernels (see Table 7). The MD index shows that all of models significantly over estimate the GSV.

By considering both performance and stability and MD analysis, the RBF provided better
results compared to the other kernels. However, all kernels performed roughly close to each other,
with no significant difference between the kernels in the GSV modeling using the ALOS-2 features
(see Figures 3–5).

3.1.3. Sentinel-1

In this experiment, seven features, extracted from Sentinel-1 data solely were used for the GSV
modeling (see Table 3). The results are show in Table 8.

Table 8. Sentinel-1 modeling with seven features.

Kernel RMSE R2 MD RMSE_SD R2_SD

Laplace 46.815 0.299 4.536 6.360 0.117
RBF 47.093 0.294 3.232 6.349 0.111

Sigmoid 47.173 0.296 4.549 6.594 0.118
Polynomial 47.473 0.287 4.517 6.348 0.110

Bessel 46.879 0.297 4.596 6.302 0.113
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As can be seen in Table 8, the Laplace kernel exceeded all other applied kernels with RMSE = 46.815
and R2 = 0.299 again, closely followed by the Bessel kernel with RMSE = 46.879 and R2 = 0.297. Moreover,
the Bessel kernel provided more stable results than other kernels (RMSE_SD = 6.302 and R2_SD = 0.113).
The MD index shows that all of models significantly over estimate the GSV after ALOS2. By considering
both performance and stability, the Bessel kernel was slightly better compared to the other kernels.

3.2. Multi-Sensor Models

Here, we employed 83 features, obtained from Sentinel-2, ALOS-2, and Sentinel-1 data (see Tables 2–4).
The results are shown in Table 9.

Table 9. Performances achieved by modeling with 83 features.

Kernel RMSE R2 MD RMSE_SD R2_SD

Laplace 33.053 0.655 −0.538 3.431 0.071
RBF 32.701 0.654 −1.12 3.052 0.073

Sigmoid 32.636 0.659 −1.96 2.905 0.067
Polynomial 32.682 0.659 −2.19 2.884 0.070

Bessel 40.961 0.628 0.69 5.068 0.073

The sigmoid kernel performed best (RMSE = 32.636 and R2 = 0.659), followed by polynomial
kernel (RMSE = 32.682 and R2 = 0.659). In addition the sigmoid kernel resulted in the most stable
model with RMSE_SD = 2.905 and R2_SD = 0.067. The MD index shows that all of models except
Bessel moderately under estimate the GSV.

As can be observed in Figures 3–5, stacking the entire features into one feature set did not improve
the results. This is mainly due to the joint effect caused by the curse of dimensionality and the limited
sample size, and suggests the necessity of feature selection as an essential task.

3.3. Multi-Sensor Approach with Selected Feature

The Table 10 summarizes the results of models built with features optimized using the binary
genetic algorithm as described in Section 2.4.2.

Table 10. Modeling optimized feature sets for each kernel.

Kernel RMSE R2 MD RMSE_SD R2_SD Number of Features

Laplace 29.815 0.715 0.288 3.338 0.064 18
RBF 30.132 0.704 −0.069 2.595 0.060 19

Sigmoid 30.527 0.7 −0.43 2.903 0.058 16
Polynomial 30.034 0.708 −0.041 2.844 0.058 12

Bessel 30.707 0.696 −0.667 2.901 0.061 18

The Laplace kernel provided a superior predictive accuracy to other kernels. This was followed
by the polynomial kernel. However, the RBF kernel proved to return the most stable predictions,
followed by the polynomial kernel.

All in all, the highest accuracies for GSV prediction were returned by the polynomial kernel.
Table 11 summarizes the range of various features selected for the GSV modeling using each kernel.
The selected features mainly include the ALOS-2 polarimetric decomposition, Sentinel-1 H-A-Alpha
decomposition, and Sentinel-2 spectral features including NIR, red edge, SWIR bands and vegetation
indices. The proper feature selection which resulted in the parsimonious feature sets enables achieving
both predictive accuracy and model stability and robustness. Also, the MD index for all of the models
compared to other experiments approach zero, especially for the polynomial kernel (MD = −0.041).

As summarized in Figures 3–5 the performance of multi-sensor approach with selected features
was slightly better than that achieved by Sentinel-2, which suggest that including selected polarimetry
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features along with the multi-spectral information improves the GSV across mountainous broadleaf
stands. Also the over estimation or under estimation problem was solved in this experiment.
For polynomial kernel the MD is equal to −0.041 and it is best MD index between all of experiments.

Table 11. Selected features for kernels by GA.

