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Abstract: The parameterization of hybrid-mechanistic storm damage models is largely based on the
results of tree pulling tests. The tree pulling tests are used for imitating the quasi-static wind load
associated with the mean wind speed. The combined effect of dynamic and quasi-static wind loads
associated with wind load maxima is considered by either linearly increasing the quasi-static wind load
by a gust factor or by using a turning moment coefficient determined from the relationship between
maxima of wind-induced tree response and wind speed. To improve the joint use of information on
dynamic and quasi-static wind loading, we present a new method that uses the coupled components
of momentum flux time series and time series of stem orientation of a plantation-grown Scots pine
tree. First, non-oscillatory tree motion components, which respond to wind excitation, are isolated
from oscillatory components that are not coupled to the wind. The non-oscillatory components are
detected by applying a sequence of time series decomposition methods including bi-orthogonal
decomposition and singular spectrum analysis. Then, the wind-excited tree response components
are subjected to dynamic time warping, which maximizes the coincidence between the processed
data. The strong coincidence of the time-warped data allows for the estimation of the wind-induced
tree response as a function of the effective wind load using simple linear regression. The slope of the
regression line represents the rate of change in the tree response as the effective wind load changes.
Because of the strength of the relationship, we argue that the method described is an improvement
for the analysis of storm damage in forests and to individual trees.
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1. Introduction

In the past 70 years, more than 150 large-scale, high-impact winter storms have occurred over the
North Atlantic-European region [1–3], causing major damage to European forests approximately every
two years. Through their large extent and the extreme characteristics of their near-surface wind fields,
winter storms currently pose the greatest threat to Europe’s forests. In fact, they caused more than 50%
of primary damage in the second half of the 20th century [4,5].

Because of the great importance of storms in the natural disturbance regime of forests, there is a
strong interest in minimizing the negative impacts of storm damage on forests. Catastrophic storms
affect forestry operations and forest management [5], and the unexplained inter-annual variability of
the terrestrial CO2 balance can be explained partly by storm damage to forest [6]. The winter storm
Lothar [7], which hit Europe on 26 December 1999, led to a 30% decline in the European net biome
production [6]. It is not only in forests that attempts have been made to reduce damage. In cities great
efforts have also been undertaken to maximize tree stability against severe wind loads to maintain the
safety of people and property [8].
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Among the methods used to analyze storm damage to forests are expert opinions, statistical
models and hybrid-mechanistic models [9]. Whereas expert opinions provide basic information for a
qualitative storm damage assessment at the local scale, they are not suitable for mapping the complex
physical processes that lead to storm damage. Further possibilities for analysis result from the use
of statistical and hybrid-mechanistic models. They allow the quantification of the probability and
the extent of storm damage using information on stand and site factors. While statistical models
provide only general insights into storm damage formation, hybrid-mechanistic models enable the
investigation of physical processes leading to storm damage.

Over the past decades, various hybrid-mechanistic storm damage models have been developed
and parameterized for different datasets. They start the estimation of the storm damage probability
by calculating the critical wind speed (CWS). This is the minimum wind speed required to break or
overturn trees within forests. The CWS calculations compare the combined impact of quasi-static and
dynamic wind loads acting on individual trees to the resistive forces of the aerial tree parts and the
roots [9]. Models applied for CWS calculations include HWIND [10], GALES [11], FOREOLE [12], and
ForestGALES_BC [13]. The approaches used in these models are core modules of tools that assess
storm damage risk to forests such as ForestGALES [11] or HWIND-Aquilon [14] and have inspired
development of other systems for the assessment of storm damage risk [15–18]. Recently, approaches
of GALES to estimate CWS were used to develop agent-based storm damage models [19]. The basic
structure of all the previously mentioned models is similar, but they differ in the mapping of component
processes and the scope of application.

The parameterizations of GALES and HWIND used in the CWS calculations are largely derived
from destructive tree pulling tests [20–24], which mimic the quasi-static wind load component
associated with CWS. A winch and cable system is used to simulate forces required to break or overturn
the pulled trees. This approach assumes that the tree is deflected to a point of no return due to the
mean wind speed and a constant mean wind direction [25]. Site and species-specific resistance to stem
breakage and overturning can be calculated based on a large number of tree pulling tests carried out at
different sites and on different tree species [9].

