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Abstract: In present forest surveys, some problems occur because of the cost and time required when
using external tools to acquire tree measurement. Therefore, it is of great importance to develop a
new cost-saving and time-saving ground measurement method implemented in a forest geographic
information system (GIS) survey. To obtain a better solution, this paper presents the design and
implementation of a new ground measurement tool in which mobile devices play a very important
role. Based on terrestrial photogrammetry, location-based services (LBS), and computer vision, the
tool assists forest GIS surveys in obtaining important forest structure factors such as tree position,
diameter at breast height (DBH), tree height, and tree species. This paper selected two plots to verify
the accuracy of the ground measurement tool. Experiments show that the root mean square error
(RMSE) of the position coordinates of the trees was 0.222 m and 0.229 m, respectively, and the relative
root mean square error (rRMSE) was close to 0. The rRMSE of the DBH measurement was 10.17% and
13.38%, and the relative Bias (rBias) of the DBH measurement was −0.88% and −2.41%. The rRMSE
of tree height measurement was 6.74% and 6.69%, and the rBias of tree height measurement was
−1.69% and −1.27%, which conforms to the forest investigation requirements. In addition, workers
usually make visual observations of trees and then combine their personal knowledge or experience
to identify tree species, which may lead to the situations when they cannot distinguish tree species
due to insufficient knowledge or experience. Based on MobileNets, a lightweight convolutional
neural network designed for mobile phone, a model was trained to assist workers in identifying tree
species. The dataset was collected from some forest parks in Beijing. The accuracy of the tree species
recognition model was 94.02% on a test dataset and 93.21% on a test dataset in the mobile phone.
This provides an effective reference for workers to identify tree species and can assist in artificial
identification of tree species. Experiments show that this solution using the ground measurement
tool saves time and cost for forest resources GIS surveys.
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1. Introduction

In the forest inventory, smartphone technology is widely used in field data collection [1,2].
Combine GIS (geographic information system) software based on field maps with electronic devices
(such as mobile phones or tablets) for forest GIS surveys [3]. When workers use GIS software on their
smartphones to make forestry mapping or landscape mapping, the whole operation process mainly
includes three steps: (1) Draw geometric figures such as tree position (point), shape (polygon) of small
classes on the map; (2) Collect attribute data of trees or sub-compartment; (3) The collected attribute
data are input into the GIS software to correspond with the geometric data on the map and generate
GIS data in a specific format. In the second step, collecting attribute data such as DBH (diameter
at breast height), tree height, and position is the most time-consuming and laborious in the whole
operation process [4–7], because workers usually use some independent equipment to assist in the
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investigation, such as hypsometer or total stations to measure tree height, calipers or diameter tapes
to measure DBH, and mobile phones or handheld GPS to obtain geographic location. In addition,
the species of standing trees is also an important attribute for forest resources investigations [8,9].
Workers observe the trees using their and differentiate the tree species based on personal knowledge
and subjective experience. The most important problem is that in addition to the need to hold a mobile
phone, workers also needs to operate other tools separately, resulting in inconsistent operations. In
particular, when encountering trees on steep slopes and cliffs in forests, which cannot be touched,
only naked eye estimations can be used, which makes measurement accuracy difficult to guarantee.
At present, some problems remain in forest GIS surveys because of the cost and time required using
external tools to acquire tree measurement [6,10–13]. In view of the limitations of current forest mobile
GIS survey technology, it is of great significance to develop a new cost-saving and time-saving ground
measurement method for forest GIS surveys.

To improve the time-consuming and laborious process of forest GIS surveys, it is suggested that
terrestrial photogrammetry, computer vision, and location-based services (LBS) technology should be
further combined to assist forest GIS surveys, especially for the accurate monitoring of small forest
structures [10,14–20]. Advances in the combination of terrestrial photogrammetry and computer vision
have helped researchers develop investigation methods that are very suitable for forestry. Through
terrestrial photogrammetry, the DBH and heights of single standing trees can be obtained, and the
feasibility of this method has been verified [14,15,17,20–25]. However, the equipment that utilizes this
technology is usually an independent digital camera. The independent digital camera needs to go back
to the office to import photographs into computer software for processing, which cannot be performed
in real time. There are also some people who use smartphone angular transducers to obtain standing
tree factors [15,26–30], but because of the large errors of angular transducers, they remain unable to
provide effective help for forest GIS surveys. In this paper, a real-time ground survey tool based on
mobile devices is developed to acquire basic survey factors, which can effectively assist forest GIS
surveys. The purpose of this paper is to solve the following main problems:

(1) Due to the use of mobile GIS for forest surveys, in addition to the need to operate mobile phones
to collect data, workers also need to operate other independent tools such as calipers or hypsometer to
measure the standing trees, resulting in time-consuming, laborious, and inconsistent operations. It is
necessary to develop a tool and software that can highly integrate the functions of mobile GIS and
forest measurements to reduce the number of instruments operated by workers. In particular, this
tool will provide cost-saving and time-saving tools for the precise monitoring of artificial forests in
small areas.

(2) The accuracy of the data is verified by comparison with the traditional working methods that
use existing technology and equipment to obtain tree position and measurement factors of an artificial
forest in a small area.

