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Abstract: This study developed and verified a new hybrid machine learning model, named random 
forest machine (RFM), for the spatial prediction of shallow landslides. RFM is a hybridization of 
two state-of-the-art machine learning algorithms, random forest classifier (RFC) and support vector 
machine (SVM), in which RFC is used to generate subsets from training data and SVM is used to 
build decision functions for these subsets. To construct and verify the hybrid RFM model, a shallow 
landslide database of the Lang Son area (northern Vietnam) was prepared. The database consisted 
of 101 shallow landslide polygons and 14 conditioning factors. The relevance of these factors for 
shallow landslide susceptibility modeling was assessed using the ReliefF method. Experimental 
results pointed out that the proposed RFM can help to achieve the desired prediction with an F1 
score of roughly 0.96. The performance of the RFM was better than those of benchmark approaches, 
including the SVM, RFC, and logistic regression. Thus, the newly developed RFM is a promising 
tool to help local authorities in shallow landslide hazard mitigations. 

Keywords: random forest machine; landslide; geographic information system; machine learning; 
hybrid approach 

 

1. Introduction 

A landslide, which is defined as the slope movement of soil, mud, debris, or rock, is the most 
common geological hazard in the world [1]. This hazard happens as a consequence of other events 
or actions, such as torrential rain, earthquake, deforestation, or mineral exploitation. Globally, 
landslides have substantial social and economic impacts. Globally, during the 1995–2014 period, 
more than 3876 landslides occurred causing 163,658 deaths and 11,689 injuries [2]. 

Vietnam is one of the countries profoundly affected by landslides in Asia. According to the 
Institute of Geosciences and Mineral Resources in Vietnam, there are more than 10,200 locations that 
have a high risk of landslides in the northern mountainous provinces [3]. From 2000 to 2015, there 
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were 250 flash floods and landslides, with 779 people killed or going missing and 426 others injured. 
Therefore, being able to predict future landslides can assist with policy-making and development-
planning and, as a result, can save lives and reduce economic damages through prevention and 
mitigation measures. 

Landslide prediction can be built in the form of susceptibility maps where the likelihood of a 
future landslide occurring is given based on a set of local terrain conditions and geo-environmental 
factors [4]. Literature review shows that five main approaches are used for constructing landslide 
susceptibility, namely: (a) geomorphological mapping, (b) heuristic or index-based approaches, (c) 
analysis of landslide inventories, (d) physics-based methods, and (e) statistically-based methods. The 
first two approaches are qualitative methods [4]. In other words, they are subjective and present 
susceptibility levels in descriptive terms. They rely heavily on the researcher in charge. In 
geomorphological mapping, a direct method, the susceptibility map is built through evaluating and 
mapping the actual and potential slope failure [5–8]. In the heuristic approach, the researcher ranks 
and weights all the known instability factors based on their expert experience [9]. The last three 
approaches are indirect and quantitative. Analyses of landslide inventories use present and past 
landslides to predict the occurrence of future ones [10,11]. Physics-based methods, on the other hand, 
use simplified physical models to simulate and predict slope instability [12–14]. Lastly, statistically-
based methods attempt to build the functional relationship between past landslides, present 
landslides, and some inferred conditioning factors [15–20]. 

Among these approaches, statistically-based methods are by far the most popular ones. 
According to [4], from January 1983 to June 2016, there were 565 peer-reviewed articles on 
statistically-based landslide susceptibility models. The popularity of these techniques include both 
classical ones, such as discriminant analysis, logistic regression [21–25], data overlay, multi-criteria 
decision evaluation, and machine-learning-based ones, such as artificial neural networks [26], neuro-
fuzzy models [27], support vector machine [28], decision trees [29], and sophisticated hybrid or 
ensemble learning approaches [16,30–32]. 

Multiple factors determine the popularity of statistically-based methods. First, it is their use of 
natural characteristics that allow them to be used in many scenarios for different regions of interest 
[4]. Second, these methods have demonstrated their effectiveness for a wide range of applications, as 
reported in various previous works [33,34]. Third, with the introduction of GIS, spatial-temporal 
landslide data can be seamlessly integrated with data of multiple conditioning factors. This provides 
a perfect setting for statistically-based methods to be built. 

