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Abstract: Wood ceramics (WCS) were prepared from thermo-modified poplar wood residues and
untreated poplar wood. At 1000 ◦C sintering temperature, the ratios of wood powder and phenolic
resin at 10:3, 10:6 and 10:9 were tested. The effects of materials on the properties of WCS, carbon yield
and volume shrinkage were studied. With the increase in resin content, the carbon yield increased;
however, the volume shrinkage decreased. Carbon yield of WCS made from 220 ◦C thermo-modified
poplar wood was 40.45%, as the ratio of wood powder/phenolic resins was 10:6. The microstructure,
chemical structure and crystallinity of WCS were analysed by scanning electron microscopy (SEM),
Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The results showed that
WCS had a porous structure. WCS prepared from thermo-modified materials, amorphous carbon
and hard glass carbon melted more evenly; meanwhile, there were more pores on glass carbon.
The FTIR spectra showed that the stretching vibration of C-O-C weakened at ceramics made of
thermo-modified poplar. The XRD pattern indicated that the raw material has no apparent influence
on the graphitization degree of WCS.
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1. Introduction

Wood ceramics (WCS) are new materials produced based on the idea of creating new
high-performance materials from recovered wood and wood residues. In the preparation process,
WCS were prepared by pyrolysis of woody materials such as wood raw materials, wood processing
residues, wastepaper, bagasse and straw, impregnated with different precursor substances, such as
resins and metals [1–3]. A composite material with both biochar and ceramic properties was obtained
after carbonization [4]. WCS has excellent properties, such as abrasion resistance, corrosion resistance
and high specific strength [5,6]. This material could be used for flooring in demanding applications,
where aesthetic is essential. However, the expensive cost of preparing WCS and the complex process
involved consumes a lot of energy, leading to limitations in application. Therefore, it is essential to find
an efficient way to manufacture WCS with cheap and readily available materials.

Heat-treated wood, commonly known as “carbonized wood”, is widely used in indoor and
outdoor applications, architectural decoration, and flooring among other fields, due to its aesthetics,
dimensional stability, and 100% natural choice for the demands of modern wood architecture. In the
past 20 years, the production capacity of thermally modified wood has considerably increased in
Europe, from 0.01 million m3 in 2001 to 0.5 million m3 in 2018 [7]. Heat-treated wood production is
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expected to continue to rapidly increase with enhanced environmental awareness and rapid changes
in aesthetic trends. At the end of its service life, large amounts of heat-treated wood are accumulated;
therefore, considerable attention should be given to find reasonable ways to reuse these resources.
The objective of the respective study was to elucidate whether this material is a suitable choice to use
them for manufacturing WCS.

Machining and thermal modification of wood are energetically demanding processes. In addition,
the disposal of wood results in the anaerobic degradation and methane emissions, thus all environmental
benefits of wood, are annihilated. Therefore, the reuse and recycling of recovered heat-treated wood
products reduce energy consumption and lower pressure on natural resources.

Furthermore, when the wood is thermo-modified at temperatures above 150 ◦C, the physical and
chemical properties of wood are permanently altered. The basic principle of heat modification is to
transform the hydrophilic property of wood into hydrophobic through the thermal degradation of
polysaccharides (mainly unstable hemicellulose), through crosslinking, and increased crystallinity
of cellulose in the wood cell wall [8,9]. The main reason for the change in wood properties is the
influence of high temperature on the chemical properties of wood. Higher treatment temperature
proportionately decreases the degree of polymerization of the cellulose, which results in reduced
mechanical properties. It is reported that thermal modification reduces mechanical properties by
0–30% [10,11]. Therefore, in contrast to natural wood, heat-treated wood has a brittle structure and
decreased strength. Therefore, a lot of energy required for production wood particles can be saved [12].

