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Abstract: The identification of tree species is one of the most basic and key indicators in forest resource
monitoring with great significance in the actual forest resource survey and it can comprehensively
improve the efficiency of forest resource monitoring. The related research has mainly focused on
single tree species without considering multiple tree species, and therefore the ability to classify
forest tree species in complex stand is not clear, especially in the subtropical monsoon climate
region of southern China. This study combined airborne hyperspectral data with simultaneously
acquired LiDAR data, to evaluate the capability of feature combinations and k-nearest neighbor
(KNN) and support vector machine (SVM) classifiers to identify tree species, in southern China.
First, the stratified classification method was used to remove non-forest land. Second, the feature
variables were extracted from airborne hyperspectral image and LiDAR data, including independent
component analysis (ICA) transformation images, spectral indices, texture features, and canopy
height model (CHM). Third, random forest and recursion feature elimination methods were adopted
for feature selection. Finally, we selected different feature combinations and used KNN and SVM
classifiers to classify tree species. The results showed that the SVM classifier has a higher classification
accuracy as compared with KNN classifier, with the highest classification accuracy of 94.68% and a
Kappa coefficient of 0.937. Through feature elimination, the classification accuracy and performance
of SVM classifier was further improved. Recursive feature elimination method based on SVM is
better than random forest. In the spectral indices, the new constructed slope spectral index, SL2, has
a certain effect on improving the classification accuracy of tree species. Texture features and CHM
height information can effectively distinguish tree species with similar spectral features. The height
information plays an important role in improving the classification accuracy of other broad-leaved
species. In general, the combination of different features can improve the classification accuracy, and
the proposed strategies and methods are effective for the identification of tree species at complex
forest type in southern China.

Keywords: tree species classification; hyperspectral images; LiDAR; feature combination; k-nearest
neighbor; support vector machine

1. Introduction

As a renewable resource, forest plays an important role in the survival and development of human
civilization [1]. A timely understanding of the stock and distribution of forest resources is the basis for
the sustainable development of forestry [2]. Nowadays, tree species classification of complex forests is
becoming a very important research direction. However, with the changing climatic conditions and
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the interference of natural and human factors, the richness of forest species has been decreasing [3],
which has seriously affected the sustainable development of the forests [4]. In addition, the accuracy
of the estimation of forest on-ground carbon stocks is also dependent on the accuracy of tree species
identification [5,6]. In the past, tree species were mainly identified with fieldwork, which was time
consuming, laborious, and costly. With the rapid development of remote sensing technology, remote
sensing image data plays an important role in forestry species identification [7,8].

At present, wide-spectrum, medium- and low-resolution remote sensing data are widely used [9,10].
Because of the low spatial and spectral resolution, only forest types can be identified. Hyperspectral
imagery contains near-continuous spectral information of the ground object, which can accurately
detect different objects with fine spectral differences, and therefore the recognition accuracy of tree
species is improved for the source data [11–13]. Zhang et al. [14] used wavelet transform to process
HYDICE hyperspectral data and identify tree species in tropical forests and found that hyperspectral
data after wavelet transform can improve the recognition accuracy. Dian et al. [15] used airborne
hyperspectral images for forest tree species classification, which proved that combining the spatial
and spectral information can improve the accuracy of tree species classification. Fagan et al. [16] used
hyperspectral and multitemporal Landsat imagery to classify forest and tree plantations in northeastern
Costa Rica. The results indicated that using hyperspectral data alone classified six species of tree
plantations with 75% to 93% producer’s accuracy, however, for fine classification of tree species, the
effectiveness of classification is still limited only by hyperspectral images.

The classification of remote sensing images is mainly based on pixels or objects. Classifiers based
on pixels has been widely used over the past decades [17,18], and the object-based method for tree
species identification has recently emerged, which is proposed for the development of high spatial
resolution data [19–21]. The key technology of object-based classification is image segmentation.
The segmentation quality and precision depend on the classification algorithms and how to perform
optimal scale segmentation qualitatively or quantitatively [22,23]. Immitzer et al. [24] found that the
object-based method is better than the pixel-based method when using very high spatial resolution data.
Wang et al. [25] combined decision tree method (DT) with the object-based method to carry out
vegetation research in the Yushu area which overcame the “salt and pepper” and improved the
classification accuracy effectively.

Because the distribution of ground objects has a certain continuity, there is a correlation between
adjacent pixels on the remote sensing image. Hyperspectral can only characterize the horizontal
direction of the forest, which makes the phenomenon of different objects having the same spectrum and
the same objects having different spectrum [24]. Therefore, even with spectral images of high spatial
resolution, it is difficult to classify all tree species. As an important supplementary feature, spatial
structure information makes it possible to classify tree species at a finer scale [26,27]. Airborne LiDAR
data can characterize the vertical structure information of the stand, which has obvious advantages for
forest type identification and forest structure characteristics [12,28]. Hollaus et al. [29] used LiDAR data
to extract the canopy height of single trees. The results showed that the correlation between LiDAR
tree height and field tree height was very good. Heinzel et al. [30] used high density full-waveform
LiDAR data for tree species classification and found that up to six tree species were classified with an
overall accuracy of 57%. Since airborne LiDAR can only obtain the three-dimensional information of
the vertical structure of the tree species, it is less able to improve the related information of the tree
species in horizontal direction [31]. However, the type of single wood cannot be accurately determined
based on tree height or crown information, therefore, in tree species identification, airborne LiDAR
data needs to be combined with hyperspectral data to take the advantage of it.

Therefore, the combination of hyperspectral imagery with LiDAR data to achieve complementary
advantages and application in forestry has become a new research hotspot. Some scholars have carried
out related studies in this field [32,33]. Voss et al. [34] combined multitemporal AISA hyperspectral
data with LiDAR data and used object-oriented classification methods for tree species classification
in an urban environment; the final classification accuracy is higher than the accuracy of a single
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data source classification. Liu et al. [35] used support vector machine (SVM) classifier to identify
complex forest species in northern China based on airborne LiDAR and hyperspectral data fusion
and found that the classification accuracy of the fused data was higher than using spectral data alone,
and the overall accuracy reached 83.88%, and the Kappa coefficient was 0.80. Cao et al. [36] used
unmanned aerial vehicle (UAV) hyperspectral images and digital surface model (DSM) to classify
mangrove species. The results showed that height information played an important role in improving
the classification accuracy.

Considering the advantages of airborne hyperspectral imagery and LiDAR point cloud in structure,
the combination of the two data was applied to the recognition and classification of ground objects.
Related studies have mainly focused on single tree species without considering multiple tree species,
and therefore the ability to classify tree species in complex forest type is not clear, especially in the
subtropical monsoon climate region of southern China. Therefore, the main objectives of this study
include the following: To combine hyperspectral images with simultaneously acquired LiDAR data,
using different combinations of features and classifiers for object-based classification; to evaluate
the capability of airborne hyperspectral and LiDAR data for accurate identification of tree species
in complex forest stand in the subtropical monsoon climate region of southern China; and also to
compare and analyze the contributions of different feature variables and classifiers.