Although pulling tests are applied to estimate destructive wind loads, they are not suitable for
directly quantifying the resistance of trees to turbulent wind loads in their current configuration
and execution. This is because both quasi-static and dynamic wind loads act together during the
occurrence of damage. Therefore, the hybrid-mechanistic models consider the impact of turbulent
wind loads by empirical gust factors or through a turning moment coefficient [26]. Gust factors
represent the stand- and tree species-specific ratio between maximum and mean bending moments
along the stem [11]. By multiplying the quasi-static wind load by the gust factor, the total wind load
that causes maximum tree deflection is calculated. However, the use of empirical gust factors is seen
as one of the most critical steps in the CWS calculations because it is a single term that represents the
complex dynamic wind-tree-interactions in extreme situations [9]. To avoid the use of gust factors, the
turning moment coefficient was derived for individual trees from the linear relationship between the
maximum hourly turning moment of the stem and the square of the average hourly wind speed at
canopy top. The maximum turning moment for each hour is obtained by dividing hourly intervals
into 20 periods of equal length for which the maximum absolute turning moment is identified. The
mode of the 20 values is taken as the maximum turning moment for the hour [26].

A further field of application for tree pulling tests is the non-destructive inspection of urban
tree stability against wind loading. This kind of pulling test is used as a diagnostic technique in
the assessment of the wind load bearing capacity of trees without causing damage to them [27,28].
The results from these tests are extrapolated to determine CWS. The approaches developed for
hybrid-mechanistic storm damage models in forests have recently been applied to urban trees [29].

Although dynamic components are an important part of the total tree response to wind
loading [30–34], they are not yet directly included in the assessment of failure limits. The combination
of dynamic and quasi-static tree response components for a more realistic estimation of damaging wind
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loads is still pending. A critical point here is that trees do not respond equally to the entire wind load
spectrum. Although sway in the fundamental mode dominates the wind-induced response, recent
investigations showed that trees in conifer forests [35–37] as well as two single open-grown deciduous
broad-leaved trees [38,39] primarily react to frequencies below their fundamental sway frequency. This
means that not all components of airflow are effectively involved in the excitation of the tree response.

Here, we report an approach suitable for assessing the response of a plantation-grown Scots
pine tree to the effective combination of dynamic and quasi-static wind loads. We describe how to
compensate the measured data based on the findings from previous studies to enable the establishment
of a strong association between dynamic and quasi-static wind loads. We argue that the effective
wind-induced tree response can be better integrated in existing systems used for storm damage analysis.
The further development of methods to estimate effective wind loads on trees is an urgent matter,
because an increase in the frequency and intensity of storms is expected in large parts of Europe by the
end of the 21st century [40,41]. It is therefore assumed that storm damage in forests will increase [42–45]
and reduce the CO2 sink associated with European forests [7,46].

2. Materials and Methods

2.1. Workflow

The data collection and analysis of the wind-induced tree response comprised the following main
steps (Figure 1): (1) Measurement of orientation (sampling frequency 10 Hz) at seven heights along
the stem of the sample tree; (2) measurement of the wind vector (sampling frequency 10 Hz) close
to the canopy top; (3) segmentation of orientation time series into irregular intervals; (4) application
of the bi-orthogonal decomposition to the orientation time series; (5) calculation and segmentation
of momentum flux time series into the irregular intervals found in the orientation time series;
(6) application of singular spectrum analysis to separate non-oscillatory from oscillatory orientation
components; (7) low-pass filtering of momentum flux time series; (8) separation of non-oscillatory and
oscillatory response components; (9) calculation of the turbulence factor; (10) dynamic time warping
of non-oscillatory orientation components and low-pass filtered momentum flux; (11) regression of
dynamically time warped non-oscillatory orientation components and low-pass filtered momentum
flux; (12) quantification of the effective tree response.
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2.2. Airflow and Stem Orientation Measurements