Meanwhile, heat treatment causes a gradual separation between cells and improves the
permeability of wood. In addition, it also reduces the free surface energy [13], which is conducive for
mixing with phenolic resin [14]. Furthermore, the moisture content of the matrix has a significant effect
on the preparation of WCS. The moisture content of wood is commonly controlled below 8% when
preparing the wood/phenolic composites [15]. Hence, it is necessary to reduce the moisture content
before the samples are hot-pressed. The heat treatment is effective in reducing the hygroscopicity
of wood, as proven by Unsal [16], where 10–25% reduction in moisture sorption was achieved.
The reduction in water content was caused by several factors, such as reduced affinity for hydroxyl
groups [17], increased crystallinity of cellulose [18], and further crosslinking was caused by the
polycondensation in lignin [19]. Therefore, the cost for drying of wood prior WCS production can be
saved as well. In addition, the improved dimensional stability is an important outcome of thermal
modification as well. Besides, the microanalysis results showed a gradual increase in carbon content
with an obvious decrease in oxygen content, which attributed the decrease in oxygen to the dehydration
reactions during wood thermal degradation [20]. The lignin content increased, while the holocellulose
content decreased due to numerous dehydration reactions demonstrated after treatment [21]. Lignin
is considered to be a precursor for carbon production because lignin has a high carbon content.
This variation can improve the carbon yield and mechanical properties of WCS. These advantages
provided a possibility for the preparation of WCS, which offer an effective way for the recovery and
utilization of a large amount of recovered wood resources.

Poplar is a fast-growing species with low density and a typical porous structure which is conducive
to phenolic resin impregnation [22,23]. So, this work presents a process for manufacturing WCS
from heat-treated poplar residue mixed with phenolic resin. Referring to the experimental results
and methods of the previous researchers, the ratio range of wood powder to phenolic resin was
selected [5]. Meanwhile, WCSs prepared from untreated poplar were used as contrast materials.
The effects of weight ratio of phenolic resin to wood powder to the basic properties of manufactured
WCS, were studied in more detail. The microstructure, chemical and wide-angle X-ray diffractograms’
structure were also investigated.
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2. Materials and Methods

2.1. Sample Preparation

In this study, the residues of poplar wood (Populus sp.) modified at high temperature and
untreated poplar wood collected from a wood products company in Zhejiang, China, were used to
investigate the WCS production. The modified wood was heat-treated at 220 ◦C for a fixed duration of
3 h. The obtained residues of secondary wood processing were chopped and milled into small wood
powders with a dimension of 0.25–0.42 mm using a grinder (GH30/20). Prior to the milling, the colour
of the wood was determined according to the CIELab system. The colour of modified wood reflects
the intensity of the treatment. Darker colour corresponds to more intensive treatment. The powders
were dried to 10% moisture content in a laboratory oven (XMT-C2000 1010-1B). A commercial liquid
phenol-formaldehyde (PF) resin with a solid content of 43% was used as a binder in the production of
WCS obtained from Dynea (Guangdong, China) Co., Ltd.

2.2. Manufacturing of WCS

Based on the experience in the references and preliminary experiments, the technological
parameters of wood ceramics were determined [3,5,6]. The wood powders were impregnated
with a water solution of PF resin, and were magnetically stirred in an airtight container to obtain
a homogenized mixture. The weight ratio of wood powder to the PF resin was 10:3, 10:6 and 10:9.
The mixture materials were then pressed into wood/PF resin composites by an electric universal testing
machine (AGS-X-20kN, Shimadzu, Japan), with a self-made metal mould surrounded by heating
mantle, as shown in Figure 1. Temperature measurement was conducted using a thermocouple, fixed on
the self-made metal mould. The temperature was set at 150 ◦C for 10 min. The samples were oven-dried
at 105 ◦C until the constant weight was obtained. The preparation of composites was conducted in
a vacuum furnace. To avoid cracking and deformation during carbonization, the temperature was
slowly increased during the initial heating period. The samples were then carbonized at the target
temperature of 1000 ◦C at a heating rate of 5 ◦C/min from room temperature to 350 ◦C and at 3 ◦C/min
from 350 ◦C to 1000 ◦C. The samples were subsequently cooled to ambient temperature at a rate of
5 ◦C/min with the furnace. Each group consisted of ten duplicates.
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2.3. Characterization of WCS

To investigate the effect of the process on dimension shrinkage and weight loss on WCS from
heat-treated poplar wood and PF composite, the dimensions of 10 samples were measured by
using digital Vernier calipers (Mitutoyo CD-6CSX) and a digital micrometre (Mahr MarCator 1086R).
The volume shrinkage was calculated using volume change of samples before and after carbonization.
Similarly, the weight changes were measured using an electrical balance (VANTE WT (20002)).