With GIS, greater inferred instability factors, including the relationship between past and 
present landslides, are considered and these factors become more and more nonlinear. Consequently, 
traditional linear methods, such as linear discriminant analysis and linear/logistics regression, are not 
satisfactory. Since 2000, machine learning and artificial intelligence (MLAI) have become increasingly 
popular due to their ability to handle multiple governing factors and nonlinearity. Thus, MLAIs have 
proven their efficiency in the spatial prediction of various geoscience fields, such as atmospheric 
particulate matter [35], earth fissure [36], snow avalanche [37,38], multi-hazard exposure [39], 
groundwater [40], and flash flood [41,42]. In landslide studies, the most vital issue for the successful 
application of MLAI is the ability to generate probabilistic inferences, which are widely used for 
susceptibility indices. Following this success trend, new and advanced MLAI algorithms for 
landslide modeling have received much interest. This is because, despite their versatility, there is still 
no single algorithm that is the best for all study areas [43,44]. The effectiveness of MLAI algorithms 
can significantly depend not only on the characteristics of the considered study region but also on 
the data available. 

In this work, we developed and proposed, for the first time, a novel hybridization of random 
forest classifier (RFC) and support vector machine (SVM), named random forest machine (RFM), for 
shallow landslide susceptibility prediction. The RFC model, also called a random decision forest 
classifier, was introduced initially by Ho [45] and, then, further developed by Breiman [46]. Whereas, 
the SVM model, developed by Vapnik and collaborators [47,48], is widely recognized as a powerful 
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and robust model in environmental modeling. It is noted that the application of individual RFC or 
SVM for landslide susceptibility studies has been widely carried out [25,49–51]. 

The critical advantage of RFC is to build a forest of tree predictors, where each predictor operates 
on a random subset of data. The final classification is developed to take into account the results of all 
the predictors. The SVM classifier, on the other hand, is a maximum-margin classifier, where hyper-
planes are constructed to separate classes. To the best of our knowledge, no research on a combination 
of the two algorithms has been conducted. Thus, the novelty of our proposed hybrid method is that 
SVM builds decision functions by using sub-datasets generated by RFC. Then, support vectors are 
determined to maximize the margins between the training data and the classifying borders. 

Consequently, smoother final borders were derived with lows for both the number of trees and 
the depth level of each tree. Furthermore, the proposed hybrid method also avoided the limitations 
of SVM when working with large training datasets. Herein, the model only fed their subsets and 
facilitated parallel model training. The rest of the paper is organized as follows: the second section 
provides a general description and inventory of the study area. The third section reviews the RFC 
and SVM algorithms. The combination of these two algorithms to build landslide susceptibility maps 
is explained in the fourth section, followed by the reported experimental results. The last section is 
devoted to the discussion of experimental results. 

2. The Study Area and the Landslide Inventory 

2.1. General Description of the Study Area 

The city chosen was the capital city of Lang Son province in northern Vietnam. It is located 
between the longitudes of 106°41′34′′ E and 106°48′32′′ E, and between the latitudes of 21°49′43′′ N 
and 21°57′13′′ N. The study area was roughly 101.3 km2, slightly larger than the official area of Lang 
Son city (see Figure 1). The elevation of the area ranges from 214 to 800 m, with an average of 325.6 
m above standard sea level. 
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Figure 1. Location of the study area and landslide inventory. 

The area has a strong northeastern-monsoon-influenced climate with high humidity (between 
80% and 85%) and a high amount of rainfall (annually average from 1200 to 1600 mm). The rainy 
season is usually from May to September, but might last longer, up to 10 months. The area is relatively 
far from the sea and rarely on the direct path of tropical cyclones or tropical depressions. However, 
these extreme weather events can affect the weather of the region, causing prolonged torrential rains, 
which are the leading cause of landslides in the region, according to historical records. 

2.2. Landslide Inventory Map 

Information on past landslides in the area were collected to build the inventory map. We used 
different ways to obtain the necessary data. For landslides occurring before 2003, the locations were 
extracted from (1) field survey data with handheld GPSs and (2) one-meter resolution aerial 
photographs provided by the Vietnam Aerial Photography and Photogrammetry company [52]. For 
landslides that occurred in the period from 2003 to 2009, we got the locations from previous projects 
[53]. Lastly, for recent landslides, the locations were obtained from the field works of [32]. The 
inventory map contained only the information of rainfall-induced landslides, as there has never been 
a documented earthquake-induced landslide in the region. Few rockfall events were eliminated from 
the inventory as we were only interested in soil slides and debris flows. 