Airflow and stem orientation measurements (sampling frequency 10 Hz) were carried out on
30 January 2019 in a planted Scots pine (Pinus sylvestris L.) forest located in the southern Upper Rhine
Valley (47◦56′04” N, 7◦36′02” E, 201 m a.s.l.) in the border area between France and Germany. On
that day, wind speed had a pronounced diurnal cycle and 3 s gust speed reached values of 15.0 m/s
at the canopy top, which is exceptional for this part of the Upper Rhine Valley. At the time of the
measurements, the Scots pine forest at the research site had a mean stand density of 580 trees per
hectare and a mean stand height of 18.3 m. The sample tree’s height and its diameter at breast height
were 16.8 m and 21.5 cm, respectively. The damped fundamental sway frequency of the stem ( f0) was
determined at 0.74 Hz using Fourier analysis developed in a previous study [34].

From a vertical profile of five (S1 to S5) ultrasonic anemometers (R.M. Young Company, USA,
Type 81000VRE), which were mounted on a 30 m high scaffold tower (Figure 2), data from S3 installed
close to canopy top was used to analyze airflow properties. The airflow data from this height was
chosen because it allows a close relationship to the dynamics of the tree reactions to be established
and the effective wind load components to be estimated [36,37]. The dominant above-canopy wind
direction sectors at the research site are south and southwest [47].
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The wind-induced, multimodal response of the stem of a Scots pine tree growing at 4.0 m to
the southwest of the tower was measured using seven micro electro-mechanical systems (MEMS)
motion-tracking devices (MPU-6050TM Motion TrackingTM, InvenSense, USA). The motion tracking
devices (D1 to D7) are combinations of 3-axis gyroscopes and accelerometers. While the gyroscopes
measured the wind-induced rotational motion as angular velocity (◦/s), the accelerometer measured
the wind-induced acceleration (g) along the stem. To monitor the wind-induced response behavior of
the stem, D1 to D7 were mounted at heights h1 = 0.1 m, h2 = 2.0 m, h3 = 4.0 m, h4 = 6.0 m, h5 = 8.0 m,
h6 = 10.0 m, and h7 = 12.0 m to it. The orientation measurements were carried out at several heights to
capture the multimodal vibration behavior of the stem. In an earlier study [34], it was found that the
Scots pine trees at the measurement site have at least four measurable modes of vibration.

A Kalman filter implemented in the Sensor Fusion and Tracking Toolbox of Matlab software,
version 2019a (The MathWorks, Inc., Natick, MA, USA) was used to calculate stem orientation (O) by
fusing the signals from the gyroscopes and accelerometers. From the fusion of the signals, information
on the offsets of the gyroscopes and accelerometers was obtained and used to calibrate D1 to D7.
After sensor fusion, the accuracy of D1 to D7 was tested in the laboratory. In the rest position, it was
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quantified at ±0.1◦ up to the 99th percentile. All devices used to measure airflow and stem orientation
were pointed northward to define equally aligned coordinate systems. D1 to D7 were installed in
white, reflective, 3D-printed housings to minimize unwanted sensor heating and sampled via Wi-Fi.

The total number of points for each of the analyzed time series was 864,000 values
(24 h × 36,000 values per hour). As done in previous studies [36,37], the time series measured at
h1 to h7 were divided into irregular intervals based on variance changes [48], because the segmentation
into irregular intervals allows better representation of short-time wind-tree-interaction dynamics
induced by organized turbulence (sweeps and ejections) with dominant periods of 20 s to 40 s at the
measurement site. To ensure comparability with previous studies where spectral analysis was used to
study the wind-induced tree response behavior, a minimum interval length of 4500 values (=̂7:30 min)
was defined. This minimum interval length allows a maximum of 192 intervals given equidistant
variance changes. However, after the segmentation, the number of measurement device-specific
intervals varied between 154 for D5 and 164 for D3 indicating multi-modal response behavior and
noise in the stem orientation time series [34,36,37].

2.3. Analysis of Wind-Induced Tree Response

The momentum flux at canopy top (M) was used to approximate the wind load acting on
the sample tree. As in previous studies [36,37], this approximation was preferred over more
sophisticated mechanistic wind load modeling because knowledge on important variables involved
in wind-tree-interactions, such as instantaneous changes in the drag coefficient and the frontal area
projected to the wind, is still incomplete under real, turbulent canopy wind conditions.