The pyrolysis of poplar wood and 220 ◦C heat-treated poplar wood was conducted by applying to
thermogravimetric analysis (TGA) (TA instrument, USA) in a high-purity N2 (99.999%) environment.
Additionally, 2 mg of wood powder was heated from 25 ◦C to 900 ◦C at a heating rate of 20 ◦C/min and
a steady nitrogen flow rate of 100 mL/min.

Using an elemental analyser (PE 2400 II Elemental Analyzer), the weight percentages of C, H,
O and N elements in the wood powder and WCS were measured. The weight percentage of O was
obtained by difference, that is, O (wt.%) = 100-C-H-N.

The morphology of WCS was observed and analysed by scanning electron microscopy (SEM) (FEI
Quanta 200). Before the testing, all samples were dried at 100 ◦C for 6 h, and the observation surface of
all samples was sprayed with gold using a particle sputtering apparatus. The test voltage was 15KV
and the resolution of the analysis mode was 3.0 nm.

Through Fourier transform infrared spectroscopy (FTIR) (Thermo Scientific Instrument Co. U.S.A,
Nicolet 8700), the chemical structure of WCS was characterized. All specimens were dried at 100 ◦C
for 6h before detection, approximately 2 mg of sample uniformly mixed with 200 mg KBr powder and
compressed to form a disk. The determination range was 400–4000 cm −1 at a resolution of 4 cm−1.
The wide-angle X-ray diffraction graph of WCS was measured using an X-ray model diffractometer
(Rigaku, Ultima IV) using Ni-filtered Cu Ka radiation (λ = 1.5406 A) at 40Kv and 30mA. Scattered
radiation was recorded in the range of 5◦–50◦ at a scan rate of 5 ◦C/min.

2.4. Statistical Analysis

The data were statistically analysed with the aid of variance (ANOVA) using SPSS Version 25.0,
(IBM SPSS Statistics for Windows, IBM Corporation, means were analysed and grouped using Duncan’s
multiple range test (DMRT).

3. Results and Discussion

3.1. Pyrolysis of Wood Powder

The colour of thermally modified wood reflects the intensity of the treatment. Non-modified
wood was of light colour (L*—81.2; a*—3.97; b*—24.69). As expected, thermally modified wood was
considerably darker (L*—28.95; a*—8.86; b*—14.23), as a consequence of the heating of poplar wood at
elevated temperatures. To study the pyrolysis characteristics of poplar wood and heat-treated poplar
wood, wood powders were heated by up to 900 ◦C in the thermal analyser in an inert atmosphere.
The TGA curves of untreated wood powder (UT-WP) and heat-treated wood powder (HT-WP) are
shown in Figure 2.