In the final version of the inventory map (refer to Figure 1), there were 101 landslide polygons, 
which were split into two separate groups. Group 1 with 69 polygons was devoted to model training 
and group 2, consisting of 32 polygons, was employed for model validation. The total number of 
pixels of both groups was 3455, where 2410 pixels belonged to group 1 and 1045 pixels belonged to 
group 2. In order to have a complete data set, the GIS database was used to sample non-landslide 
locations. 
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2.3. Landslide Conditioning Factors 

One of the few widely accepted principles in landslide prediction is that the conditioning factors 
that caused past and recent landslides will likely be the ones triggering future landslides [4]. Also, 
according to previous studies [54–56], a good selection of landslide conditioning factors is one of the 
vital requirements to have accurate landslide susceptibility maps. Based on an analysis performed by 
[32], other previous works [24,52], and the availability of data in the study region, 14 conditioning 
factors were chosen for this study. They included 10 geomorphometrical factors, namely, slope angle 
(SA), slope length (SL), slope aspect (SA), curvature (Curv.), elevation (Elev.), topographic wetness 
index (TWI), stream power index (SPI), sediment transport index (STI), valley depth (VD), toposhade 
(Topo.), and 4 geo-environmental factors, namely lithology (Lith.), land use (LU), soil type (ST), and 
distance to faults (DTF). 

The geomorphometrical factors were derived from topographic maps at 1:5000 scale for the Lang 
Son city and 1:10,000 scale for the other study areas. These maps were derived from 1:20,000 scale 
aerial photos using the Imagestation Stereo Softcopy Kit software Version 2.3 (Intergraph 
Corporation, Huntsville, AL, USA). The intervals of contour lines were from 0.5 m for flat areas to 5 
m for mountainous areas. First, a 5 m × 5 m digital elevation map (DEM) was generated from 
topographic maps. Then, ArcGIS 10.7.1 (ESRI Inc., Redlands, CA, USA) was utilized to obtain all the 
geomorphometrical factors using a raster resolution of 5 m. Jenks Natural Break optimization method 
[57] in ArcGIS 10.2 was employed to classify continuous-values factors (except slope aspect) into 
classes, as proposed by [58]. 

Regarding the four geo-environmental factors, lithology was obtained from four tiles of the 
Geological and Mineral Resources Map (GMRM) of Vietnam at a scale of 1:50,000. Soil type, on the 
other hand, was extracted from National Pedology Maps (NPM) at a scale of 1:100,000. Land use was 
obtained from a land use status map at scale 1:50,000 provided by the local authority. Lastly, distance 
to faults was constructed from the fault lines of the lithological data using ArcGIS 10.2. In summary, 
all 14 selected conditioning factors and their classes are summarized in Figure 2. 
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Figure 2. Landslide conditioning factors used in the study area: (a) slope, (b) slope lengths (c) aspect, 
(d) curvature, (e) elevation, (f) TWI (topographic wetness index), (g) SPI (stream power index), (h) 
STI (sediment transport index), (i) valley depth, (j) topo-shape, (k) distance to faults, (l) land use, (m) 
soil type, and (n) lithology. Explanations of land use and soil type can be found in [52]. 

2.4. Investigation on the Importance of the Landslide Conditioning Factors 

Before the RFM model training phase commenced, it was necessary to inspect the relevancy of 
the collected variables used for landslide susceptibility mapping. In this study, the relevance of the 
influencing factors was preliminarily evaluated by the ReliefF method [59]. The ReliefF method is a 
probabilistic method used to inspect the conditional dependencies between variables and is capable 
of expressing the discriminative power of each variable used for data classification purposes. This 
method calculates a weight value for each variable to quantify its relevancy. A large weight is 
typically associated with an essential factor. The ReliefF analysis results are depicted in Figure 3. As 
can be seen from this figure, the slope was the most relevant factor for spatial mapping of landslide 
susceptibility in the study area, followed by SPI and elevation. Moreover, since all of the variable 
weights were not null, there was no redundant variable and all of them could be used for spatial 
mapping of landslide susceptibility. 

 
Figure 3. Variable analysis with the ReliefF method: (1)—Slope; (2)—Slope length; (3)—Aspect; (4)—
Curvature; (5)—Elevation; (6)—TWI; (7)—SPI; (8)—STI; (9)—Valley depth; (10)—Topo-shape; (11)—
Distance to faults; (12)—Land use, (13)—Soil type; and (14)—Lithology). 