(3) In the field investigation, workers usually make visual observations of trees and judge the
species of trees based on their personal knowledge or experience. Workers may have problems with
tree species that cannot be confirmed, in which case the data cannot be collected efficiently. This paper
uses the MobileNets algorithm to identify the tree species and then deploys the trained model on the
mobile phone to identify tree species by taking pictures of leaves on mobile phones. The use of deep
learning to assist artificial recognition can provide an effective reference for workers.

2. Materials and Methods

2.1. Research Area

This study was carried out in the artificial forest of the Haidian District (40◦1′ N, 116◦20′ E)
of Beijing, China (Figure 1). The area is within the temperate humid monsoon climate zone, with
distinct seasons, hot summers seasons, cold winters, and little precipitation. The forest is an artificial
forest planted with poplar (Populus L.), Chinese arbor-vitae (Platycladus orientalis L.), Locust (Robinia
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pseudoacacia L.), and elm (Ulmus pumila L.), with no bushes and only a small amount of understory
herbs in the forest. Two temporary plots were marked in this paper. The size of the two plots is 45 ×
45 m. The density of trees in the first plot is about 1071 trees/hectare, and that in the second plot is about
1195 trees/hectare. In this experiment, 217 trees and 242 trees were measured in two plots, totaling
459 trees. In this paper, the estimated values of tree position, DBH, and tree height are compared with
the reference values.
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Figure 1. Study area location map.

2.2. The Ground Measurement Tool

The ground measurement tool developed in this paper can assist in forest GIS surveys. Since
the total weight of the tool does not exceed 2 kg, it is easy to carry and operate. It also includes a
mobile phone based on the Android 7.0 operating system, Beidou companion M1 positioning module
(OLinkStar Co., Ltd., Beijing, China), laser pointer, and photographic platform (see Figure 2). The
mobile phone is the data processing module of the ground measurement tool, which provides the
running environment of the software and controls the interaction with other hardware modules. This
module is the core equipment that integrates terrestrial photogrammetry, LBS, computer vision, and
other technologies. Beidou companion M1 is a 75-g real-time, centimeter-level positioning instrument
with a built-in Beidou navigation satellite system/global positioning system (BDS/GPS) dual-system
single-frequency, real time kinematic (RTK) high-precision inertial-navigation-integrated positioning
module supporting RTK, real time differential (RTD), satellite based augmentation system (SBAS), and
other high-precision satellite navigation and positioning modes using BLE4.0 low-power Bluetooth
communication technology to provide high-precision positioning data directly to a mobile phone (as
shown in Appendix A). The equipment solves the problem that the positioning accuracy of the mobile
phone is low when the mobile signal is weak. The laser pointer can emit a laser beam parallel to the
photographic direction (depth of field). The vertical difference of the laser pointer from the center of
the lens is used to obtain the proportion coefficient of the standing tree picture. The vertical difference
of this experiment is 35 cm, which can be adjusted as needed. A photogrammetric platform is used to
place and fix mobile phones. The platform can rotate 360 degrees while working and adjust the vertical
difference between the mobile phone camera optical axis and the laser pointer. The instruments need
to be checked and configured before the work.

2.3. Expand Traditional Forest GIS Survey Functions

In this paper, the method of obtaining tree position, DBH, tree height, and tree species is suitable for
conventional forest GIS survey. On the Android Studio 3.0 platform, the algorithm was implemented
in the C++ language, and the software functions were created by calling the relevant interfaces in
the Java language. The system not only has the traditional functions of mobile GIS, such as mapping
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tree positions on GIS maps, using geometric data such as forest plot or compartment boundaries,
and positioning and resetting of sample plots, but also, and more importantly, expands the function
of forest mobile GIS surveys. The system registers the tree measurements (species, DBH, and tree
height) in the GIS as attributes of the point representing the tree, using this method obtained DBH and
tree height quickly and conveniently using terrestrial photogrammetry technology and automatically
inputting the measured data into the GIS form. The GIS acquires the base coordinates querying the
Beidou unit trough the Bluetooth connection, computes the coordinates of the position of the tree
(using photogrammetry output and camera orientation data) and registers tree position as a point. The
high-precision tree position data are then drawn on the map (as shown in Figure 3). 4 of 19 
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2.4. Measure DBH and Standing Tree Height

2.4.1. Algorithm for Extracting DBH and Tree Height by Terrestrial Photogrammetry Based on the
Mobile Phone

Based on the principle of terrestrial photogrammetry, this paper used a nonlinear distortion model
to calibrate the fixed-focus camera of the mobile phone [31,32]. After taking a single photograph, the
two-dimensional coordinates in the photo plane are transformed into three-dimensional coordinates
using the single-image analytical model, which can realize simultaneous measurements of DBH and
tree height quickly and accurately. Figure 4 shows the specific measurement principle.
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S–XYZ is object space coordinate system. xSy is photo coordinate system and S-xyf is image space
coordinates system. S is the photographic center (the common origin of three coordinate systems). A1

and A2 are the object coordinate points on the top and bottom of the tree, respectively. A3 and A4 are
the object coordinate points on the left and right sides of the DBH, respectively, and h represents the
difference between the optical axis of the camera and the laser beam of the pointer. The height of h was
known. The reference value of h in this experiment is 35 cm.