The TG and DTG curves show the typical dynamic gravimetric curves of wood materials [24].
As seen in the figures, the TG curves of different materials have similar change tendency with increasing
temperature. The weight loss of wood powder starts at about 200 ◦C and almost ended at 650 ◦C.
The maximum decomposition rates of wood powder are between 240–550 ◦C. Heat-treated poplar
wood generated more carbon than untreated poplar wood, because lignin has higher carbon yield ratios
than the other main components, such as cellulose and hemicellulose in wood during carbonization [25].
Many studies revealed that the relative percentage of lignin in heat-treated wood increased compared
to untreated wood [26–28].
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It is known that wood powders shift into amorphous carbon caused by major weight loss of wood
powder, due to the removal of water and evaporation of organic matters (cellulose, hemicellulose
and lignin). The decomposition of wood powder consists of four major stages: moisture removal,
hemicellulose decomposition, cellulose decomposition and lignin decomposition [29]. Absorbed water
and structure water were desorped by up to 240 ◦C [24]. From 240 ◦C to 400 ◦C, the major weight
loss is due to the breakdown of cellulose and lignin [30], and the structure of hydrocarbons is formed
by chain reduction or depolymerization, because C-C and C-O bonds within the ring units break
down. The decomposition rate of lignin picks a maximum value at 360 ◦C, introducing more carbon
content [31]. Pyrolysis initiates the destruction and decomposition of wood (biological) polymer
components. Small molecules such as H2O and CO2, together with complex fatty acids, carbonyls and
alcohols, evaporate from the original macromolecular lattices [32]. Owing to methane and hydrogen
removal, aromatic multicore structures begin to form at 400 ◦C and gradually form amorphous
carbon [33]. Above 800 ◦C, thermally induced decomposition and rearrangement almost cease to leave
the carbon structure. Furthermore, for heat-treated wood, the maximum weight loss temperature
shifted to the lower side and the maximum decomposition rate reduced. This is attributed to the
destruction of molecular hydrogen bonds of cellulose degradation and the hydrolysis of hemicellulose
that has a catalytic effect on the pyrolysis of biomass components to a certain extent, such that the
pyrolysis temperature can be reduced [30]. The maximum decomposition rate is also reduced, which is
attributed to the pyrolysis rate of lignin with a stable benzene ring structure, slower than that of
cellulose and hemicellulose [34].

3.2. Properties of WCS

3.2.1. The Carbon Yield and Volume Shrinkage of WCS

Since both wood powder and phenolic resin considerably shrink during carbonization and a large
number of small molecular substances are released; the mass ratio between wood powder and phenolic
resin is an important factor that affects the quality and volume shrinkage of WCS. The carbon yield
and volume shrinkage of WCS are shown in Figures 3 and 4.
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As the proportion of phenolic resin increased, the carbon yield of WCS increased, and the volume
shrinkage decreased, as shown in Figure 1. When the ratios of wood powder/resin were 10:3, 10:6 and
10:9, the carbon yield ratio of WCS made from untreated wood (UT-WCS) was 33.65%, 35.74% and
36.31%, respectively. The carbon yield ratio of WCS made from untreated poplar wood increased by
6.2% as the ratio of wood powder/phenolic resins increases from 10:3 to 10:6, increased by 1.6% as
the ratio of wood powder/phenolic resins increases from 10:6 to 10:9. The carbon yield ratios of WCS
made from heat-treated wood (UT-WCS) were 34.62%, 40.45% and 40.88%. When the ratio of wood
powder/phenolic resin increased from 10:3 to 10:6, the carbon yield increased by 16.8%. When the
ratio of wood powder/phenolic resin increased from 10:6 to 10:9, the carbon yield increased by 1.1%.
Compared to UT-WCS, the carbon yield of WCS made from heat-treated wood (HT-WCS) had the same
increasing tendency and higher carbon yield. This can be seen from the TGA of heat-treated wood due
to its relatively increased content of lignin. For UT-WCS, when the ratios of wood powder/resin were
10:3, 10:6 and 10:9, the volume shrinkage ratio was 64.25%, 62.71%, 61.43%, respectively. The volume
shrinkage ratio decreased by 2.4% as the ratio of phenolic resins increases from 10:3 to 10:6 and 2% as
the ratio of phenolic resins increases from 10:6 to 10:9, respectively. For HT-WCS, the volume shrinkage
ratios were 62.67%, 60.22%, 59.88%, respectively. The volume shrinkage ratio decreased by 3.9% as the
ratio of phenolic resins increases from 10:3 to 10:6 and 0.6% as the ratio of phenolic resins increases
from 10:6 to 10:9, respectively. The volume shrinkage of WCS mainly accounted for the decomposition
of wood powder, resin and the formation of carbon/carbon composite. The higher the content of
wood powder, the higher the volume shrinkage. Moreover, the volume shrinkage rate of UT-WCS
was higher than that of HT-WCS. This is because untreated wood is more gasified than heat-treated
wood, which can be proved by the TG graph. ANOVA test results indicated that there was a significant
difference between the carbon yield and volumetric shrinkage of untreated and heat-treated of WCS
at the 99% confidence interval (p < 0.01). Duncan’s test classified the value of the carbon yield and
volumetric shrinkage into two groups (Figures 3 and 4). Considering the change rate of carbon yield
and volume shrinkage with increasing wood powder/resin ratio from 10:6 to 10:9, it is suitable to use
the 10:6 ratio of wood powder/resin to prepare, such that the WCS is manufactured with higher carbon
yield, lower shrinkage and lower cost of PF resin. Therefore, the ratio of wood powder/resin with 10:6
was employed in the following analysis.