2. Materials and Methods

2.1. Study Area

This study was carried out in Jiepai Forest Farm in Gaofeng Forest Farm of Nanning City, Guangxi
Province, China (22◦56′41”–23◦0′21” N, 108◦19′47”–109◦23′16” E), as shown in Figure 1. The area is
a hilly landform, the altitude is 100 to 300 m, and the slope is 6 to 35◦ [37]. It belongs to the south
subtropical monsoon climate, with abundant sunshine and rainfall. The annual average temperature is
about 21 ◦C, rainfall is 1200 to 1500 mm, and the annual evaporation is 1250 to 1620 mm [38], which is
suitable for the growth of tropical and subtropical tree species. The forest type has typical characteristics
of southern China forest [39]. For the study site, we chose an area with abundant tree species, covering
an area of 128 ha (as the yellow polygon in Figure 1). The tree species mainly include Chinese
fir (Cunninghamia lanceolata (Lamb.) Hook.), eucalyptus (Eucalyptus robusta Smith), Illicium verum
(Illicium verum Hook.f.), mytilaria laosensis (Mytilaria laosensis Lec.), slash pine (Pinus elliottii Engelm.),
and masson pine (Pinus massoniana Lamb.). At the study site, the broad-leaved species are varied and
the samples are limited, and therefore they are not subdivided into tree species, but rather called other
broad leaves. In addition, some forest land for seedling storage and cutting sites were collectively
referred to as other forest land, and non-forest land was divided into water, road, and buildings. Table 1
is the specific classification system of the study area.

Table 1. Classification system of the study area.

Type Common Name Acronym Scientific Name

Non-forest land
Water area WA -

Roads and buildings RB -

Forest land

Other forest land OFL -
Chinese fir CF Cunninghamia lanceolata (Lamb.) Hook.
Eucalyptus EU Eucalyptus robusta Smith

Illicium verum IV Illicium verum Hook.f.
Mytilaria laosensis ML Mytilaria laosensis Lec.

Slash pine PE Pinus elliottii Engelm.
Masson pine MP Pinus massoniana Lamb.

Other broad leaves OBL -
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Figure 1. Location of the Jiepai Forest Farm, the CCD orthoimage of the Jiepai Forest Farm (blue polygon)
and the location of the study area (yellow polygon), the hyperspectral image (upper right) and the
LiDAR CHM image (lower right) of the study area.

2.2. Data Collection and Preprocessing

2.2.1. Data Collection

Datasets used in this study were acquired by the CAF’s (the Chinese Academy of Forestry) LiCHy
(LiDAR, CCD, and Hyperspectral) Airborne Observation System [40], which collects hyperspectral
images, LiDAR data, and CCD images synchronously. Hyperspectral images were collected using
an AISA Eagle II (Spectral Imaging Ltd., Oulu, Finland) hyperspectral sensor for LiCHy system [41].
It is a push broom imaging system and covers the VNIR spectral ranges from 400 nm to 1000 nm.
The RIEGL LMS-Q680i with a full waveform LiDAR system was carried as the laser sensor [42]
and provided high-precision digital elevation model (DEM) and digital surface model (DSM).
A medium-format airborne digital camera system (DigiCAM-60) was selected as the CCD sensor [43]
with 0.2 m spatial resolution. The data was collected on 13 January and 30 January 2018 at Jiepai Forest
Farm in Nanning, Guangxi province. The actual flight altitude was approximately 1000 m, and the
data acquisition day was sunny and cloudless. Detailed parameters of the three earth observation
sensors are shown in Table 2.

At the same time, the field survey was carried out from 16 January 2018 to 5 February 2018,
mainly in the pure Chinese fir forest, pure eucalyptus forest, and other mixed forests. A total of
19 plots were investigated in the study area, of which 6 plots are pure eucalyptus forest, 7 plots are
pure Chinese fir forest, and the rest are other mixed forests, a total of 1657 trees. The tree species
includes eucalyptus, Chinese fir, Illicium verum, masson pine, etc. The plots are 25 × 25 m in size,
recorded data include the location, plot number, aspect, tree species, tree height, tree crown width,
and other basic measurement factors. During the field work, we collected some sampling points and
recorded the precise location using a handheld GPS device, including latitude and longitude and tree
species information. The positioning accuracy of sampling points is available, which can be used for
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extraction of training and validation samples. Additional reference data included subcompartment data.
The main reference factors included types of ground objects and dominant tree species information,
which were used as reference for vegetation cover types and tree species distribution in the forest farm.

Table 2. The parameters of the three earth observation sensors in the LiCHy system. Adapted from [40],
with permission from MDPI journals, 2016.

Hyperspectral: AISA Eagle II

Spectral range 400~1000 nm Spatial resolution 1 m
Spectral resolution 3.3 nm Spectral bands 125

FOV 37.7◦ Spatial pixels 1024

IFOV 0.646 mrad Spectral sampling
interval 4.6 nm

Focal length 18.5 mm Bit depth 12 bits

LiDAR: Riegl LMS-Q680i

Wavelength 1550 nm Laser beam divergence 0.5 mrad
Laser pulse length 3 ns Cross-track FOV ±30◦

Maximum laser pulse
repetition rate 400 KHz Vertical resolution 0.15 m

Waveform sampling
interval 1 ns Point density 3.6 pts/m2

CCD: DigiCAM-60

Frame size 8956 × 6708 Pixel size 6 µm
Imaging sensor size 40.30 mm × 53.78 mm Bit depth 16 bits

FOV 56.2◦ Focal length 50 mm
Spatial resolution 0.2 m

2.2.2. Data Preprocessing

The airborne hyperspectral data have been preprocessed by the data providers including
radiometric calibration, geometric correction, and orthorectification, as well as we processed data
for mosaicing and cropping, atmospheric correction, denoising, and geometric registration with
LiDAR data. Because the flight altitude was relatively low, the hyperspectral data was less affected by
the atmosphere, thus it facilitated to correction. In this study we used MODTRAN 4+ radiation transfer
model [44] supported by ENVI to perform atmospheric correction on hyperspectral data, which can
correct the cascade effect caused by diffuse reflection and adjust the spectrum smoothing caused by
artificial suppression. The minimum noise fraction rotation (MNF) method was used to remove image
noise with its advantage for hyperspectral data denoising.

According to the field survey data and CCD orthoimages, we selected typical tree species samples
of above seven tree species and extracted the mean spectral reflectance curves (Figure 2). The vegetation
spectral curve highlights the valley and peak, and the near-infrared bands form a distinct high reflection
peak, which is consistent with the spectral curve characteristics of the vegetation. Comparing the
spectral reflectance of each tree species, there is greater separability in the near-infrared spectral region,
and the spectral reflectance values of broad-leaved species are generally higher than conifer species.