The main measurement processes are as follows:
1. After turning on the laser pointer, input the value of h into the software. By rotating the

photographic platform, aiming at the target tree to be measured, the laser point is projected onto the tree
to be measured. The photographing direction (main optical axis) of the mobile phone lens is parallel
to the horizontal plane during the photography process, and the photographed picture includes the
tree top and the bottom of the tree. The coordinates of the laser point in photo coordinate system are
(xa, ya), and the S coordinates of the camera’s lens center in photo coordinate system are (x0, y0).

2. The “shoot” button is clicked to obtain a single picture of the target tree and automatically load
it onto the screen to prepare for measurement.

3. The DBH and height of the tree can be measured consistently. Select A1 at the bottom of the
tree trunk (i.e., the ground position of the tree root) and A2 at the top of the tree on the photo of the
target tree. The coordinates of A1 in photo coordinate system are (x1, y1), and the coordinates of A1 in
the image space coordinate system are (x1,y1,− f ). The coordinates of A2 in photo coordinate system
are (x2, y2), and the coordinates of A2 in the image space coordinate system are (x2, y2, − f ).

According to the principle of collinear equation [33]
X
Y
Z

 = R


x
y
− f

 =


a1 a2 a3

b1 b2 b3

c1 c2 c3




x
y
− f

 (1)

x, y are the photo plane coordinates of the photo point, f is the focal length of the camera, X, Y, Z
are the object space coordinates of the photographic site, and ai,bi,ci (i = 1,2,3) are the nine direction
cosines composing the three outer azimuth elements of the tree photograph.
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In this paper, the lens center S of the camera is set as the origin. The origin coordinates of the object
space coordinate system and the image space coordinate system are coincident, and the coordinate
axis directions are completely coincident. The X-axis and the Y-axis of the photo coordinate system
(two-dimensional coordinate system) coincide with the X-axis and Y-axis directions of the object-side
space coordinate system and the image-side space coordinate system respectively [34,35]. The rotation
Angle of the coordinate system is 0, and the translation amount in all three directions is 0, so simplifying
the rotation matrix and the special form of collinear equation can be obtained according to the principle
of collinear equation. 

Xi
Yi
Zi

 = λi


xi
yi
f

 (2)

Having identified in the photo the point on the trunk hit by the laser pointer, the vertical difference
in photo coordinates (h) and the scaling factor (λi) can be computed. Coordinates of all other points
are valuated scaling corresponding photo point coordinates (see design and text box). Assume that the
coordinates of the object space point of the spatial point A1 are (XA, YA, ZA). Formula (3) can be used
to calculate the object coordinates of image points on standing trees photographs.

Xi = hxi
y0−ya

Yi =
hyi

y0−ya

Zi =
h f

y0−ya

λ = h
y0−ya

(3)

The object space coordinates (3D) of (Xi, Xi, Zi) are obtained as the standing tree to be measured,
and h represents the vertical height of between laser pointer and lens center (35 cm in this experiment).
xi and yi are photo plane coordinates (2D). ya is the ordinate of the laser point in the photo coordinate
system. The following formula are combined to obtain the tree height calculation formula.

Xi
xi

= Yi
yi

= Zi
f = λi√

(x1−x2)
2+(y1−y2)

2

H =

√
(xa−x0)

2+(ya−y0)
2

h

(4)

And the tree height is:

H =

√
(x1 − x2)

2 + (y1 − y2)
2
× h√

(xa − x0)
2 + (ya − y0)

2
(5)

The xi, yi in the formula correspond to the photo plane coordinates of DBH and tree height,
respectively. The top point A1 and the bottom point A2 of the tree are selected on the photo of
the tree to be tested, and the corresponding photo plane coordinates are obtained at S (x1, y1) and
(x2, y2), respectively. The coordinates of the laser point and lens center on the photo are (xa, ya) and
(x0, y0), respectively.

Similarly, point A3 on the left and point A4 on the right of the DBH of the tree are selected on the
image, respectively, and the coordinates of the corresponding photo coordinate system on the image
obtained at point S are (x3, y3) and (x4, y4), respectively. Then, the DBH can be calculated using the
following formula. 

Xi
xi

= Yi
yi

= Zi
f = λi√

(x3−x4)
2+(y3−y4)

2

DBH =

√
(x3−x0)

2+(y3−y0)
2

h

(6)
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DBH =

√
(x3 − x4)

2 + (y3 − y4)
2
× h√

(x3 − x0)
2 + (y3 − y0)

2
(7)

2.4.2. Software Development for Analyzing DBH and Tree Height of Standing Trees Based on
Terrestrial Photogrammetry

Traditional mobile GIS surveys generally use external tools such as DBH calipers, total stations,
or hypsometer to measure DBH and tree height, and the data form is then manually filled in. In this
paper, the tree photo can be acquired by mobile phone, and the DBH and tree height can be calculated
simultaneously in the software. The data form can be automatically filled with the measurement
results. The noncontact method of standing tree measurement saves investigators’ physical strength
and time. Based on the Android Studio 3.0 development environment, the software for measuring tree
height and DBH was written in the Java language, and a multitouch function was realized to click and
zoom tree photo as a submodule of the whole data acquisition system. In this paper, we can use the
special GIS data format (. ta) to store attribute data such as tree height and DBH, which were related
to the corresponding geometric data format (. tm), and we can also export the data in (. csv) format.
Figure 5 shows the measurement interface and program flow chart for DBH and tree height.
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2.5. Deep Learning Assisted Artificial Identification of Tree Species