3. Research Methodology 
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3.1. Random Forest Classifier 

RFC is an effective decision tree ensemble used for large-scale and multivariate pattern 
recognition [60]. This ensemble learning is established based on the concept of the random subspace 
method [45] and the stochastic discrimination method of classification [61]. The RFC was then further 
extended by Breiman [46] who introduced the concept of bagging and random feature selection. 
Equipped with these features, a random forest model becomes a powerful tool to construct an 
ensemble of classification trees. Successfully applications of RFC have been reported in various 
studies [25,35,49,62–65], including landslide modeling [25,66,67] 

Given a labeled data set (D) for training D = (X, Y), in which 𝑥௜ ∈ 𝑋 (i = 1,2, …, N, where N is the 
number of training samples) is a data sample and 𝑦௜ ∈ 𝑌 is its class label, the RFC method aims at 
constructing a model, which is capable of separating the input space into different disjoint regions. 
Each of the regions is characterized by one class label. To achieve this goal, the method trains k 
individual decision trees, where each tree is associated with a random Θk vector, which represents a 
subspace of the original input space. Subsequently, a single tree k is constructed by sampling with 
replacement n < N data samples from the original training set. An individual tree (ℎ௞) is therefore 
expressed as: ℎ௞(𝑋,Θ௞) = 𝑌 (1) 

During the training phase of a decision tree, a node can be expanded with two children to 
enhance the data classification performance (see Figure 4). This process is characterized by a split cut 
at the corresponding dth dimension of the input data. The decision tree algorithm selects the most 
suitable node using the Gini impurity index (𝐺) product (𝑃) [49]; this product is computed as follows: 𝑃 = 𝐺ଵ𝐺ଶ (2) 

where a Gini impurity index (𝐺) of set 𝑘 is defined as follows [68]: 

𝐺௞ = 1 − ෍ 𝑝௞௜ଶ௡ೖ೎
௜ୀଵ  (3) 

where 𝑛௞௖ represents the number of classes in the considered set and 𝑝௞௜ denotes the ratio of the 
present class 𝑖 in this set. 

Landslide Conditioning 
Factors

Predicted Landslide 
Susceptibility

+

w1 w2 wTN

Input Data

Decision Tree 1 Decision Tree 2 Decision Tree K

Majority Voting

 
Figure 4. The general structure of the Random Forest Classifier (RFC) model in this research. 
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When a new input query is presented to the model, the RFC determines its output class through 
the majority vote standard [69]. Thus, the class label (𝑦) of an input data x is computed from the 
established ensemble in the following manner: 

𝑦 = 𝐻(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥௭ ൭෍ 𝐼(ℎ௞(𝑥, 𝛩௞) = 𝑧)௞ ൱ (4) 

where 𝐼(𝑡) denotes an indicator function defined as follows: 𝐼(𝑡) = ቄ1, 𝑡 is true0, 𝑡 is false (5) 

3.2. Support Vector Machine (SVM) 

Support vector machine (SVM), proposed by Vapnik [47], is a powerful method for data 
classification, which is formulated on the basis of statistical learning theory. The main advantages of 
the SVM are the capability to deal with nonlinearly separable data, the ability to cope with 
multivariate data, resilience to noise, and the ability to avoid overfitting. The SVM deals with 
nonlinear datasets via the employment of kernel tricks. This machine learning method first maps the 
data from the original input space to a high-dimensional feature space within which a hyper-plane 
can be used to perform data classification (see Figure 5). An SVM-based model is also built on the 
concept of the maximum margin classifier, which is less sensitive to noise. Moreover, this machine 
learning is based on the concept of structural risk minimization, which can be resistant to overfitting. 
Due to such reasons, the SVM has been successfully employed for pattern recognition tasks in natural 
hazard mapping [37,70–73]. In landslide modeling, the SVM has been considered to be a standard 
method in susceptibility mapping and prediction [23,50,51,74,75]. 

RBFK Mapping

Φ(xu)

Φ(xv)

Φ(x)

Original Input space High Dimensional Feature space
Φ(xl)

Xi

Landslide Occurrence
Non-Landslide 

Occurrence

Nonlinear Decision Boundary

The Constructed Hyper-plane 
 

Figure 5. Illustration of the SVM based data classification (RBFK: Radial Basis Function Kernel). 

Given a training dataset  (𝑥௞, 𝑦௞)௞ୀଵே  with input data  𝑥௞ ∈ 𝑅௡ and corresponding class labels  𝑦௞ ∈ (−1, +1), the SVM model constructs a classification boundary from the training set so that the 
margin between the two classes is as wide as possible. Herein, the class output of −1 denoted a non-
landslide occurrence and +1 represented a landslide occurrence. 