The LiDAR data provided more control to users for vertical information analysis. The horizontal
accuracy of LiDAR is about 0.5 m and the vertical accuracy is about 0.3 m after comparing with typical
observation targets. The consistency of LiDAR and CCD products is within 1 pixel for gentle slope
areas and 1 to 2 pixels for hilly areas. The canopy height model (CHM) extracted from airborne LiDAR
data is an important feature variable. The processing mainly contains filtering classification to separate
ground and non-ground points from the point cloud data. Before classifying ground points, abnormal
points should be filtered out, including points that are significantly lower than the ground or higher
than the surface target, and moving object points. A digital elevation model (DEM) was created by
performing a triangulated irregular network (TIN) [45] interpolation operation using the point cloud



Forests 2020, 11, 32 6 of 25

product that was already separated as ground points. Meanwhile, the digital surface model (DSM) was
generated by interpolating the first return points. The CHM elevation-normalized data were obtained
by conducting a grid difference calculation between DSM and DEM [35].Forests 2020, 11, x FOR PEER REVIEW 6 of 26 
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Figure 2. Mean spectral reflectance curves of the seven tree species in the study site.

The hyperspectral data and the LiDAR CHM data should perform coregistration. We used the
nearest neighbor resampling method [46] and selected 20 representative control points on the two
images for coregistration, which were located along the road or flat area. The average error of the
control points was less than one pixel. Thus, the coregistration result of the two data was confidential.

2.3. Sample Collection

According to the field survey data and the position of the tree species recorded in the field
observation, combining with the high spatial resolution CCD orthoimages and subcompartment data,
we randomly chose 522 image-object samples in the study site for training, each image-object sample
covered several complete canopies, which ensured the training sample was more representative. We
selected 372 image-object samples for validating the results. These samples were evenly distributed
throughout the study site, ensuring that training samples and validation samples were not duplicated.
Table 3 shows the number of training samples and verification samples for each tree species.

Table 3. Number of samples for training and validation for each tree species.

Tree Species
Training Samples Verification Samples

Image Objects Number of Pixels Image Objects Number of Pixels

Illicium verum (IV) 65 3267 49 646
Masson pine (MP) 62 3116 43 555

Slash pine (SP) 45 2262 31 393
Chinese fir (CF) 64 3217 45 580

Mytilaria laosensis (ML) 58 2915 49 624
Eucalyptus (EU) 153 7691 97 1247

Other broad leaves (OBL) 75 3770 58 748
Total 522 26,238 372 4793

2.4. Workflow Description

The workflow of this study is illustrated in Figure 3. We used airborne hyperspectral images
and LiDAR data for object-based tree species classification. The classification process includes five
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major steps: (1) Stratified classification is used to remove non-forest land and avoid confusion with
tree species; (2) extraction of feature variables from airborne hyperspectral image and LiDAR data and
using random forest and recursive feature elimination method for selecting the optimal combination of
feature variables; (3) selection of the optimal segmentation parameters for image segmentation; (4)
using KNN and SVM classifier to classify object-based tree species by combination of different features;
and (5) classification accuracy evaluation by analyzing the differences of various features combination.
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2.5. Image Segmentation

The object-based classification method is an image automatic analysis method. The accuracy of
image segmentation significantly affects the classification accuracy [47]. In this study, the multiscale
segmentation algorithm in eCognition Developer software is used for segmentation. It starts with a
single pixel as a bottom-up region merging algorithm. After numerous iterations, the small objects are
merged into a complete larger object [48]. The key of multiscale segmentation is to set the parameters
such as band weight, segmentation scale, shape index, and compactness index. In this study, we set a
series of different segmentation parameters and analyzed all segmentation results to determine the
optimal segmentation parameters.

2.6. Stratified Classification

In the study area, there is a large area of non-forest land in addition to forest land. If we directly
select training samples of each category for classification, the workload of the classification is greatly
increased, and the classification results decrease. Therefore, the stratified classification of forest land
and non-forest land can avoid the interference of non-forest land spectral information. The normalized
difference vegetation index (NDVI) is sensitive to the changes of soil background [49,50]. By comparing
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the NDVI values of non-forest land and forest land, it was found that the forest land can be identified
well when NDVI > 0.52, therefore, it is set as the threshold for forest land identification, and the
non-forest land is simply divided into water area and road or buildings. In the forest land, there is
also some forest land for seedling storage and cutting land generally with no tree growth or canopies
coverage, and therefore it is unnecessary or difficult to distinguish tree species. Such forest land is also
divided and collectively referred to as other forest land. When 0.52 ≤NDVI < 0.7 and CHM < 2, the
other forest land can be better distinguished.

2.7. Feature Variables Extraction and Selection

The spectral features of tree species are different from each other, at the same time, combining
spatial information and other auxiliary information can be more accurate to distinguish tree species [15].
In this study, we extracted four sets of features.

2.7.1. Independent Components Analysis

Independent component analysis (ICA) is a commonly used method of dimensionality reduction
that converts a group of mixed signals into independent components [51]. We performed independent
component analysis on the processed hyperspectral image and found that the first five independent
components after conversion included 99% information of all spectral bands. Therefore, we selected
the first five independent components to participate in the classification as spectral feature variables.

2.7.2. Spectral Index

According to the indices related to canopy structure, chlorophyll content and water content,
we selected nine vegetation indices, including normalized difference vegetation index NDVI, plant
senescence reflectance index PSRI, modified red edge simple ratio index MRESRI, modified red edge
normalized difference vegetation index MRENDVI, normalized green difference vegetation index
GNDVI, photochemical reflectance index PRI, structure insensitive pigment index SIPI, vogelmann red
edge index VOG1, and anthocyanin reflectance index ARI1.

The vegetation indices are concentrated in the visible and near-infrared bands region. NDVI and
GNDVI are related to the chlorophyll content of plants [52]. NDVI increases the difference between
the scattering of green leaves in the near-infrared region and the chlorophyll absorption in the red
band region [53]. PSRI is related to the ratio of carotenoids to chlorophyll, reflecting canopy stress and
vegetation senescence [54]. MRESRI and MRENDVI are sensitive to canopy changes and senescence,
taking into account the mirror reflection effect of leaves [55]. PRI is related to the changes of plant
carotenoid, leaf stress, and carbon uptake efficiency [56]. SIPI reflects the sensitivity of the ratio
of carotenoids to chlorophyll in the reduction of canopy structure, which is related to the stress of
vegetation changes in canopy structure [57]. VOG1 is sensitive to the combination of chlorophyll
concentration, canopy layer, and water content [58]. ARI1 indicates the change in absorption of
anthocyanins in the green band relative to the red band [59]. In summary, the selected spectral indices
indicate the difference in leaf, canopy structure, chlorophyll content, and water content of tree species,
therefore, these indices have certain discrimination for seven tree species.

We analyzed the spectral reflectance curves of each tree species and found that there are large
differences in red edge and near infrared region. The slopes of red band and red edge versus the
slopes of red band and near-infrared band were different from each other. Therefore, constructing new
spectral indices about slopes may be helpful for tree species identification. There are also differences in
the area of the triangle formed in red band, red edge, and near-infrared band. Therefore, constructing
an area-dependent spectral index may also contribute to the identification of tree species.