2.5.1. Tree Species Recognition Model Based on MobileNets

In order to enable workers to identify tree species using mobile phones, the computer vision
neural network MobileNets algorithm designed for mobile phones is used to identify trees with
high economic values distributed in Beijing Forest Park. The tree identification model was designed
by MobileNets [36,37], a lightweight network structure with deep separable convolution, and the
convolutional structure of the first 28 layers of MobileNets was frozen. According to the characteristics
of the image dataset, rewrite the last layer of the fully connected layer, import MobileNets weights
and parameters pre-trained by MobileNets on the ImageNet dataset, and use ReLU as the activation
function for each convolution. Batchnorm was used to increase the speed of neural network training
and convergence, and Softmax was used as the classifier. Softmax regression algorithm was adopted
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in the tree species recognition model in this paper to map the output values if multiple neural units
into (0, 1), and the sum is 1. Therefore, the sample can be classified as the probability of a certain class,
so as to achieve multiple classification. The data set of the leaf image in this paper is retrained. The
structure of convolution is shown in Figure 6.

 8 of 19 

 

MobileNets weights and parameters pre-trained by MobileNets on the ImageNet dataset, and use 230 
ReLU as the activation function for each convolution. Batchnorm was used to increase the speed of 231 
neural network training and convergence, and Softmax was used as the classifier. Softmax regression 232 
algorithm was adopted in the tree species recognition model in this paper to map the output values 233 
if multiple neural units into (0, 1), and the sum is 1. Therefore, the sample can be classified as the 234 
probability of a certain class, so as to achieve multiple classification. The data set of the leaf image in 235 
this paper is retrained. The structure of convolution is shown in Figure 6.  236 

 237 
Figure 6. The structure of convolution. 238 

This paper used an iterative algorithm such as gradient descent to solve the gradient formula. 239 
This paper added a decay function term to the cost function to make J(θ) a strict convex function to 240 
ensure that it can converge and have a unique solution. Therefore, the cost function and gradient 241 
became: 242 

⎩⎪⎨
⎪⎧ J(θ) = − 1𝑚 1{𝑦(𝑖) = 𝑗} 𝑙𝑜𝑔 𝑒 ( )∑ 𝑒 ( ) + 𝜆2 θ  

▽ J(θ) = − 1𝑚 𝑥( ) 1 𝑦( ) = 𝑗 − 𝑝 𝑦( ) = 𝑗 𝑥( );  + 𝜆θ  (8) 

Let the training set consist of m labeled samples, i.e., {(𝑥( ), 𝑦( )), ⋯,(𝑥( ), 𝑦( ))}. The range of 243 
the category label y is 𝑦( ) ∈{1,2,⋯,k}. Let probability p(y = j | x) denote the probability that the 244 
sample is discriminated as being in category j in the case of input x. Therefore, the output of the k-245 
class classifier is a k-dimensional vector, and the sum of its elements is 1. 246 

2.5.2. Tree Species Identification Based on the Mobile Phone  247 

(1) Sample Collection 248 
When using mobile phones to collect GIS data in the forest, workers usually use their eyes to 249 

observe trees, and then combine their personal knowledge or experience to identify tree species, 250 
which may lead to the situation that they cannot distinguish tree species due to insufficient 251 
knowledge or experience. The MobileNets algorithm was used in this paper to identify the tree 252 
species. When workers could not distinguish the tree species, the method of photographing the tree 253 
leaves with a mobile phone played an auxiliary role in artificial differentiation, providing an effective 254 
reference for workers to distinguish the tree species. To use MobileNets to identify tree species and 255 
test the performance of the model, this paper identified and trained on 12 types of tree leaves with 256 
high economic value in Beijing Forest Park, namely, poplar (Populus L.), Ginkgo (Ginkgo biloba L.), 257 
Eucommia (Eucommia ulmoides Oliver), Ash trees (Fraxinus chinensis Roxb), False Acacia(Robinia 258 
pseudoacacia L.), oriental arborvitae (Platycladus orientalis L.), Shantung Maple (Acer truncatum Bunge), 259 

Figure 6. The structure of convolution.

This paper used an iterative algorithm such as gradient descent to solve the gradient formula.
This paper added a decay function term to the cost function to make J(θ) a strict convex function to
ensure that it can converge and have a unique solution. Therefore, the cost function and gradient
became: 

J(θ) = − 1
m

∑m
i=1

∑k
j=1 1

{
y(i) = j

}
log e

θT
j x(i)∑k

l=1 eθ
T
l x(i)

+ λ
2

k∑
i=1

n∑
j=0

θ2
i j

5θ j J(θ) = −
1
m

∑m
i=1

[
x(i)

(
1
{
y(i) = j

}
− p

(
y(i) = j

∣∣∣x(i); θ))]+ λθ (8)

Let the training set consist of m labeled samples, i.e., {(x(1), y(1)), · · · ,(x(m), y(m))}. The range of the
category label y is y(i) ∈{1,2,· · · ,k}. Let probability p(y = j | x) denote the probability that the sample is
discriminated as being in category j in the case of input x. Therefore, the output of the k-class classifier
is a k-dimensional vector, and the sum of its elements is 1.