Wind vector data available from S3 was used to calculate Mi,j separately for orientation measured
with D1 to D7 as

Mi,j =

√(
u′i,jw

′

i,j

)2
+

(
v′i,jw

′

i,j

)2
, (1)

where u′i,j, v′i,j, and w′i,j are the fluctuations of the horizontal wind vector components ui,j (east-west),
vi,j (north-south) and the vertical wind vector component wi,j. The fluctuations were calculated by
applying the Reynolds decomposition. The subscripts i = 1, . . . , 7 are indices for D1 to D7 and j is an
indicator of the irregular, device-specific intervals.

The wind-induced tree reactions were quantified as orientation vectors (Oi,j) whose fluctuations
x′i,j and y′i,j in the horizontal x (east-west) and y (north-south) directions were calculated according to

Oi,j =
√

x′i,j
2 + y′i,j

2. (2)

To highlight central tendencies of the wind-induced tree response, data from the D1- to D7-specific
intervals were assigned according to the corresponding mean momentum flux (Mi,j) to four (k = 1, . . . ,
4) classes (M̂i,1 : Mi,j < 1.0 m2/s2, M̂i,2 : 1.0 m2/s2

≤Mi,j < 2.0 m2/s2, M̂i,3 : 2.0 m2/s2
≤Mi,j < 3.0 m2/s2

and M̂i,4 : Mi,j ≥ 3.0 m2/s2).

2.4. Bi-Orthogonal Decomposition

From a previous study carried out at the measurement site it is known that the wind-induced
response behavior of the Scots pine trees shows at least four vibration modes [34]. Multimodal response
behavior requires stem orientation measurements at multiple heights. To quantify the share of common
variance in the orientation measurements along the stem, the bi-orthogonal decomposition (BOD)
was applied to the stem orientation data. The BOD [49,50] was used to decompose the stem response
into a set of seven modes in the time-space domain. To apply the BOD, O1,j to O7,j were compiled
into one matrix, as described in a previous study [34]. Significant BOD-modes, which explain most
of the variance (VB) in the wind-induced stem response, were separated from noise using the Kaiser
criterion [51]. Ignoring the modes with negligible importance for wind-induced stem motion, the
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significant modes were then used to reconstruct wind-induced orientation along the stem. Because of
the nature of the BOD, the reconstruction led to an adjustment and homogenization of the temporal
dynamics in the Oi,j time series.

2.5. Singular Spectrum Analysis

To separate oscillatory (OS) from non-oscillatory (NOS) sway components in the BOD-adjusted
Oi,j time series, the singular spectrum analysis (SSA) was used. The SSA combines embedding of time
series with the singular value decomposition [52,53]. In previous studies [35,36], it was demonstrated
that the SSA enables the tree-individual separation of fundamental oscillatory sway from a nonlinear
trend in the stem response to wind excitation. It was furthermore demonstrated that sway of the
Scots pine trees at the measurement site in the fundamental mode, together with the nonlinear trend
component, may contain more than 85% of the total SSA-extracted signal variance (VS).

Following a previous study [35], the embedding dimension (L) was determined by producing
trajectory matrices in the range L = 10 to L = 30. The final L value was selected when (1) at least one
significant non-oscillatory component could be separated from significant oscillatory components and
noise, (2) the difference between the relative variance explained by two of the significant oscillatory
components was at a minimum, and (3) the temporal equivalent of L was in the range of ±0.4 s around
the damped fundamental sway period of the sample tree stem.

The decomposition of stem motion into OS and NOS is a crucial step in the detection of the tree
response components that are effectively coupled with dynamic wind loads [36,37].

2.6. Dynamic Time Warping

Although Mi,j and Oi,j share common features, results from numerous studies demonstrate that
the correlation between their temporal dynamics is low [32,35,54,55]. In these studies, values of the
corresponding correlation coefficient vary between -0.2 and 0.70. This is due to the nonlinearity of the
instantaneous tree response behavior to wind excitation. The nonlinearity is mainly caused by different,
concomitant damping processes including aerodynamic damping [56], friction between trees and tree
parts [57], multiple mass damping [58], multiple resonance damping [59], damping by branching [59],
and viscoelastic damping within above- and below-ground tree parts [60].