The analyses of the spectral reflectance and first derivative reflectance of each tree species
(Figures 4 and 5), show it is obvious that the spectral reflectance values of 760 nm and 890 nm are
different, and the first derivative reflectance of 687 nm is continuously increased from zero, showing
that the reflectivity changes significantly afterwards, which can be considered as the starting point of
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the platform. Therefore, we constructed three new spectral indices, which are the slope of the spectral
between wavelengths 687 nm and 760 nm, 687 nm and 890 nm, and the triangle area enclosed by
wavelengths 687 nm, 760 nm, and 890 nm. The schematic diagram is shown in Figure 4.
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The specific equation of the slope (SL) and the enclosed triangle area (TA) are as followed:
The equation of the slope between wavelengths 687 nm and 760 nm is:

SL1 = (ρ760nm − ρ687nm)/∆λ1 (1)

where SL1 is the slope between wavelengths 687 nm and 760 nm, ρ is the spectral reflectance value of
the corresponding band, and ∆λ1 is the difference in wavelength between 687 nm and 760 nm.

The equation of the slope between wavelengths 687 nm and 890 nm is:

SL2 = (ρ890nm − ρ687nm)/∆λ2 (2)
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where SL2 is the slope between wavelengths 687 nm and 890 nm, ρ is the spectral reflectance value of
the corresponding band, and ∆λ2 is the difference in wavelength between 687 nm and 890 nm.

The equation of the triangle area enclosed by wavelengths 687 nm, 760 nm and 890 nm is:

TA = {(ρ760nm − ρ687nm) × ∆λ1 + [(ρ890nm − ρ687nm) + (ρ760nm − ρ687nm)] × ∆λ3

−(ρ890nm − ρ687nm) × ∆λ2}/2
(3)

where TA is the area enclosed by the wavelengths 687 nm, 760 nm, and 890 nm, ρ is the spectral
reflectance value of the corresponding band, and ∆λ1 is the difference in wavelength between 687 nm
and 760 nm, ∆λ2 is the difference in wavelength between 687 nm and 890 nm, ∆λ3 is the difference in
wavelength between 760 nm and 890 nm.

Nine vegetation indices and three new constructed spectral indices composed a set of spectral
index features, which can be used for tree species classification. Table 4 shows the spectral indices
formulation calculated by hyperspectral images.

Table 4. The spectral indices equation calculated by hyperspectral images.

Spectral Indices Equation

Normalized difference vegetation index NDVI = (ρ800 − ρ678)/(ρ800 + ρ678)
Plant senescence reflectance index PSRI = (ρ680−ρ501)/ρ750

Modified red edge simple ratio index MRESRI = (ρ750 − ρ445)/(ρ705 + ρ445)

Modified red edge normalized difference vegetation index MRENDVI = (ρ750−ρ705)
(ρ750+ρ705−2ρ445)

Normalized green difference vegetation index GNDVI = (ρ800 − ρ546)/(ρ800 + ρ546)
Photochemical reflectance index PRI = (ρ531 − ρ570)/(ρ531 + ρ570)

Structure insensitive pigment index SIPI = (ρ800 − ρ445)/(ρ800 + ρ680)

Anthocyanin reflectance index ARI1 = 1
ρ550
−

1
ρ700

Vogelmann red edge index VOG1 = ρ740/ρ720
Slope between wavelengths 687 nm and 760 nm SL1 Calculated as Equation (1)
Slope between wavelengths 687 nm and 890 nm SL2 Calculated as Equation (2)

Triangle area enclosed by wavelengths 687 nm, 760 nm and 890
nm TA Calculated as Equation (3)

Note: The hyperspectral image spectral band is ρ and the wavelength is 400 nm to 1000 nm.

2.7.3. Textural Feature

Texture feature is an important factor in object-based classification [60,61]. Making full use of
texture information of the image can effectively solve the phenomenon of the same objects with
different spectrum. We used the grey level co-occurrence matrix (GLCM) to calculate eight texture
features based on second-order matrix [62], including mean, variance (VAR), homogeneity (HOM),
contrast (CON), dissimilarity (DIS), entropy (ENT), second moment (SM), and correlation (COR).

According to the previous studies [36,63], we selected three bands, i.e., band 482 nm, band 550 nm,
and band 650 nm as RGB of hyperspectral images for texture analysis in this study. The texture window
size was set from 3 × 3, 5 × 5, 7 × 7, . . . , to 31 × 31, and the step length was 1, the moving direction
took the average of four directions of 0◦, 45◦, 90◦, and 135◦, to extract the above eight texture features.
We selected different texture window size images to test the accuracy results by ICA transformation
features selection and SVM classifier. As shown in Figure 6, the overall accuracy varied with the
texture window size. When the window size was 17 × 17, the overall accuracy of classification is
the highest. Therefore, we selected the 17 × 17 texture window size in this study and the extracted
24 texture features were used for the next feature combination and feature selection.
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Figure 6. Influence of texture window size on classification overall accuracy.

2.7.4. Canopy Height Model from LiDAR Data

The structure and height of tree species vary with their growth habits. Due to the phenomenon
that different objects have the same spectrum, the tree species with similar spectral were difficult to
distinguish [64,65]. In order to solve this problem, we used canopy height model obtained by LiDAR
data as a feature variable, recorded the variable as the CHM, which reflected the height information of
each tree species.

We calculated the CHM of each of the tree species samples, classified 1 m interval as one level, and
obtained the tree species height distribution frequency chart (Figure 7). It can be seen that the height
distribution curves of Illicium verum, masson pine, slash pine, Chinese fir, and mytilaria laosensis
have obvious gaps and the height of eucalyptus species are not concentrated mainly due to different
planting years. The other broad leaves include a variety of broadleaf species, therefore the height
also distributes a wide range. According to statistics, the average tree height of each tree species
is as follows: Illicium verum 5.01 m, masson pine 8.51 m, slash pine 14.82 m, Chinese fir 11.22 m,
mytilaria laosensis 17.63 m, eucalyptus 13.47 m, and other broad leaves 16.25 m. It shows that the
height information of different tree species is distinguishable.

Forests 2020, 11, x FOR PEER REVIEW 12 of 26 

 

m, mytilaria laosensis 17.63 m, eucalyptus 13.47 m, and other broad leaves 16.25 m. It shows that the 
height information of different tree species is distinguishable. 

 
Figure 7. Distribution frequency chart of height for tree species. 

2.7.5. Selection of Optimal Variable Combination 

In this study, we extracted four sets of feature variables (Table 5), which constituted a larger 
dataset and increased the dimension of the data used for classification. These extracted feature 
variables could be highly correlated or redundant and increased the complexity of overall calculation. 
For some classifiers, it can lead to a dimensional disaster, called “Hughes phenomenon” [66]. For the 
classifier with Hughes phenomenon, the performance cannot reach the true expression [67], and 
therefore it is very important to avoid Hughes phenomenon. According to previous studies [68,69], 
feature selection in high-dimensional datasets and identification of the most important features can 
improve model interpretability and speed up the sample training process.  

Table 5. Extracted four sets of feature variables for classification. 

Features Description 

Independent components analysis The first five ICA transformation images. 