Kernel Sensors Selected Features by GA

Laplace
ALOS-2 Entropy, Anisotropy, Lambda2, Lambda3, Psi3, Alpha3

Sentinel-1 Entropy, Anisotropy, Alpha
Sentinel-2 B8, B5, B7, B8a, B11, B12, gndvi, pssra, tsavi

RBF
ALOS-2 Beta, Lambda, Freeman_dbl, Cloude_dbl, VanZyl_vol, Alpha2, Psi3, Alpha3

Sentinel-1 Entropy
Sentinel-2 B4, B5, B8a, B11, B12, gndvi, mcari, msavi2, pssra, tsavi

Sigmoid
ALOS-2 VanZyl_dbl, Psi1, Phi2, Psi3

Sentinel-1 Entropy, Anisotropy
Sentinel-2 B4, B5, B11, B12, gndvi, mcari, msavi2, pssra, s2rep, tsavi

Polynomial
ALOS-2 VanZyl_vol, Psi3, Alpha3

Sentinel-1 Entropy
Sentinel-2 B4, B5, B12, gemi, gndvi, mcari, pssra, tsavi

Bessel
ALOS-2 Entropy, Beta, VanZyl_dbl, Psi1, Phi1, Psi3, Phi3

Sentinel-1 Entropy
Sentinel-2 B4, B8, B5, B12, gemi, gndvi, mcari, pssra, s2rep, tsavi

4. Discussion

The main objective of this research was to estimate the GSV in heterogeneously-structured and
mountainous Hyrcanian forests in northern Iran. Predictive models and continuous monitoring of
forest are especially vital in Iran’s Hyrcanian forests because of the current ongoing rate of degradation
and their crucial role in Iran’s Hyrcanian forest ecosystem. Thus, investigating the potential of
multi-frequency SAR, multi-spectral optical data for generating the reliable predictive models are
essential in this study area. In this research, the GSV modeling was carried out using the polarimetric
and multi-spectral features and their combination using three different approaches. The SVR with five
various kernels was used for modeling because of non-linear and complex relation of features with
the GSV particularly in multi-sensor approach. Also, there were several challenges in this procedure
including the severe topography, limited field samples, highly mixed tree species in various ages,
and complex slope-aspect structure.

In the first experiment, the GSV was modeled using the Sentinel-2 multi-spectral features. B11 and
B12 bands from SWIR spectral region showed a high contribution because of their sensitivity to the water
content in the canopy, that confirmed in research by Chrysafis et al. (2017) [8] and Mura et al. (2018) [9].
We also found the NIR and the red edge bands as good features in modeling which is due to their
sensitivity to the chlorophyll and pigments of tree leaf. Relevant works of Chrysafis et al. (2017) [8],
Mura et al. (2018) [9], and Chrysafis et al. (2019) [62] also described these features as influential features
for the GSV estimation in their research. Basically, the vegetation indices that use the NIR and red-edge
spectral bands have an effective contribution in the GSV estimation. This is mainly because of that
the VI uses the combination of spectral bands and reaches the information that cannot be extracted
from the single spectral band, as Chrysafis et al. (2017) [8] found this in their research. The Mura
et al. (2018) [9] and Chrysafis et al. (2019) [62] also found that VIs have an effective contribution to
GSV estimation.