3.2.2. Elemental Analysis of WCS

The C, H, O and N elements of wood powder and WCS are shown in Table 1.

Table 1. Elemental composition of different samples.

Samples C (wt.%) H (wt.%) O (wt.%) N (wt.%)

UT-WP 45.59 7.5 46.9 0.01

UT-WCS 70.1 0.89 28.17 0.84

HT-WP 48.95 7.3 43.51 0.24

HT-WCS 79.9 0.39 19.86 0.66

For the wood powder, the elemental analysis shows that heat-treated poplar wood has higher
carbon content and lower O and H content than untreated wood. This is mainly due to the dehydration
of the carbohydrates to produce aldehydes and the decarboxylation (cleavage of acetic acid from
hemicelluloses) during heat treatment, which resulted in a reduction of O and H content [35,36].
Therefore, the C content increases after heat treatment. The result can further explain the higher carbon
yield of heat-treated wood in the TG graph. After sintering, for wood powder, the breaking down of
C-O and C-C bonds in the ring could confirm the decomposition of cellulose and lignin, and result to
releasing CO2, CO and other volatile organic gases, then further developing the aromatic polynuclear
structures after sintering at 1000 ◦C [37]. For phenolic resin, the first step is to finish the dehydration
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reaction, including the thermal curing reaction of hydroxy groups and hydrogen groups within the
aromatic ring and the condensation between methylene and hydroxyl groups, releasing the volatile
substances such as CH4, CO2 and CO. Finally, the condensation aromatic polynuclear structure is
formed [38]. As a result, the C-content of WCS greatly increases, and the O and H content sharply
decreased compared to wood powder. For the WCS, these results show that the carbon element of WCS
made from heat-treated wood (HT-WCS) was much higher than that of WCS made from untreated
wood (UT-WCS), which is in agreement with the regular carbon yield. Besides, the contents of H, O
and N are lower than that of UT-WCS. This is due to HT-WCS having a more stable aromatic structure.

3.3. SEM Micrographs of WCS

As Figure 5 showed, it displays the SEM micrographs of WCS made from poplar powder phenolic
resin composite with a weight ratio of 10:6 carbonized at 1000 ◦C. Normally, the carbonization
progress of organic compounds involves the changes of chemical performance and structural
organization. The chemical changes include carbonization, dehydrogenation and deoxidization
under low temperatures condition, and the graphite precipitation at high temperatures is the main
characteristic of structural changes. Wood powder generated amorphous carbon with porous structure,
and the phenolic resin was translated into graphite at high temperatures [39]. It is well known that
cellulose, the main component of wood, is a long chain macromolecule and phenolic resin that contains
phenyl groups in its molecular structure. After dehydrogenation and deoxidization, the benzene ring
group of the composites is likely to precipitate out of the carbon phase, forming its ordered carbon
network structure, and then forming a well-stacked graphite structure at high temperatures.
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The WCS is a typical porous material (Figure 5a–d). Carbonized wood powder and phenolic resin
produced pores with different shrinkage rates and uneven structures during carbonization. The larger
pores have a regular shape and size, which depend on the diameter and density of the wood powder.
The wood powder has the original cellular structure and texture with a regular shape, retained from
wood. During the carbonization process, wood carbon existed as particles, maintaining the texture and
porous structure of the wood powder. Other tiny pores in WCS are formed by emitting volatile gas
products [5]. From Figure 5b,d, more pores exist on the glassy carbon of HT-WCS, which indicates that
more gas escaped from the phenolic resin during the carbonization process. For the thermo-modified
wood, lignin and carbohydrates are gradually converted into volatiles and ‘extractive like material’
during pyrolysis, which in turn is partly degraded, together with the original extractives into various
volatile products [11].