Spectral index 
Nine vegetation indices, including NDVI, PSRI, MRESRI, MRENDVI, 
GNDVI, PRI, SIPI, ARI1, VOG1, and three new constructed spectral 
indices, including SL1, SL2 and TA. 

Textural features 

Selected 17 × 17 texture window size extracted 24 textural features, 
including MEAN, VAR, HOM, CON, DIS, ENT, SM, COR calculated 
using GLCM with three bands (band 482 nm, band 550 nm and band 
650 nm). 

Canopy height model 
Canopy height model obtained by LiDAR data, reflected the height 
information of each tree species. 

We used two methods to select feature variables. Random forest (RF) [68,70] is an algorithm 
based on decision trees. It modifies the candidate segmentation characteristics of decision trees, 
analyzes the results of each decision tree, and then completes the prediction and classification of 
samples. RF was used because it can rank the importance of all the feature variables, calculate the 
importance of each feature variable, and sort in descending order. The indicators include mean 
decrease accuracy (MDA) and mean decrease gini (MDG). Generally, the larger of the value means 
the variables are more important. On the basis of mean decrease accuracy, we selected the top-ranked 
feature variables as the optimal feature variables to participate in the classification.  

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0 4 8 12 16 20 24 28 32 36

Other broad leaves(OBL)
Mytilaria laosensis(ML)
Eucalyptus(EU)
Illicium verum(IV)
Chinese fir(CF)
Masson pine(MP)
Slash pine(SP)

h/m

f

Figure 7. Distribution frequency chart of height for tree species.



Forests 2020, 11, 32 12 of 25

2.7.5. Selection of Optimal Variable Combination

In this study, we extracted four sets of feature variables (Table 5), which constituted a larger dataset
and increased the dimension of the data used for classification. These extracted feature variables
could be highly correlated or redundant and increased the complexity of overall calculation. For some
classifiers, it can lead to a dimensional disaster, called “Hughes phenomenon” [66]. For the classifier
with Hughes phenomenon, the performance cannot reach the true expression [67], and therefore it is
very important to avoid Hughes phenomenon. According to previous studies [68,69], feature selection
in high-dimensional datasets and identification of the most important features can improve model
interpretability and speed up the sample training process.

Table 5. Extracted four sets of feature variables for classification.

Features Description

Independent components analysis The first five ICA transformation images.

Spectral index
Nine vegetation indices, including NDVI, PSRI, MRESRI,
MRENDVI, GNDVI, PRI, SIPI, ARI1, VOG1, and three new
constructed spectral indices, including SL1, SL2 and TA.

Textural features

Selected 17 × 17 texture window size extracted 24 textural
features, including MEAN, VAR, HOM, CON, DIS, ENT,
SM, COR calculated using GLCM with three bands (band
482 nm, band 550 nm and band 650 nm).

Canopy height model Canopy height model obtained by LiDAR data, reflected
the height information of each tree species.

We used two methods to select feature variables. Random forest (RF) [68,70] is an algorithm based
on decision trees. It modifies the candidate segmentation characteristics of decision trees, analyzes
the results of each decision tree, and then completes the prediction and classification of samples.
RF was used because it can rank the importance of all the feature variables, calculate the importance of
each feature variable, and sort in descending order. The indicators include mean decrease accuracy
(MDA) and mean decrease gini (MDG). Generally, the larger of the value means the variables are
more important. On the basis of mean decrease accuracy, we selected the top-ranked feature variables
as the optimal feature variables to participate in the classification.

Recursive feature elimination (RFE) is a feature selection method using feature ranking
technology [71,72]. It performs the backward sequence reduction based on all of the input features,
and eliminates the least relevant features each step, and finally, obtains the optimal feature subset [69].
On the basis of the SVM classifier, recursive feature elimination (SVM-RFE) was first applied to the
field of molecular biology by Guyon et al. [73], and then applied to the field of remote sensing [74], but
it was rarely applied in the classification of hyperspectral data. In this study, the SVM-RFE algorithm
was used for feature selection. Through the comparison of all the features, the features with important
functions were retained, and the features that had an inhibitory effect on the improvement of the
classification accuracy were deleted. At the end, the optimal feature subset was formed.

2.8. Object-Based Classification

2.8.1. Classification Method

Object-based classification technology aggregates adjacent pixels with the same or similar attributes
into one object, in which the image objects are used as the object-based classification unit [75]. On the
basis of the segmentation objects, selected features are used for classification that can effectively
distinguish categories. In this study, we used feature variables extracted from hyperspectral image and
LiDAR data as the classification criteria, and selected k-nearest neighbor and support vector machine
classifiers to classify tree species.
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The k-nearest neighbor (KNN) is an instance-based learning method that is generally considered
to be one of the simplest machine learning classifiers [36,76]. It has been widely used in high resolution
and hyperspectral image classification [77]. The main idea of KNN classifier is to sort the difference
between the calculated samples to be classified and the training samples, in ascending order, to
select the top K least differential category. The category that has the most occurrences among the K
categories is the most similar class. Finally, the samples are classified into classes with the most similar
training samples. The optimal neighborhood value K of classification experiment is determined by
performing multiple tests on training samples of different feature subsets.

Support vector machine (SVM) has been widely used in hyperspectral image classification as a
supervised machine learning method based on statistical theory [78]. Its main idea is to maximize
the distance between the two sides of the plane and the two types of samples closest to the plane by
establishing an optimal decision hyperplane, providing a good generalization for classification.
For a multidimensional sample set, the system randomly generates a hyperplane and moves
continuously until the samples belonging to different categories are located on both sides of the
hyperplane, which can solve the problem with a limited number of training samples and improve the
generalization performance.

2.8.2. Determination of Classification Scheme

In order to evaluate the performance of different feature combinations and feature selection, six
schemes were proposed for KNN and SVM object-based tree classification (Table 6).

Table 6. The schemes carried out in this study using the k-nearest neighbor (KNN) and support vector
machine (SVM) classifiers.

Schemes Feature Variables

Scheme A The first five ICA transformation images, ICA1-ICA5.

Scheme B The first five ICA transformation images stacking 13 spectral indices.

Scheme C The feature variables in Scheme B stacking 24 textural features.

Scheme D All feature variables stacking together, including the first five ICA transformation
images, spectral indices, textural features, and CHM.

Scheme E

Features selected by RF, including four independent components, i.e., ICA2,
ICA3, ICA4, ICA5, seven spectral index features, i.e., NDVI, PRI, GNDVI, PSRI,
SL2, SIPI and ARI1, six texture features, i.e., HOM_G550, ENT_G550, CON_G550,
COR_G550, DIS_R650, SM_R650, and CHM.

Scheme F

Features selected by SVM-RFE, including four independent components, i.e.,
ICA2, ICA3, ICA4, ICA5, five spectral index features, i.e., NDVI, PRI, GNDVI,
SL2, and PSRI, eight texture features, i.e., HOM_G550, Mean_G550, DIS_G550,
VAR_G550, CON_G550, ENT_G550, ENT_R650, VAR_R650, and CHM.