2.5.2. Tree Species Identification Based on the Mobile Phone

(1) Sample Collection

When using mobile phones to collect GIS data in the forest, workers usually use their eyes to
observe trees, and then combine their personal knowledge or experience to identify tree species, which
may lead to the situation that they cannot distinguish tree species due to insufficient knowledge or
experience. The MobileNets algorithm was used in this paper to identify the tree species. When
workers could not distinguish the tree species, the method of photographing the tree leaves with a
mobile phone played an auxiliary role in artificial differentiation, providing an effective reference
for workers to distinguish the tree species. To use MobileNets to identify tree species and test the
performance of the model, this paper identified and trained on 12 types of tree leaves with high
economic value in Beijing Forest Park, namely, poplar (Populus L.), Ginkgo (Ginkgo biloba L.), Eucommia
(Eucommia ulmoides Oliver), Ash trees (Fraxinus chinensis Roxb), False Acacia(Robinia pseudoacacia L.),
oriental arborvitae (Platycladus orientalis L.), Shantung Maple (Acer truncatum Bunge), Paper Mulberry
(Broussonetia kazinoki S. et Z.), Chinese Red Pine (Pinus tabuliformis Carr), goldenrain (Koelreuteria
paniculata Laxm), oriental oak (Quercus variabilis Bl.), and elm (Ulmus pumila L.). A total of 1682 images
belonging to 12 categories were included in the data set. A total of 1346 images were randomly selected
by category to compose the training data set. There were 176 images in the validation data set and
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160 images in the test data set. The original size of each leaf image varied from 3 M to 6 M. The images
were compressed to sizes of 224 × 224 pixels to reduce the model parameters. Tree leaf samples are
shown in Figure 7.
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(2) Model Training

To subsequently deploy the model to a mobile phone, the Linux system was used to build the
MobileNets network structure under Google’s TensorFlow framework, and the transfer learning
method was used to train the tree leaf recognition model based on the Python language, retaining most
of the pretrained network on large data sets. The parameters were adjusted to make them suitable for
use with this article’s data set. The number of iterations was 4000, the learning rate was 0.008, the
activation function used ReLU, the majorized function used the random gradient descent method,
and the loss was verified using cross entropy. Each iteration randomly extracted 20 images from the
dataset to expand the training set, and 20 iterations were performed for the model evaluation. The
data loss and accuracies for the first 2000 iterations are shown in Figure 8 below.
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As seen from the figure, the loss began to converge after the 200th iteration and remained stable
after the 500th iteration, and the verification set accuracy varies slightly and is close to 100%. After
4000 iterations, the accuracy of the model on the training dataset reached 100%, the loss is only 0.0005,
the accuracy on the training dataset reached 94.02%, and the loss is only 0.1434.



Forests 2019, 10, 643 10 of 19

(3) Software Development

In this paper, the deep learning interface (TensorFlow-Lite) designed by Google for mobile phone
was utilized. Based on the Android Studio 3.0 development environment, the tree species recognition
software was developed in the Java language. At this stage, we put the tree species recognition model
(tree_recognition.py) and the label file (lables.txt) trained in the previous (2) into the SD card. The size
of the model loaded in the software program was 18.3 M. The model contains the names and IDs of
tree species, and the software obtained the tree type, confidence, and recognition time. Figure 9 shows
the tree species identification process and software interface in mobile phones.
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2.6. Testing the Accuracy of the Survey Made Using the Ground Measurement Tool

The data of tree position measured by Leica Viva GNSS-RTK system GS15 was used as the
reference value of tree position in this paper. The DBH and heights of 459 trees were measured using a
diameter tape and total station, respectively, and the data were taken as the reference values of the
DBH and tree height for the ground measurement tool in this paper. Twelve tree species were tested
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using the trained tree species recognition model, and the accuracy of the model was verified by the test
dataset of mobile phone. Position accuracy, DBH, and tree height were evaluated by utilizing the bias,
root mean squared error (RMSE), relative bias (rBias), and relative RMSE (rRMSE), which are defined
by Equations (9)–(12), respectively.

Bias =
1
n

∑n

i=1
(yi − yri) (9)

RMSE =

√∑
(yi − yri)

2

n
(10)

rBias% =
Bias
yr
× 100% (11)

rRMSE% =
RMSE

yr
× 100% (12)

The confusion matrix and accuracy (ACC) were used to verify the accuracy of the tree species
recognition model, as shown in Table 1 and Equation (13).

Table 1. Confusion matrix.