The training phase of the SVM-based classification model boils down to solving the following 
constrained nonlinear programming [76]: 

Minimize 𝐽௣(𝑤, 𝑒) = ଵଶ 𝑤்𝑤 + 𝑐 ଵଶ ∑ 𝑒௞ଶே௞ୀଵ , (6) 

subjected to 𝑦௞(𝑤்𝜑(𝑥௞) + 𝑏) ≥ 1 − 𝑒௞,𝑘 = 1, . . . , 𝑁,𝑒௞ ≥ 0, (7) 

where 𝑤 ∈ Rn denotes a normal vector to the classification hyper-plane; 𝑤் is the transpose matrix 
of w; b ∈ R denotes the model bias; 𝑒௞ > 0 denotes slack variables; c denotes a penalty constant; 𝜑(𝑥)  is the aforementioned nonlinear data mapping; and 𝐽௣(𝑤, 𝑒)  is the constrained nonlinear 
programming. 
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Another advantage of the SVM is that its training and prediction phase do not require the explicit 
expression of  𝜑(𝑥). Alternatively, the algorithm only requires computing the product of 𝜑(𝑥) in the 
input space, which is essentially a kernel function (𝐾(𝑥௞, 𝑥௟)) given by: 𝐾(𝑥௞, 𝑥௟) =𝜑(𝑥௞)்𝜑(𝑥௟). (8) 

where 𝑥௟  is the RBF center. 
Moreover, the radial basis function kernel (RBFK) is often used in the SVM’s training and 

prediction phases. The formulation of the RBFK is given by: 𝐾(𝑥௞, 𝑥௟) = 𝑒𝑥𝑝( − ‖௫ೖି௫೗‖మଶఙమ ), (9) 

where  𝜎  denotes a tuning parameter, which can be determined via a grid search process [77]. 
Accordingly, the SVM model used for landslide susceptibility mapping can be presented as 

follows: 𝑦(𝑥௟) = 𝑠𝑖𝑔𝑛(∑ 𝛼௞𝑦௞𝐾(𝑥௞, 𝑥௟)ௌ௏௞ୀଵ + 𝑏), (10) 

where 𝛼௞ is the solution of the dual form of the aforementioned nonlinear programming and SV 
denotes the number of support vectors (the number of  𝛼௞ > 0). 

4. The Proposed Random Forest Machine (RFM) for GIS-Based Landslide Susceptibility 
Prediction 

The overall structure of the proposed RFM model, which is a combination of the GIS database, 
RFC (random forest classifier) and SVM (support vector machine) algorithms is demonstrated in 
Figure 6. In order to construct the newly developed machine learning model for predicting a 
landslide, the GIS database of the studied region is first established. Accordingly, digital topographic 
maps, land use maps at a scale of 1:50,000, Landsat-8 Operational Land Imager (OLI) images with a 
resolution of 30 m, and geological data (e.g., lithology, soil type, and distance to fault) were utilized. 
In total, 101 landslide locations were identified and processed to formulate the GIS database for the 
study area. It was noted that all landslide conditioning variables were converted into a raster format 
with 5 m resolution utilizing a geospatial tool developed by the authors and opened in the ArcGIS 
software package. 
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Figure 6. The GIS-based random forest machine for landslide susceptibility prediction. 

Since the landslide susceptibility mapping was formulated as a supervised learning task, it was 
necessary to divide the whole collected data into training and testing datasets. The first set was used 
to construct the machine learning model, whereas the second set was reserved to verify the model’s 
predictive performance. Thus, the whole dataset, consisting of 6910 samples (3455 landslide pixels 
and 3455 non-landslide points), was separated into the two subsets above within which the testing 
samples accounted for 30% of the data. The label of the dataset was encoded -1 for the negative class 
and +1 for the positive class. Moreover, the employed landslide conditioning factors were converted 
from categorical classes into continuous values within the range of 0.01 and 0.99 using a method 
described in Tien Bui et al. [78]. The purpose of this data conversion was to facilitate the subsequent 
pattern classification process. 

Based on the collected GIS database, the RFM developed in this study was utilized as an 
intelligent data classification method to categorize the pixels into the positive class of landslide and 
the negative class of non-landslide. In the standard procedure of a decision tree, a model performs 
splitting operations at thresholds that are orthogonal to the axes of the input space (refer to Figure 7). 
The splitting regions were characterized by hyper-rectangles and the final decision borders had the 
form of linear functions parallel to the coordinate axes. The linear-decision borders undoubtedly limit 
the flexibility of the classifier and also necessitate a large number of individual trees to capture a 
complex decision surface. Therefore, this study proposed to combine SVM and RFC by adding SVM 
directly into the structure of individual trees. 
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Figure 7. Illustrations of a complete training for a decision tree: (a) splitting thresholds and (b) the 
resulting decision border between classes. 