2.8.3. Accuracy Assessment of Classification Results

The accuracy of KNN and SVM classifier classification results was evaluated using the selected
372 verification samples and the confusion matrix was used to evaluate the classification result of
feature variables combination. The confusion matrix includes overall accuracy (OA), Kappa coefficients,
producer accuracy (PA), and user accuracy (UA). Overall accuracy and Kappa coefficients are used for
the overall classification performance. Producer accuracy and user accuracy are used to evaluate of
individual classes [79].
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3. Results

3.1. Image Segmentation Results

In the multiscale segmentation process, we need to set segmentation parameters, including weight
of input layers, segmentation scale, shape index, and compactness. The scale of segmentation directly
determines the size and fragmentation of the object. In general, the smaller the scale, the smaller
the object, and the larger number of segments. First, we defined the range and step length of each
parameter as follows: The range of scale was 1 to 5, step length was one, shape index ranged from 0.1
to 0.5, and compactness parameters ranged from 0.1 to 1, both of them had a step length of 0.1, and
then we combined different parameters to segmented hyperspectral images.

We compared and analyzed all the segmentation results and found, when segmentation scale
was four or five, that the Chinese fir, masson pine, and other broad-leaved tree species could not be
separated well. When segmentation scale was one or two, segmented objects were too fragmented,
which affected the image processing efficiency. According to a series of interactive segmentation
experiments, we finally determined that when the segmentation scale was set to three, the shape index
was set to 0.1, and the compactness was set to 0.4, the boundary of the segmented object best fits the
boundary of actual tree species. As shown in Figure 8, each object includes a complete canopy or
several canopies. Therefore, when we used these parameters to segment the hyperspectral image, the
segmentation results were visually the best.
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3.2. Extraction of Forest Land

Figure 9 shows the result of removing non-forest land and cutting land according to NDVI and
CHM. The first step was to remove non-forest land. When the NDVI was <0.52 the water area, road,
and buildings can be distinguished well. Therefore, we used 0.52 as the NDVI threshold to distinguish
non-forest land. Secondly, in the forest land, there is also some forest land for seedling storage and
cutting land, called other forest land. Generally, there are no trees or canopies in these land covers,
therefore when 0.52 ≤ NDVI < 0.7 and CHM < 2, the other forest land can be better distinguished.
Then, the rest are the forest land used to classify tree species. In order to facilitate observation, the
forest land was merged. The left (Figure 9a) shows that water area and some road and buildings
are better distinguished from the forest land. The right (Figure 9b) shows the distinguishing result
between cutting land and the forest land. Therefore, stratified classification effectively avoids the
mixing phenomenon of non-forest land and tree species.
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3.3. Comparison of Tree Species Classification Results

The classification results of different schemes using KNN and SVM classifiers are shown in Figure 10.
Both classifiers spatially distinguish different tree species within the study area. According to the
comparison and analysis of the classification results, the classification boundaries of eucalyptus and
Chinese fir can be divided in space; whereas the Illicium verum and other broad-leaved species have
obvious mixed phenomena in the first two schemes because the spectrum of the two tree species is
similar. When texture features and CHM height information were added, the mixed phenomenon
was greatly reduced. On both sides of the road, there are some mixed objects, the analysis is that the
road and buildings have a certain influence on the spectral reflectance of trees and resulted in the
mixed classification.

According to visual judgment, SVM classifier is better than KNN classifier. For example, some
castanopsis hystrix intercroped with Chinese fir (the red polygon in the Figure 10) in the southeast
corner of the study area can be better distinguished when using SVM classifier, while KNN classifier
was trivially and misclassified some castanopsis hystrix into Chinese fir.

Table 7 summarizes the overall accuracy of the different classification schemes using KNN and
SVM classifiers. The results show that SVM classifier is better than KNN classifier. On the basis of the
SVM classifier, the scheme F classification accuracy is the best with the overall accuracy of 94.68%, and
a Kappa coefficient of 0.937. The KNN classifier-based scheme D has the highest classification accuracy
of 90.28% and a Kappa coefficient of 0.884. The classification accuracy was improved by 9.76% and
11.6% and the Kappa coefficients were improved by 0.117 and 0.139 as compared with scheme A based
only on ICA transformation features.

Table 7. The overall accuracy of different classification schemes using the KNN and SVM classifiers.

Schemes
KNN SVM

Overall Accuracy (OA) Kappa Coefficient Overall Accuracy (OA) Kappa Coefficient

Scheme A 80.51% 0.767 83.08% 0.798
Scheme B 84.25% 0.812 86.25% 0.836
Scheme C 87.11% 0.846 90.86% 0.891
Scheme D 90.28% 0.884 93.26% 0.920
Scheme E 89.42% 0.874 94.14% 0.930
Scheme F 89.86% 0.879 94.68% 0.937

Note: The numbers with gray background in this table indicate the highest classification accuracy corresponding to
different classifiers.
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Figure 10. Classification results of different schemes using the KNN and SVM classifiers. (a) Scheme A
by KNN classifier, (b) scheme A by SVM classifier, (c) scheme B by KNN classifier, (d) scheme B by
SVM classifier, (e) scheme C by KNN classifier, (f) scheme C by SVM classifier, (g) scheme D by KNN
classifier, (h) scheme D by SVM classifier, (i) scheme E by KNN classifier, (j) scheme E by SVM classifier,
(k) scheme F by KNN classifier, and (l) scheme F by SVM classifier.
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The producer accuracy and user accuracy of different schemes based on the two classifiers are
shown in Tables 8 and 9.

Table 8. Species classification accuracy with the KNN classifier for different classification schemes.

Tree Species
Scheme A Scheme B Scheme C Scheme D Scheme E Scheme F

PA UA PA UA PA UA PA UA PA UA PA UA

IV 80.50 74.50 85.91 79.51 87.31 83.93 85.45 89.18 84.83 88.39 84.37 87.62
EU 93.91 89.80 96.23 91.39 93.91 93.98 96.23 95.09 95.75 95.90 97.27 95.74
ML 81.25 86.22 83.33 81.12 90.54 86.13 92.79 92.34 91.35 92.53 94.87 92.21
CF 83.62 79.25 87.41 85.93 90.17 90.33 88.28 96.06 92.24 92.56 88.10 96.05
MP 81.26 77.09 86.13 82.27 87.21 84.47 93.33 85.48 93.33 83.68 94.41 83.31
SP 62.09 72.62 81.17 80.56 90.08 81.01 90.33 84.52 84.99 85.20 85.24 87.24

OBL 64.30 71.79 61.36 79.97 68.72 81.59 81.68 84.16 78.48 81.19 78.48 81.87

Note: The numbers with gray background in this table indicate the highest producer accuracy of each tree species.
Tree species are abbreviated as follows: IV, Illicium verum; EU, eucalyptus; ML, mytilaria laosensis; CF, Chinese fir;
MP, masson pine; SP, slash pine; OBL, other broad leaves. Other abbreviations in the table: PA, producer accuracy
(%) and UA, user accuracy (%).