Confusion Matrix
Predict

0 1

Real
0 a b
1 c d

The accuracy calculation equation is:

ACC =
a + d

a + b + c + d
(13)

3. Results

3.1. Experiment and Analysis of the Measurements of Tree Position

Under the coordinate system of WGS-84, the position of the tree determined by the Leica Viva
GNSS-RTK was the reference value. After using “Beidou Compation M1” to obtain the coordinates of
the high-precision observation site, the coordinates were compared with the tree position obtained
with the Leica Viva GNSS-RTK. In the experiment of two plots (as shown in Table 2), the measurement
results of the tree position by the ground measurement tool showed that the RMSE of the tree position
was 0.222 m and 0.229 m, respectively, and the data accuracy was within the standard accuracy
requirements of the forest resource inventory. The main errors in measuring the position of trees come
from two aspects. One is the distance between the observation site and the tree, and the other is the
accuracy of the azimuth angle of the observation site and the tree. Therefore, in order to improve
the accuracy of the ground measurement tool to measure the position of trees, the distance between
the observation site and the tree needs to be set properly, and the accuracy of the sensor needs to be
improved (including the focal length of the camera and the accuracy of the Orientation sensor).

Table 2. Comparison of the positioning accuracies of the ground measurement tool and the Leica
Viva GNSS-RTK.

Plot Number Bias (m) RMSE (m)

1 0.023 0.222
2 0.020 0.229
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3.2. Experiment and Analysis of Measuring DBH and Tree Height

To minimize the influence of occlusion factors due to, for example, the forest canopy and trunks,
the ground measurement tool in this paper was placed in the best observation position. When the
trees cannot be observed, the observation site needs to be reset by moving the instrument. The
estimated values of tree height and DBH obtained in the two plots were compared with the reference
values respectively.

In order to verify the accuracy of the ground measurement tool to measure DBH, the DBH
reference values of the two plots were arranged from small to large. Figure 10a,b showed, respectively,
the accuracy of the ground measurement tool in measuring DBH in the two plots, with the horizontal
axis representing the reference value and the vertical axis representing the estimate value. The DBH
of 217 trees in the first plot was distributed between 8.2 cm and 37.8 cm, and the DBH of 242 trees
in the second plot was distributed between 6.7 cm and 34.2 cm. Table 3 showed that the estimate
values were distributed on both sides of the reference value, and the RMSE of DBH were 2.538 cm and
2.075 cm, respectively.
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Table 3. Comparison of the DBH and tree height precisions obtained by the ground measurement tool,
diameter tape, and total station. rBias: The relative Bias; RMSE: The root mean square error; rRMSE:
The relative root mean square error.

Plot Number Category Bias rBias (%) RMSE rRMSE (%)

1
Height (m) −0.22 −1.69 0.87 6.74
DBH (cm) −0.22 −0.88 2.54 10.17

2
Height (m) −0.17 −1.27 0.90 6.69
DBH (cm) −0.37 −2.41 2.08 13.38

In order to verify the accuracy of the ground measurement tool to measure tree height, the tree
height reference values of the two plots were arranged from small to large. Figure 11a,b showed,
respectively, the accuracy of the ground measurement tool in measuring tree height in the two plots,
with the horizontal axis representing the reference value and the vertical axis representing the estimate
value. The tree height of 217 trees in the first plot was distributed between 4.35 m and 20.94 m, and the
tree height of 242 trees in the second plot was distributed between 4.98 m and 21.11 m. Table 3 showed
that the estimated values of the tree height were distributed on both sides of the reference value, and
the RMSE of the tree height in the two plots were 0.87 m and 0.90 m, respectively.
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height in the plot No.2.

The image-based measurements show the accuracy of DBH and tree height. The data accuracy
for 459 trees is satisfactory. In the test of the two plots, the rBias of DBH was −0.88% and −2.41%,
and the rRMSE was 10.17% and 13.38%, then the RMSE was 2.54 cm and 2.08 cm, respectively, which
conform to the standard accuracy requirements of forest resources inventory. The main source of error
in measuring tree height and DBH is the pixel error (including the resolution of the camera and the
error caused by the operator touching the screen with a finger). Therefore, in order to improve the
accuracy of the ground measurement tool in measuring the DBH and tree height, it is necessary to
improve the camera pixels and the operation level of workers.

In the two plots, 217 trees and 242 trees were measured, respectively. Using this paper’s ground
measurement tool, we obtained a bias greater than 0.2 m and an RMSE greater than 0.90 m compared
with the total station measurement tree height. rBias was −1.69% and −1.27%, and rRMSE was 6.74%
and 6.69%, respectively. Even if the tree height error is relatively large, the tree height accuracy remains
within the relevant accuracy requirements of the forest resource inventory. Therefore, when using
mobile GIS surveys in forests, this method based on terrestrial photogrammetry calculates the DBH
and tree height. To a large extent, this method eliminates the dependence on traditional external
measuring equipment.

3.3. Tree Species Identification Experiment and Analysis

In order to obtain the recognition accuracy of the model from the mobile phone, the test dataset
and the trained model were imported into the mobile phone. The software loaded the model and
displayed the results, and the tree species recognition result was represented by a confusion matrix,
as shown in Figure 12.