Specifically, for each hyper rectangle, the SVM model was trained and its support vectors were 
identified. These support vectors helped to define the decision surface that maximizes the margins 
between the training data and the classifying borders. The direct outcome of this RFC-SVM 
integration was smooth final borders with a low number of trees and low levels on each tree (refer to 
Figure 8). Notably, another advantage of the proposed combined method was that it helps to 
overcome the limitations of SVM used for a large-scale training dataset where a vast kernel matrix 
must be computed because the whole dataset is divided into subsets by the RFC algorithm; thus, this 
helped to reduce the number of elements in the kernel matrices of the SVM models. The rules used 
to construct the RFM model were as follows (refer to Figure 6): 

(i) If all the training data points in a node belong to the same class, then the node label is assigned 
as the data label; 

(ii) If there are different labels in a node, the SVM structure is used to classify the data stored in this 
node. 

CFj

CFi

1

0
0 1

Landslide
Non-landslideNote: CFi denotes the ith conditioning factor

 
Figure 8. Illustration of using the SVM and the resulting smooth borders (bold curves). 

Furthermore, to evaluate the RFM performance, the true positive rate (TPR; the percentage of 
positive instances correctly classified), the false positive rate (FPR; the percentage of negative 
instances misclassified), the false negative rate (FNR; the percentage of positive instances 
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misclassified), and the true negative rate (TNR; the percentage of negative instances correctly 
classified) can be used [52,66,79–81]. These indices are given by: TPR = ୘୔୘୔ା୊୒, (11) 

FPR = ୊୔୊୔ା୘୒, (12) 

FNR = ୊୒୘୔ା୊୒, (13) 

TNR = ୘୒୘୒ା୊୔, (14) 

where TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative, 
respectively. 

Based on the aforementioned indices, the classification rate (CAR), precision, recall, and F1 score 
[82] can be calculated as follows: CAR = ୘୔ା୘୒୘୔ା୘୒ା୊୔ା୊୒, (15) 

Precision = ୘୔୘୔ା୊୔, (16) 

Recall =   ୘୔୘୔ା୊୒  , (17) 

F1 Score =  ଶ୘୔ଶ୘୔ା୊୔ା୊୒. (18) 

It was noted that the goal of this study was to construct a landslide prediction model with good 
precision (low false positive outcomes) and recall (low false-negative outcomes) results. Therefore, 
this study assigned equal weighting values for precision and recall indices. 

5. Experimental Results 

This section presents the experimental results of the RFM model used for spatial landslide 
susceptibility mapping. As stated earlier, to train and test the model predictive capability, the original 
dataset was randomly divided into training (70%) and testing (30%) sets. Accordingly, the numbers 
of data samples (or pixels within the map of the study area) in the whole dataset, training, and testing 
sets were 3455, 2410, and 1045, respectively. 

It was also noted that all 14 conditioning factors were used for spatial landslide modeling. 
Besides, to diminish the bias caused by randomness in the data sampling process, repeated sampling 
with 20 runs were performed. In each run, the training and testing datasets were extracted randomly 
from the collected dataset. The experimental outcomes of the proposed RFM model are reported in 
Table 1 and Table 2, including the mean and standard deviation (SD) of the performance 
measurement indices. 

Table 1. Training performance of the RFM model. 

Run No. CAR TPR FPR FNR TNR Precision Recall F1 score 
1 0.965 0.945 0.013 0.055 0.987 0.988 0.945 0.966 
2 0.969 0.949 0.009 0.051 0.991 0.991 0.949 0.970 
3 0.969 0.951 0.012 0.049 0.988 0.989 0.951 0.970 
4 0.965 0.944 0.012 0.056 0.988 0.989 0.944 0.966 
5 0.967 0.948 0.013 0.052 0.987 0.988 0.948 0.968 
6 0.966 0.945 0.012 0.055 0.988 0.988 0.945 0.966 
7 0.967 0.949 0.012 0.051 0.988 0.989 0.949 0.969 
8 0.965 0.946 0.014 0.054 0.986 0.986 0.946 0.966 
9 0.969 0.950 0.011 0.050 0.989 0.990 0.950 0.970 
10 0.963 0.941 0.013 0.059 0.987 0.988 0.941 0.964 
11 0.969 0.949 0.010 0.051 0.990 0.990 0.949 0.969 
12 0.967 0.947 0.012 0.053 0.988 0.988 0.947 0.967 
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13 0.966 0.945 0.010 0.055 0.990 0.990 0.945 0.967 
14 0.967 0.948 0.011 0.052 0.989 0.990 0.948 0.969 
15 0.966 0.945 0.011 0.055 0.989 0.990 0.945 0.967 
16 0.969 0.952 0.012 0.048 0.988 0.988 0.952 0.970 
17 0.968 0.948 0.010 0.052 0.990 0.991 0.948 0.969 
18 0.965 0.946 0.015 0.054 0.985 0.986 0.946 0.966 
19 0.967 0.946 0.012 0.054 0.988 0.988 0.946 0.967 
20 0.968 0.949 0.012 0.051 0.988 0.989 0.949 0.969 