To reinforce the instantaneous covariation of wind loading and dynamic tree response (event
synchronization), the similarity of Mi,j and Oi,j were quantified using dynamic time warping [61,62].
Dynamic time warping turned Mi,j and Oi,j values into a common linear sequence (warping path) such
that the sum of Euclidean distances between corresponding values is smallest and the coincidence
between the warped Mi,j and Oi,j sequences is maximized. To align Mi,j and Oi,j sequences, their
elements were repeated as often as necessary to highlight their similarities.

If Mi,j and Oi,j have p = 1, . . . , P and q = 1, . . . , Q samples, the warping algorithm uses the

Euclidean distance dpq
(
Mi,j, Oi,j

)
between the pth sample of Mi,j and the qth sample of Oi,j to stretch Mi,j

and Oi,j onto the common linear sequence so that the global signal-to-signal distance measure is at a

minimum [63]. The algorithm arranges all possible values of dpq
(
Mi,j, Oi,j

)
into a lattice of the form:

d1Q · · · dPQ
. . .

... dpq

...

d12 d22
. . .

d11 d21 · · · dP1

(3)
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Then, it searches a path (d) through the lattice that is parameterized by the two sequences ix and
iy of the same length so that

di,j =
∑

p ∈ ix
q ∈ iy

dpq
(
Mi,j, Oi,j

)
(4)

is at a minimum. The algorithm starts at d11
(
Mi,j, Oi,j

)
and ends at dPQ

(
Mi,j, Oi,j

)
. The changes of the

warping path are used to find the minimum distance between Mi,j and Oi,j are combinations of vertical
((p,q)→ (p + 1,q)), horizontal ((p,q)→ (p,q + 1)), and diagonal moves ((p,q)→ (p + 1,q + 1)).

The Signal Processing Toolbox of the Matlab software, version 2019a (The MathWorks, Inc., Natick,
Massachusetts) was used to dynamically warp Mi,j and Oi,j.

2.7. Turbulence Factor Calculation

To compare the impact of maximum effective dynamic wind loading to the impact of median
wind loading on the effective tree response, the turbulence factor (T) was calculated as

Ti,j =
NOS98i,j

NOS50i,j

, (5)

with NOS98i,j being the measuring height- and interval-specific 98th percentile of NOS that approximates
the maximum wind load; NOS50i,j is the median measuring height- and interval-specific wind load
representing central tendencies in the effective wind excitation of the sample tree.

The gust factor G, which was based on maximum 3 s gust speed in earlier studies [64,65], was not
used and evaluated here, because it cannot be calculated because of the kind of data processing in
this study.

3. Results and Discussion

3.1. Mean Momentum Flux-Induced Tree Response

The Mi,j-dependent mean orientation at h1 to h7 is displayed in Figure 3. At the stem base, O1,j

is close to zero over the entire M1,j range. With increasing measuring height, Oi,j increases along the
stem toward the crown reaching maximum O7,j values of 2.2◦. To quantify the statistical dependence
between Mi and Oi, second order polynomials were fitted by the least squares approach. The resulting
coefficients of determination (R2) are very high at h2 to h7 and vary in the range 0.95 to 0.97. The
marginal variation of R2 from h2 to h7 may result from the multimodal response behavior of the stem to
wind loading. A much lower R2 value was calculated from the orientation measurements made at h1.
As will be confirmed later, the low R2 value at the stem base results from very weak wind excitation of
the stem part closest to the ground.

The use of irregular intervals led to higher R2 values compared to intervals of equal length. The
differences between irregular and fixed-length 10 min intervals were assessed by the difference in R2

(∆R2). The largest ∆R2 value was quantified at h1 being ∆R2 = 0.38. At h2, ∆R2 = 0.06; at h3, ∆R2 = 0.04.
Higher up, at h4 to h7, ∆R2 decreased further to 0.02. The larger differences in R2 in the lower parts of
the stem are because the wind loads caused a weaker response than in higher parts of the stem. In the
lower parts of the stem, only the highest wind loads were able to excite a distinct response. Thus, it
can be concluded that the importance of the selection of irregular intervals shows a dependence on the
impact of wind loading in different parts of the stem.
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Figure 3. Mean orientation (O1,j to O7,j) during irregular intervals (j) at measuring heights (a–g) h1

to h7 plotted against mean momentum flux at canopy top (M1,j to M7,j) on 30 January 2019. R2 is the
coefficient of determination.