The row value of the matrix is the true value and the column value is the predicted value. The
entire test dataset accuracy is 93.21%, and photos whose model recognition accuracy is more than
95% account for 91% of the whole test dataset. The single-image recognition time averages 1186
milliseconds, with a maximum value of 1409 milliseconds and a minimum value of 858 milliseconds.
Therefore, the model identification was stable. The results show that when workers cannot accurately
identify the tree species because of subjective reasons (e.g., human eye identification), the tree species
recognition technology based on the MobileNets algorithm can provide the basis of a certain degree of
effective identification.
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3.4. Comparison of Two Working Methods

As shown in Table 4, when workers use mobile phone to collect GIS data in forest, the working
method of this paper was compared with the current working mode. First, in terms of time, DBH and
tree height can be simultaneously measured quickly and accurately by the method of this paper, and
the noncontact tree-measuring, which is a noncontact measurement method, makes the work more
coherent. The time required to measure the position, DBH, and height of a single tree was recorded.
A total of 100 trees were measured, and the average time required to complete the single tree collection
was approximately two to three times less than that of the current method. Second, in terms of cost, this
paper’s ground measurement tool has characteristics of high integration and of being easily carried.
Workers do not need to operate other independent measurement tools, as they only need to operate
mobile phone to measure the tree. The cost is approximately one-half that of the current working mode.

Table 4. Comparison of cost and time between this article’s mode and current mode.

Work
Mode

Mobile
GIS Tree Position DBH Tree Height Cost Estimate

Number
of Tools

Carried at
Work

Time Required to
Measure the

Position, DBH, and
Height of a Single

Tree at Work

current
mode

mobile
phone (300
dollars–450

dollars)

RTK
(approximately
2200 dollars)
or GPS (450

dollars)

diameter tape
(5 dollars) or
calipers (30

dollars)

hypsometer
(74dollars) or
total station

(approximately
2200dollars)

approximately
1100

dollars-2500
dollars

≥4

For 60–90 s,
measurement data

requires manual
entry of data forms

the
presented
method

Ground measurement tool approximately
520 dollars 1

For 20–30 s,
measurement data
are automatically
entered into the

data form.

4. Discussion

Through field tests on two plots with densities of 1071 trees/hectare and 1195 trees/hectare,
the results of this study show that the further integration of terrestrial photogrammetry, computer
vision, and LBS technology can provide an effective aid for forest GIS surveys. This study is of great
significance for the fine-monitoring and management of forests of high value in small areas and can
be extended to large-scale areas when needed. The focus of this paper was to develop and test a
new ground measurement tool to assist with forest GIS surveys and to solve the problem posed by
time-consuming, laborious, and nonintegrated instrumentations employed in traditional forest GIS
survey methods. Based on terrestrial photogrammetry, the DBH and tree height are estimated quickly
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just after the tree photo is taken, and in the paper, estimates are compared with measurements. The
results showed that the rRMSE of the DBH measurements in the two plots was 10.17% and 13.38%, and
rBias was −0.88% and −2.41%, then the RMSE was 2.54 cm and 2.08 cm, respectively. Regarding tree
height measurements, the rRMSE of the two plots was 6.74% and 6.69%, and rBias was −1.69% and
−1.27%, then the RMSE was 0.87 m and 0.90 m, respectively. In our research, the tree pictures obtained
by the ground measurement tool can be analyzed in real time, and the noncontact measurement
method saves workers’ physical strength and time, especially when used to solve the problem of
encountering steep slopes that make it impossible to closely touch trees. References [16,26–28,38] focus
on the use of mobile phone angular transducers to obtain tree height because there are large biases that
do not guarantee data accuracy. References [21,22,24,25,39] study the use of separate digital camera
equipment to obtain photographs through terrestrial photogrammetry, which requires postprocessing
and cannot be performed in real time. These technologies cannot be used in actual forest GIS surveys.
Current studies rarely consider the method that uses terrestrial photogrammetry for acquiring stand
factors to assist with forest GIS surveys in order to improve work efficiency [17,23,40].

The results of this study show that the ground measurement tool can provide effective assistance
for forest GIS surveys, especially when undertaking accurate surveys of artificial forests in small areas.
In the measurement of tree position, the RMSEs of the two plots are 0.222 m and 0.229 m. When
using mobile GIS to perform collection works, references [3,7,11,19,41] rely on only mobile phone
to locate the position, and the RMSE of the position is between 5 m and 8 m. Compared with the
traditional method, the method presented in this paper shows the advantages of high precision and
high integration. References [10,42,43] use devices such as those employed in traditional GPS or RTK,
and cannot directly transmit positioning data to a mobile GIS system. The ground measurement tool
in this paper integrates LBS technology to transmit high-precision geographic location data directly to
the terminal GIS software through Bluetooth, saving working time. To provide an effective reference
for workers on the ground who cannot accurately identify tree species by the naked eye or for other
subjective reasons, this paper uses deep learning to assist in the artificial identification of tree species.
The accuracy of the tree species recognition model is 94.02% in the training dataset and 93.21% in the
mobile phone test dataset. Numerous people have studied tree species identification using different
methods [36,44–51], but those methods cannot be applied to forest field surveys. The tree species
identification model in this paper provides effective differentiation basis for the workers.

Although this equipment is a new choice for forest GIS field surveys, it still has some limitations.