Table 9. Species classification accuracy with the SVM classifier for different classification schemes.

Tree Species
Scheme A Scheme B Scheme C Scheme D Scheme E Scheme F

PA UA PA UA PA UA PA UA PA UA PA UA

IV 86.38 74.80 86.84 82.62 91.02 87.24 97.03 95.80 97.43 96.05 96.07 97.88
EU 95.27 91.95 93.50 93.06 96.23 95.77 94.39 92.03 90.71 89.84 89.17 92.64
ML 82.37 90.65 88.46 82.27 90.54 92.17 86.69 99.47 90.69 91.96 96.95 87.79
CF 88.62 82.37 87.24 91.01 90.52 92.43 100 83.80 97.37 99.37 91.19 90.89
MP 83.06 75.70 87.21 83.59 100 87.82 90.86 91.65 96.44 92.89 95.67 100
SP 71.25 83.58 90.08 80.82 93.13 82.62 93.87 91.89 92.79 90.19 100 95.20

OBL 62.43 75.32 68.32 82.82 74.33 91.15 89.57 93.58 91.18 95.52 94.83 93.54

Note: The numbers with gray background in this table indicate the highest producer accuracy of each tree species.
Tree species are abbreviated as follows: IV, Illicium verum; EU, eucalyptus; ML, mytilaria laosensis; CF, Chinese fi;
MP, masson pine; SP, slash pine; OBL, other broad leaves. Other abbreviations in the table: PA, producer accuracy
(%) and UA, user accuracy (%).

For the classification scheme A based on ICA transformation features, the overall accuracy of the
SVM classifier is 83.08% and the Kappa coefficient is 0.798; the overall accuracy of the KNN classifier is
80.51% and the Kappa coefficient is 0.767. Among them, the classification accuracy of eucalyptus is
the highest, and the difference between its producer accuracy and user accuracy is very small, which
shows that the results of these two classifiers for eucalyptus recognition is better and stable. Other
broad-leaved species and slash pine have lower classification accuracy because the other broad-leaved
species are mainly identified as Illicium verum and mytilaria laosensis. Because of the wide variety of
other broad-leaved species, their spectral are very diverse; Illicium verum and mytilaria laosensis have
similar spectral curves and many samples were misclassified into them.

After adding the spectral index features, the classification accuracy of the two classifiers was
improved, and the overall accuracy was improved by 3.17% and 3.74%, respectively. The producer
accuracy of slash pine increased the most, and the two classifiers were, respectively, improved from
62.09% and 71.25% to 81.17% and 90.08%. It indicates that the spectral index plays a certain role in
tree species classification. The texture features were added to the classification scheme C, and the
classification accuracy of each tree species was improved. The overall accuracy of the SVM classifier
reaches 90.86%, and the accuracy of slash pine, masson pine, and Illicium verum species improved
more than other species of broadleaf.

In the scheme D with added CHM features, the comparison of the classification accuracy of each
tree species showed that the classification accuracy of other broad-leaved tree species is significantly
improved. The producer accuracy of other broad-leaved tree species with the SVM classifier is 89.57%,
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i.e., improved by 15.24% and the KNN classifier is 81.68%, i.e., improved by 12.96%. The wide variety
of other broad-leaved species have similar spectral curves with Illicium verum, and therefore most of
them are misclassified into Illicium verum. The height of Illicium verum is lower at 5 meters, while the
heights of other broad-leaved tree species are generally above 10 meters, and therefore after adding the
height information, the separability of the two tree species was improved.

For scheme E and scheme F, the features selected by the random forest method and the recursive
feature elimination method were used for classification. The classification accuracy of the KNN
classifier used the selected features is close to the classification accuracy of all features, and the
SVM classifier achieved higher classification accuracy as compared with using all the features. The
comparison of the two feature selection methods showed that the recursive feature elimination based
on SVM is slightly better than the random forest method and is more suitable for the classifier used in
this study. In the selected two sets of feature subsets, there are 13 identical features selected by the two
methods, among which there are nine spectral features. In the spectral indices, NDVI, PRI, GNDVI,
SL2, and PSRI all appear in the two selected feature subsets.

4. Discussion

4.1. Comparison of Classification Results Based on Two Classifiers

In this study, object-based classification was used to classify tree species, and the classification
effects of the two classifiers were compared and analyzed. As shown in Figure 10, SVM classifier can
better distinguish castanopsis hystrix intercroped with Chinese fir, while KNN classifier has a trivial
classification result with low classification accuracy, and some castanopsis hystrix are misclassified
into Chinese fir. This is because KNN classifier is closely related to the distance of the training
samples. For the strip-shaped castanopsis hystrix species, the objects to be classified are easily
affected by the samples of Chinese fir, which leads to the misclassification. According to Table 7, the
classification accuracy of SVM classifier is higher than KNN classifier. As a mature method in supervised
classification, SVM requires low training samples and high operability. For multidimensional samples
set, the system randomly generates a hyperplane and moves continuously, establishing an optimal
decision hyperplane, and classifies the samples. Therefore, SVM classifier has good performance when
the number of training samples was limited, which reduced misclassification. For example, slash pine
and mytilaria laosensis have high producer accuracy and user accuracy. In scheme E and scheme F,
the classification accuracy of the SVM classifier using the selected features is higher than using all
the features. Similar conclusions were also obtained in previous studies [36,80], i.e., for excessive
spectral features and other ancillary features, classifier performance and efficiency can be improved by
eliminating redundant features.

With an increase of high spatial resolution images, more and more studies have adopted
object-based methods. Previous studies have shown that object-based methods provide better
classification accuracy than pixel-based methods when using high spatial resolution images [20].
In our study, we used object-based classification to avoid the phenomenon of “salt and pepper”, and
effectively overcame the drawbacks by considering space, shape, and texture features of the image.
However, there are some problems in the object-based method, which is that the segmentation scale
parameters are difficult to determine adaptively, and the classification accuracy is affected by the
segmentation accuracy. Therefore, rapid optimization and improvement of segmentation parameters
are also important to improve classification accuracy.

4.2. The Role of Spectral Index Features

A comparison of the spectral reflectance curves of different tree species shows that the shape
of the reflectance curve between conifers, conifers, and broad-leaved species is similar [35]. We also
found that in the visible region, the reflectance difference between tree species is large, and in the
near-infrared region, the reflectance difference between tree species is larger, and therefore this position
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is conducive to tree species identification. In view of that, we built the new spectral indices in the
near-infrared region.