After being sintered at 1000 ◦C, partial glassy carbon, which comes from phenolic resin, is keeping
moving on with continuous structure, and the phenolic resin-poplar powder is carbonized into WCS.
Figure 5a,c figured that the carbonized wood powders get in touch with other through forming glassy
carbon bridges. HT-WCS (WCS made from heat-treated wood) exhibits denser and smoother surface
along with more pores. As shown in Figure 5a, UT-WCS (WCS made from untreated wood) is of
heterogeneous laminated microstructure due to untreated wood powder, which tends to aggregate
into smaller particles or even agglomerate when mixed with phenolic resins. This is determined by the
higher density and the compact structure of wood powder. The glass carbon produced by phenolic
resin is separated from the amorphous carbon produced by wood powder. However, HT-WCS exhibits
a topologically uniform microstructure. The phenolated wood carbon formed a continuous part,
and the interconnected open form network structure is obvious. Small glassy carbon regions are
dispersed among the wood carbon particles, as shown in Figure 5c,d. Glass carbon originating from
phenolic resin and amorphous carbon originating from wood powder grow together, and the interface
gradually disappears. The lower density and moisture content and looser structure facilitate the mixing
of heat-treated wood powder with phenolic resin. As a result, the surface of the wood carbon was
almost covered by the phenolated wood carbon, due to a large amount of accumulated phenol resin in
the vessels of heat-treated wood, which strengthened the cell wall and improved the bonding strength
between wood particles. In addition, the heat-treated wood powder contains more lignin that can play
the role of an adhesive. Higher content of phenolic resin could result to a higher content of glassy
carbon in WCS, then strengthen the contact between the carbonized wood powders [40,41].

3.4. FTIR Analysis

Popescu et al. [42] confirmed that the intensity of the hydroxyl group (-OH) attributed to 3360 cm−1

was reduced after heat treatment due to partial esterification of cellulose in the amorphous zone and
the deacetylation reaction of hemicellulose. This result is consistent with Tjeerdsma [35]. The acetyl
group of hemicellulose partially hydrolyzes to form acetyl, which in turn promotes hemicellulose
hydrolysis. Therefore, the absorption intensity of xylan (peaks at 1740 cm−1 related to the C = O
stretching) was reduced. The vibration of the aromatic ring between 1543 cm−1 and 1507 cm−1, and the
stretching vibration of C-O-C of lignin at 1242 cm−1 increased. In addition, the peak strength of tetrad
substitution on the benzene ring increased, indicating that the relative content of lignin increased.
The FTIR spectra of WCS prepared from different wood powders are shown in Figure 6.