(1) In areas of high density of forests, the instrument observation visibility is disturbed, and the
stand tree measurement accuracy is affected. In this case, this problem can be solved by adjusting the
position of the observation site or applying where tree density is appropriate. The field test results
show that the ground measurement tool can effectively diminish the time-consuming and laborious
problems existing in traditional forest GIS surveys. However, due to the complexity and diversity of
forest conditions, some unobservable conditions caused by some unavoidable factors may still require
traditional measuring instruments to assist in measurements. When measuring, it is necessary for the
observer to determine whether the position of the tree tip is appropriate, which may be affected by
the trunk or canopy occlusion and the subjective decision of the observer; otherwise, the observation
position can be adjusted according to need. To obtain accurate DBH and tree heights, we usually need
to solve the following problems: (1) Horizontal distance should be as similar to tree height as possible,
which will minimize the measurement bias, and (2) when the trees are too high or too low for the
ground measurement tool to observe them, the instrument is unsuitable for use. In this case, the height
can be measured directly by total station or a long measuring rod.

(2) The samples trained in this paper come from 12 tree species with high economic value
distributed in Beijing Forest Park, which can ensure only the accuracy of tree species identification
collected in this paper. In addition to the 12 species in this training, more species need to be identified
by training samples in the future. It is impossible to identify tree species in situations when leaves
have fallen off and when equipment is unable to photograph leaves. Workers usually use their eyes to
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observe trees, and then combine their personal knowledge or experience to identify tree species, which
may lead to the situation that they cannot distinguish tree species due to insufficient knowledge or
experience. Using the tree species recognition model of this paper can provide a meaningful reference
for workers, and according to the recognition result of the model, combined with the individual
judgment, the accuracy of the tree species identification is guaranteed.

5. Conclusions

The work presented in this paper develops and tests a ground measurement tool with mobile
devices as the core and proposes a new method that combines terrestrial photogrammetry, computer
vision, and LBS technology as an aid for forest GIS surveys. The test results show that the problem of
using time-consuming, laborious, and nonintegrated equipment can be effectively diminished by the
method of this paper. When the trees can be observed, it does not need to operate external independent
measuring tools, such as hypsometers, diameter tapes, etc. The ground measurement tool can quickly
measure the standing trees, saving the time and cost of the investigation.

At present, the proposed method also has some limitations. For example, the effectiveness
and accuracy of this method may be limited in dense forests because the visibility of instrumental
observations may be disturbed. In further research, this limitation can be overcome by adjusting
the locations of observation site or applying them to appropriately sparse tree-sheltered forest areas.
Future research should test the tool under more complex forest conditions, such as in forests of different
species and densities. Future research should also focus on extracting other forest resource attributes,
such as standing tree volume and crown diameter.
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Appendix A

The highly integrated ground measurement tool is mainly composed of mobile phone, laser
pointer, “Beidou companion M1” RTK positioning module and photography platform.

(1) The main configuration of a mobile phone is as follows:

(a) operating system: Android 7.0; (b) An 48-megapixel optical camera with a fixed focal length of
4mm, an light emitting diode (LED) supplementary lamp, and f/2.2 for image data acquirement; (c) The
Type of CPU is Qualcomm Snapdragon 710, with a frequency of 2.2 GHz and an 8-core processor.
The RAM is designed with LPDDR3 memory architecture, with a capacity of 6 GB and a maximum
frequency of 3233 MHz. The ROM consists of C8051F410 with a speed class of 10, a maximum sustained
speed of 80 m/s, and a storage capacity of 128 G. (d) A GNSS chip for receiving a GNSS signal, for
receiving a Bluetooth chip for acquiring positioning data by the RTK positioning module, and a WiFi
chip for transmitting image data and connecting to the Internet. (e) 6.4-inch capacitive screen, 1080
× 2340 pixels, multi-touch support.6 A gyroscope consisting of a GY-26 integrated circuit chip, a
LIS331DLH three-axis accelerometer.

(2) The main configuration of the laser pointer (Beijing Huite Jiayi Technology Development Center) is
as follows:



Forests 2019, 10, 643 17 of 19

Laser indicating product and aluminum alloy material. length is 14cm and diameter is 2.4 cm, and
weight is 60 g. laser type 3R highlight and lumens is 900 LM, and module is A class, high temperature
resistant crystal.

(3) The main configuration of “beidou companion M1” RTK positioning module (Beijing OLinkStar
Co., Ltd., Beijing, China) is as follows:

(a) The received signals are BDS B1 and GPS L1. The low-power Bluetooth technology is used to
connect with the mobile phone. The built-in single-frequency RTK high-precision inertial navigation
combined positioning module realizes stable and reliable centimeter-level positioning with a speed
accuracy of 0.2 m/s. The number of channels is 192, and the RTK initialization time is <60 s. (b) The
horizontal direction of RTK positioning accuracy is 0.02 m, the elevation is 0.04 m; the RTD/SBAS level
is 1.5 m, and the elevation is 3 m. (c) Location refresh rate ≥1 Hz, Location data format is NMEA0183
and support inertial navigation. external antenna NMCX interface and weight is 75 g.

(4) The main configuration of the photography platform (tripod + Rotating gimbal) is as follows:

The height of the tripod is 150 cm, and the contraction height is 40 cm, and the pipe diameter is
20 mm and totaling 4 knots. The rotating gimbal can fix the mobile phone and is placed on the tripod.
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