In this study, ICA transformation features and spectral indices extracted by hyperspectral imagery
were used as spectral features. In scheme B, after adding spectral index features, the overall classification
accuracies of two classifiers were improved by 3.17% and 3.74%, respectively. Scheme E and F used 13
identical features in the two subsets including nine spectral features, which indicates that the spectral
features play an important role in the classification. In the spectral indices, NDVI, PRI, GNDVI, SL2,
and PSRI appear in two subsets, which proves that the newly constructed index SL2 has an effect by
improving the classification accuracy of tree species. The other selected indices, NDVI and GNDVI,
are related to the chlorophyll content of plants. PRI is associated with changes in carotenoids in plants
and PSRI is related to the ratio of carotenoids to chlorophyll. It indicates that the preferred spectral
indices are closely related to the chlorophyll and carotenoids of the vegetation, while four indices are
related to the vegetation reflectance in the near-infrared band. These factors can effectively distinguish
different tree species. Therefore, spectral index, as a remote sensing parameter of vegetation, plays
an important role in forest resource monitoring. In this study, we added spectral index features to
classify tree species based on ICA transformation images. Previous studies have also shown that if the
ground objects are subdivided such as tree species, it is difficult to identify tree species by spectral
index alone [81]. Therefore, in practical applications, the use of spectral index combined with relevant
auxiliary data is an effective method for extracting tree species information.

4.3. The Role of Texture Features

With the improvement of spatial resolution of remote sensing data, the use of spatial information
is becoming more and more widely used while applying spectral information. Due to the different
structure and growth state of the canopy, conifer and broadleaf species produce different texture
features. In this study, texture information was added to the scheme C, and the classification accuracy
of the two classifiers was significantly improved. The overall accuracy of the SVM classifier reaches
90.86%. It is explained that texture features play a role in classification. At present, there are many
methods for texture analysis at home and abroad [82,83], among which the gray level co-ocurrence
matrix (GLCM) is recognized as the most widely used and best applied method. In the process of
extracting textures using GLCM, the results of texture extraction are closely related to different window
sliding directions, window sliding distances, and window sizes. In this study, texture features of
multiple texture window sizes were extracted, and we selected the 17 × 17 window size with the
highest classification accuracy. The overall classification accuracy for slash pine, masson pine, and
Illicium verum was higher than that of other species of broad leaves, which was related to the crown
width of each tree species. The fact is that the canopy of the coniferous tree species is generally small,
the height of the Illicium verum is low and the crown width is also small, and the crown width of other
types of broad-leaved tree species is generally wide, showing that the texture window size we selected
is more suitable for small crown tree species. Therefore, in subsequent studies, the tree species can be
layered according to the characteristics of canopy, and then combined with different windows of the
textures for classification.

4.4. The Role of Canopy Height Model

Airborne based hyperspectral imagery generally has high spatial resolution and spectral resolution
and has obvious advantages in tree species identification [26]. However, using only hyperspectral
imagery for vegetation classification results in different objects having the same spectrum and the
same objects having different spectrum. Airborne LiDAR data can provide accurate three-dimensional
structural information and has a good applicability for describing the vertical height of complex forest.
The CHM extracted from LiDAR data is an important feature variable, and different tree species
generally have a specific height range.
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Previous studies have shown that combining canopy height characteristics can improve tree
species classification [28,84]. In this study, scheme D added CHM height information, and the
classification accuracy was improved as compared with the scheme without adding height information.
The classification accuracy of other broad-leaved species is significantly increased with the improved
producer accuracy of 15.24% and 12.96% by the SVM and KNN classifiers, respectively. This indicates
that the addition of CHM features can effectively improve the classification accuracy of vegetation in
complex forest areas, and it also shows that height information can play an important role when the
spectral of tree species are similar. The addition of vertical structure information makes the training
samples in relatively independent space and the interference factors less, and therefore the accuracy of
the training samples is the key to improving the accuracy of image classification.

The height of the tree species can distinguish the tree species very well. One of the reasons is
that the same tree species generally have the same forest age, and therefore the height information
plays a greater role in improving the classification accuracy of the tree species. At the same time,
we also found that the accuracy of eucalyptus decreased after adding height features due to the
inconsistent height of the different planting years. Therefore, in applications, when distinguishing
tree species in the stand in which each species has the same age group, the tree height can be utilized
as a key feature variable, otherwise tree height information can produce extra disturbances which
lead to low classification accuracy. In addition, the terrain of the study area selected in this study is
relatively flat. The pixel values of the CHM can be used to indirectly reflect the vegetation height,
which can effectively improve the accuracy of tree species classification. However, in hilly areas, the
error of the point cloud data obtained from LiDAR data can increase, causing the generated DEM and
DSM data to be inaccurate, and therefore the CHM may reflect incorrect tree heights. Therefore, in
hilly areas, the impact of adding CHM data on classification accuracy of tree species needs further
analysis. And different point cloud densities can create different CHM information. In subsequent
studies, the impact of point cloud densities on tree species classification should be analyzed.

In general, spectral features, texture features, and CHM height information play a role in improving
the classification accuracy of tree species. The addition of each feature increases the separability
between categories. Among them, the height information has a significant effect on improving the
classification accuracy of other broad-leaved species. When the spectral information of the tree species
is similar, complete utilization of the height information and texture features can significantly improve
the identification accuracy for the even-aged forest.

5. Conclusions

In this study, we used airborne hyperspectral images and LiDAR data for object-based tree
classification. Independent components, spectral indices, and texture features were extracted from
airborne hyperspectral data, new spectral indices were constructed by analyzing spectral curve of tree
species, and CHM features were extracted from LiDAR data. On the basis of feature combination and
feature selection, we compared and analyzed the contribution of different features and classifiers on
object-based classification. The following conclusions can be drawn:

(1) Compared with the KNN classifier, the SVM classifier has higher classification accuracy, with the
highest classification accuracy of 94.68% and a Kappa coefficient of 0.937. It shows that the SVM
classifier has better performance when the number of training samples is limited. By eliminating
redundant features, the classification accuracy and performance of the SVM classifier can be
further improved, and the recursive feature elimination based on the SVM feature selection
method is better than random forest.

(2) In the spectral indices, NDVI, PRI, GNDVI, SL2, and PSRI are in the selected feature
subsets, indicating that the newly constructed SL2 spectral index plays a role in improving
classification accuracy. At the same time, the preferred spectral indices are closely related
to vegetation chlorophyll and carotenoids, and four indices are related to near-infrared band.
These factors can effectively distinguish different tree species.



Forests 2020, 11, 32 21 of 25

(3) With the addition of texture features, the classification accuracy of both classifiers is
significantly improved. The overall classification accuracy of slash pine, masson pine, and
Illicium verum was higher than other species of broad leaves. Therefore, the selected texture
window size is more suitable for small crown tree species, which implies that using a single
texture window size has certain limitations. Considering the type of forest, using multiscale
texture window size should be a new research topic in improving tree species classification.

(4) CHM height information has a significant effect on improving the classification accuracy of tree
species especially other broad-leaved species. It can effectively distinguish tree species with
similar spectral features, but different tree heights. The accuracy of the CHM is affected by the
terrain. In hilly areas, the CHM may reflect incorrect tree heights. In addition, the CHM has a
certain relationship with the LiDAR point cloud density, and therefore the influence of point
cloud density and terrain factors on CHM and tree species classification need further analysis.

(5) Object-based classification can avoid the phenomenon of “salt and pepper” and classification
accuracy is affected by the segmentation accuracy. However, segmentation scale parameters
are difficult to determine adaptively, so rapid optimization and improvement of segmentation
parameters are quite important to improve classification accuracy.
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