The sintering of WCS is a process of fracture, reaction and recombination of functional groups of
wood powder and phenolic resin at a certain temperature. The C = O bond for wood at 1740 cm−1 was
not found in the spectra of WCS, indicating that hemicellulose is completely degraded after sintering.
The peak at 3430 cm−1 belongs to the hydroxyl (-OH). The absorption peak width of HT-WCS is
narrower than that of UT-WCS. For the HT-WCS, peaks at 1798 cm−1 are attributed to C = O telescopic
vibration or the acetyl group. The peaks are higher than those of UT-WCS due to the degradation
of more acetyl groups by hemicellulose polysaccharides. In HT-WCS, the C-H stretching in methyl
was observed at 1650 cm−1. However, the peaks that do not appear in UT-WCS might be due to
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insufficient pyrolysis of phenols produced by lignin. The C = C stretching of the aromatic ring band
was observed at 1625 cm−1. For WCS, around 1400 cm−1 is the expansion of aromatic hydrocarbon
C = C, which is much stronger than wood, indicating that WCS has obvious aromatization after
sintering. The absorption of phenolic hydroxyl groups happens at 1380 cm−1. The peak related to the
stretching of C-O in aromatic structure connected with the alkyl group is clearly visible at 1080 cm−1.
The absorption peak of UT-WCS is stronger than that of HT-WCS, due to reduced cellulose and
hemicellulose degradation after sintering [5]. Peaks at 875 cm−1 and 835 cm−1 are attributed to C-H
expansion outside the benzene ring, due to the hydroxymethyl synthesis reaction of formaldehyde and
phenol. Since the heat treatment sample contains more phenols and aldehydes, hydroxylation reaction
can also be completed at high temperatures, similar to the carbonization of phenolic resin.
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3.5. XRD Analysis

WCS undergoes a series of chemical reactions during high temperature carbonization, accompanied
by physical and structural changes. Amorphous carbon was formed by the chemical reaction of
lignin, cellulose and hemicellulose in wood, such as pyrolysis, condensation and rearrangement [38,39].
Figure 7 shows the XRD patterns of WCS.

The patterns showing two obvious graphite peaks, attributed to broad (002) and low intensity
(101) planes [43], indicate that the development of the hexagonal network layer stack is roughly
parallel to each other, called a turbine structure [44], while specific broad peaks of cellulose and other
linear molecules in the wood did not appear at 2θ = 18.15◦ [45]. The shape and strength of the (002)
peak indicate that WCS contains amorphous carbon, turbine structure and graphite [5]. As shown in
Figure 7, the position and intensity of the diffraction peaks in the spectra of HT-WCS and UT-WCS are
almost similar, which indicates that the order degree of charcoal structure and glassy carbon structure
from two different materials are analogous, and the detectable effect of different wood powders on the
XRD pattern of WCS is not found.
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4. Conclusions

In this work, a new WCS was prepared from phenolic resin-poplar powder composite material.
The WCS made from thermal treated poplar residue may apply a new method for the application of
heavy metal adsorption in sewage; meanwhile, WCS are also expected to be used as thermal insulation
materials. The effect of different wood powders, the weight ratio of wood powders and phenolic
resin on the basic properties of WCS was studied. The microstructure and chemical structure were
investigated at a ratio of 10:6. To summarize, the above-mentioned results are shown as follows:

1. With the increase in resin content, the carbon yield of WCS increased, and the volume shrinkage
decreased. Considering the resource cost, 10:6 is the optimum proportion for preparing WCS.
At the same ratio of wood powder/phenolic resins of 10:6 and carbonization temperature, the
carbon yield of HT-WCS was 40.45% and of UT-WCS was 35.74%.

2. The WCS has an interconnected porous network microstructure composed of amorphous carbon
and glass carbon. At the same pyrolysis temperature, the microstructure of HT-WCS is more rigid
and homogeneous. This indicates that the thermos-modified wood significantly helps to increase
the performance of phenolic resin to mix wood powders, and leads to construct a more uniform
porous microstructure, strengthening the bonding between the two types of carbon.

3. There is typical non-graphitizable carbon-containing C = C bonds, C-O-C bonds and C–H structure.
HT-WCS and UT-WCS have analogous chemical structures. For UT-WCS, the absorption peak
of stretching C-O in the aromatic structure connected with the alkyl group is stronger than that
of HT-WCS.

4. The XRD patterns indicated that WCS contains amorphous carbon, turbine structure and graphite.
The intensity and position of diffraction peaks in the pattern were almost similar with different
materials, which indicate that the effect of different wood powders on the XRD pattern of WCS
is minimal.
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