The performed analysis indicated that the GSV modeling with ALOS-2 polarimetric features
produced non-satisfactory results. However, increasing the number of polarimetric features can
improve the results. The two main challenges for GSV modeling with ALOS-2 data in this study area
are the harsh topography and the limited number of field inventory samples. As shown in Figure 6,
the study area embrace harsh mountainous forest stands with high elevational gradient and complex
slope-aspect structure. In this type of topography, phenomena like shadow and layover occur in SAR
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data. Particularly, no scanned data from the study areas were found for shadowing. Nevertheless,
the radiometric values were significantly affected in layover behavior. Another effect is the POA
(see Section 2.3.3) which was compensated in the preprocessing steps and thus results in no notable
problem for the GSV modeling [43]. Yet the effect of slope in range direction, known as angular
variation effect (AVE), still remains. In areas with forest cover and longer radar wavelength, the AVE
introduces a notable effect. As such the double scattering mechanism increases in the slopes that face
the radar incoming wave, whereas it decreases in opposite slopes. In addition, the volume scattering
mechanism increases since the severe topography causes an increase in cross-pol scattering. In a severe
mountainous area like our research site, the proposed correction methods do not completely refine the
results [42,63]. In addition, a further effect is the effective scattering area due to the non-homomorphic
imagining of radar. This effect can be maximized in the mountainous areas and thus dramatically affect
the geo-referencing of the applied SAR data. This effect causes the higher radiometric values in front
slopes facing the incoming radar wave and lower radiometric values in opposite slopes [42,43,63].
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The second challenge for modeling GSV is caused by limited number of field inventory samples that
is commonly the case across heterogeneously-structured uneven-aged Hyrcanian forests. Apart from
statistical and model-related problems, this particularly hindered us from building species-specific
GSV models and thus considering differences in scattering from tree species or different age classes.
The collective effects of the above mentioned issues led to the rather mediocre results obtained by
ALOS-2 data in our study (see Figures 3–5). The H-A-Alpha decomposition features have an average
ability in the GSV estimation. Vafaei et al. (2018) [19] found that these features have an average
ability for biomass estimation in Hyrcanian forests too. The Touzi decomposition’s features are also
effective, Sharifi et al. (2015) [64] found that the Tozi decomposition describes the target asymmetry
in the forested area and can use for biomass estimation in Hyrcanian forest. The Van Zyle, Cloude,
and Freeman decomposition features based on volume or double mechanism are effective in GSV
modeling because of L-band wavelength penetration in the canopy and interaction with the tree’s
stem and ground. So they are reasonable features for the GSV modeling as Kumar et al. (2012) [65]
found this behavior. The achieved performance and model stability are comparable to similar research.
Compared with the only available relevant case study from the area, Vafaei et al. (2018) [19] used
limited polarimetry features. Unlike their study, we extracted a large number of polarimetric features
in our research. Especially comparing to Vafaei et al. (2018) [19] with ALOS-2 in the same region,
his conclusion is that ALOS-2 has a very weak ability for biomass estimation (R2 = 16%). Since the
biomass and GSV have near relation [5], we greatly improved the prediction ability for GSV with
different target decomposition features (R2 = 32%).

The performed analysis indicated that the modeling with Sentinel-1 polarimetric features produced
non-satisfactory results for GSV modeling. The Sentinel-1 features are not frequently used in forestry
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research because of the shorter wavelength (C-band) of the data. In this wavelength, the scattering
only occurs in the upper part of the canopy. In our study, we applied the dual polarimetric H-A-Alpha
decomposition. Our result has better performance (R2 = 29%) than Mauya et al. (2019) [18] who only
used the scattering coefficient in GRD mode and achieved R2 = 18%. Therefore, we can conclude that
using the Sentinel-1 dual polarimetry H-A-Alpha decomposition is useful for GSV estimation. As can
be seen in Figures 3–5, the results obtained by the Sentinel-1 data were inferior than those of Sentinel-2
and ALOS-2 data. In addition to the underlying reasons as referred earlier, one may also note the
lower penetration rate of the C-band Sentinel-1 compared with the L-band ALOS-2. This will result in
a lower sensitivity to biophysical parameters such as GSV.

Finally, the performed analysis on the multi-sensor approach indicated that the GSV modeling
with all of the features did not enhance the results compared to the modeling by Sentinel-2. This is
mainly due to the curse of dimensionality effect and the limited sample size. To deal with this problem,
we modeled the GSV by multi-sensor approach using the selected features. The results indicated
that the modeling with the selected features provide better results than the modeling by Sentinel-2.
The features were selected for each kernel separately proper feature selection procedure provides
a good and stable GSV modeling which is not suffering from the curse of dimensionality anymore.
Also, the over-estimation or under-estimation was reduced greatly by our feature selection method
(see Figure 5). As a result, the simultaneous integration of multi-spectral and radar data features
produce satisfactory and stable models for GSV modeling compare to the Mauya et al. (2019) [18],
Vafaei et al. (2018) [19], and Sharifi et al. (2015) [64] works. Due to the general novelty of in-depth
and state-of-the-art remote sensing analysis over Hyrcanian forests. In future research, issues such
as the effects of different topographic corrections for polarimetry data, forest species type mapping,
novel SVR kernels, application of feature fusion, and texture features will be explored.

5. Conclusions

This study generated empirical evidence on the use of ALOS-2, Sentinel-2, and Sentinel-1remotely
sensing data for GSV estimation in Iran’s Hyrcanian forests on a landscape scale. We used nu-SVR with
five kernels for non-linear behavior modeling. The result showed that in single sensor approach only
the Sentinel-2 returned better results, while shortcomings were observed when applying ALOS-2 and
Sentinel-1 across heterogeneously-structured and mountainous Hyrcanian forests with limited field
samples. In multi-sensor approach, the curse of dimensionality caused inferior results compared with
the case of Sentinel-2. In addition, we tested selecting features in multi-sensor approach individually
for each kernel by GA based on simultaneous optimization of diagnostic measures in a proposed
fitness equation. This contributed to both higher performance and more model stability with the
lowest underestimation.
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