Mean 0.967 0.947 0.012 0.053 0.988 0.989 0.947 0.968 
SD 0.002 0.003 0.001 0.003 0.001 0.001 0.003 0.002 

Table 2. Testing performance of the RFM model. 
 CAR TPR  FPR FNR  TNR  Precision Recall F1 score 
1 0.954 0.934 0.024 0.066 0.976 0.978 0.934 0.956 
2 0.960 0.939 0.017 0.061 0.983 0.984 0.939 0.961 
3 0.962 0.941 0.016 0.059 0.984 0.985 0.941 0.963 
4 0.950 0.920 0.015 0.080 0.985 0.986 0.920 0.952 
5 0.957 0.932 0.014 0.068 0.986 0.987 0.932 0.959 
6 0.953 0.929 0.019 0.071 0.981 0.982 0.929 0.955 
7 0.955 0.930 0.017 0.070 0.983 0.984 0.930 0.956 
8 0.959 0.937 0.019 0.063 0.981 0.982 0.937 0.959 
9 0.951 0.923 0.020 0.077 0.980 0.980 0.923 0.951 
10 0.960 0.936 0.015 0.064 0.985 0.986 0.936 0.960 
11 0.958 0.939 0.020 0.061 0.980 0.981 0.939 0.960 
12 0.949 0.927 0.027 0.073 0.973 0.974 0.927 0.950 
13 0.949 0.921 0.019 0.079 0.981 0.982 0.921 0.950 
14 0.959 0.937 0.017 0.063 0.983 0.984 0.937 0.960 
15 0.955 0.929 0.018 0.071 0.982 0.983 0.929 0.955 
16 0.957 0.931 0.016 0.069 0.984 0.985 0.931 0.957 
17 0.966 0.948 0.014 0.052 0.986 0.987 0.948 0.967 
18 0.955 0.929 0.016 0.071 0.984 0.985 0.929 0.956 
19 0.957 0.930 0.015 0.070 0.985 0.985 0.930 0.956 
20 0.955 0.931 0.016 0.069 0.981 0.982 0.931 0.956 

Mean 0.956 0.932 0.017 0.068 0.982 0.983 0.932 0.957 
SD 0.004 0.007 0.003 0.007 0.003 0.003 0.007 0.004 

Moreover, to confirm the predictive performance of the proposed RFM used for spatial mapping 
of landslide susceptibility in the study region, its predictive result was compared to those of the SVM, 
RFC, and stochastic gradient descent logistic regression (SGD-LR). All of the selected benchmark 
models have been employed for spatial prediction of landslide with good predictive performances 
[21,23,25,49–51,65,83]. The SVM and RFC models were implemented with the help of the MATLAB 
machine learning toolbox (Natick, MA, USA) [84]. The RFC was constructed with 100 individual 
decision trees. Besides, the SGD-LR was developed in the MATLAB environment by the authors. The 
prediction results of the proposed RFM, as well as other benchmark models, are summarized in Table 
3 and Figure 9. As can be seen from this table, the average performance of the RFM (F1 score = 0.957) 
was better than those of the SVM (F1 score = 0.925), RFC (F1 score = 0.931), and SGD-LR (F1 score = 
00.878). Also, the consuming time for runing the RFM, SVM, RFC, and SGD-LR models were 2.72, 
2.66, 6.45, and 3.51 , respectively. This fact indicates that the proposed RFM, which was an integration 
of the RFC and SVM, is more computationally efficient than the RFC model. Besides, there was only 
a minor difference in computing time between the RFM and the individual SVM model. 

Table 3. Prediction result comparison. 

Phase Indices 
The Proposed RFM SVM RFC SGD-LR 
Mean Std Mean Std Mean Std Mean Std 

Training 

CAR (%) 96.685 0.170 93.042 0.247 94.172 0.276 87.461 0.290 
TPR  0.947 0.003 0.972 0.003 0.983 0.002 0.913 0.005 
FNR  0.053 0.003 0.111 0.004 0.100 0.005 0.164 0.004 
FPR 0.012 0.001 0.028 0.003 0.017 0.002 0.087 0.005 
TNR  0.988 0.001 0.889 0.004 0.901 0.005 0.836 0.004 

Precision 0.989 0.001 0.897 0.004 0.908 0.005 0.848 0.003 
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Recall 0.947 0.003 0.972 0.003 0.983 0.002 0.913 0.005 
F1 score 0.968 0.002 0.933 0.002 0.944 0.003 0.879 0.003 

Testing 

CAR (%) 95.578 0.438 92.144 0.575 92.714 0.495 87.342 0.776 
TPR  0.932 0.007 0.965 0.006 0.978 0.004 0.911 0.011 
FNR  0.068 0.007 0.122 0.010 0.124 0.010 0.164 0.009 
FPR 0.018 0.003 0.035 0.006 0.022 0.004 0.089 0.011 
TNR  0.982 0.003 0.878 0.010 0.876 0.010 0.836 0.009 

Precision 0.983 0.003 0.888 0.008 0.888 0.008 0.848 0.007 
Recall 0.932 0.007 0.965 0.006 0.978 0.004 0.911 0.011 

F1 score 0.957 0.004 0.925 0.005 0.931 0.005 0.878 0.008 

 
Figure 9. Model performances obtained from the repetitive data sampling process. 

Also, the non-parametric Wilcoxon signed-rank test [85] was used to better demonstrate the 
statistical significance of the difference in model results. A detailed explanation of this test for 
landslide susceptibility mapping can be found in [43]. In this research, the significant level (p-value) 
of the employed hypothesis test was set to be 0.05. The results of the Wilcoxon signed-rank test 
performed on the models’ F1 score outcomes are reported in Table 4. As shown in this table, with p-
values <0.05, the null hypothesis of equal means could be confidently rejected and it is possible 
conclude that that the predictive performances of the landslide prediction models were statistically 
different. These facts confirmed that the newly developed RFM is highly suited for the spatial 
prediction of a landslide in the study region. 

Table 4. The Wilcoxon signed-rank test results. 

Pairwise Model Comparison p-Value Test Outcome 
The proposed RFM vs. SVM 0.0001 Significant 
The proposed RFM vs. RF 0.0001 Significant 

The proposed RFM vs. SGD-LR 0.0001 Significant 

Since the proposed RFM achieved the most desired predictive result with the GIS database 
collected from the study area, this innovative prediction model was then employed to construct a 
landslide susceptibility map. The landslide susceptibility map for the study area established by the 
RFM is demonstrated in Figure 10. To validate the accuracy and helpfulness of the newly created 
susceptibility map, the landslide inventory map, which showed the locations of the past landslide 
occurrences, was overlaid with the new map. The graphic curve [86] was then plotted with the 
percentage of the landslide pixels on the y-axis and the percentage of pixels of susceptible classes 
arranged from high to low susceptible indexes. As can be seen from the graphic curve, most of the 
actual landslide pixels were located in high and very high classes, whereas very few actual landslide 
pixels were found to be in low and very low classes. These facts confirm the correctness and 
applicability of the susceptibility map created by the newly developed RFM model. The MATLAB 
codes and data of the proposed model in this study are in a github repository, that can be found at 
https://github.com/NhatDucHoang/RFC_SVC_LandslidePredictionModel. 
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Figure 10. The landslide susceptibility map for the study area derived from the proposed random 
forest machine model. 

6. Conclusions 

For land use planning and hazard mitigation, landslide susceptibility evaluation is a crucial task 
performed by the local authority in mountainous and remote areas in northern Vietnam. These areas 
have been devastated by natural hazards, including landslides, in recent years due to the combined 
effects of climate change and human activities (e.g., deforestation). Thus, establishing an updated 
landslide susceptibility map with better accuracy and reliability is a practical need. To achieve this 
goal, this study proposed a novel hybrid machine learning framework that employed the RFC and 
SVM models. The SVM model was integrated into the RFC structure to improve its performance by 
constructing smooth and flexible class boundaries instead of linear boundaries used by the standard 
RFC model. 

To train and test the capability of the proposed hybrid framework, named as RFM, a GIS 
database containing information of 101 historical landslide occurrences was used. Experimental 
results demonstrated that the RFM with an F1 score of roughly 0.96 is superior to other benchmark 
models of the SVM, RFC, and SGD-LR. Hence, the newly developed ensemble data-driven model can 
be a helpful tool to assist local authorities in identifying landslide-prone areas so that the task of land 
use planning can be carried out more effectively. Since the RFM has achieved superior prediction 
performance for Lang Son city (Vietnam), the proposed hybrid machine learning model has the 
potential to be applied in other areas outside the study region. Nevertheless, one shortcoming of the 
current study is that the feature selection method has not been integrated into the model. Therefore, 
the future extension of this study may include the utilization of more advanced feature selection 
strategies. Furthermore, the integration of other sophisticated machine learning methods (e.g., the 
least-squares SVM) with the RFC can be worth investigating. 
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