The corresponding temporal behavior of M7,j and O7,j is shown Figure 4a. From this, it is clear
that O7,j closely follows M7,j over the course of the analyzed day. The M̂k-related tree response shows
increasing mean deflection at h1 to h7 with increasing wind load (Figure 4b). At low wind loading in
M̂i,1, the entire stem is only slightly deflected. In this momentum flux class, the orientation values
mostly varied in the range of the measurement uncertainty. For M̂7,4, Ô7,4 = 1.7◦ at h7 = 12 m.
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3.2. Bi-Orthogonal Decomposition

As can be expected from a previous study into plantation-grown Scots pine [34], results from
the BOD demonstrate that orientation measurements at h1 to h7 strongly covary. The largest part of
the variance in the interval-specific orientation matrices was assigned to the first BOD component
with VB1 varying between 75 and 93% as a function of M7,j (Figure 5a). Much less of the variance
in the orientation matrix was explained by the second BOD component, with VB2 values ranging
wind, load-dependent, from 7 to 23% (Figure 5b). In addition, it becomes clear that VB1 increases with
increasing wind load while VB2 decreases as the wind load increases. The opposing tendencies in
the behavior of VB1 and VB2 become particularly evident when their ratio (VB1/VB2) is calculated
(Figure 5c). Whereas at the lowest wind loads VB1/VB2 ≈ 4, its value increases at least to 8 for the
highest wind loads. The remaining variance in the orientation matrices, which was assigned to BOD
components 3 to 7, ranged between 0 and 2%.
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Figure 5. Explained variance associated with (a) the first (VB1) and (b) the second (VB2) bi-orthogonal
decomposition (BOD) component resulting from wind-induced stem motion; (c) ratio VB1/VB2; all as
a function of mean momentum flux at canopy top (M7,j).

When M7,j > 0.85 m2/s2, the first component was the only significant BOD component. In all
intervals where M7,j ≤ 0.85 m2/s2, two significant BOD components were detected. The presence of
only one significant BOD component, even at very low wind loads, indicates that the kinetic energy
transferred to the tree was mostly converted into elastic energy that drove the sway of the stem in one
mode. Small amounts of kinetic energy contained in the airflow at canopy top were enough to induce
movement in the stem down to h2. Damping processes such as multiple mass damping in the crown
and friction with neighboring trees that can be assigned to the second BOD component [34], were only
of minor importance for overall tree motion damping.

3.3. Singular Spectrum Analysis

Except for the stem base, the wind-induced stem motion was dominated by NOSi,j. As examples,
the temporal evolution of VSi,j associated with NOSi,j (VS1i,j) over the course of the analyzed day is
shown in Figure 6 for Mi,j at h7, h5, h3, and h1. From the VS17,j, VS15,j, and VS13,j curves illustrated
in Figure 6a,c,e, respectively, it can be deduced that the importance of NOSi,j to wind excitation in
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the upper stem parts grows with increasing wind load, a behavior similar to the behavior reported
in a previous study [36]. In intervals, where only very weak wind loading of less than 0.59 m2/s2

occurs, VS17,j is about 25%, with M7,j = 0.59 m2/s2 being the estimated change point from a two-phase
regression model [66]. The change point clearly indicates the change in the tree response behavior to
wind excitation. The change points are also drawn as dashed blue lines in Figure 6a,c,e to emphasize
once again that the tree response behavior to wind loading is very quickly dominated by sway in the
non-oscillatory SSA mode after the blue line has been crossed. At higher wind loads, VS17,j, VS15,j,
and VS13,j steeply increase and reach values up to 75%. This increase documents the rapid and strong
growth of the importance of NOSi,j for the total tree response in the upper parts of the stem.Forests 2020, 11, 145 11 of 21 
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In contrast to the other stem sections, VS11,j changed to a lesser extent during the day (Figure 6g).
It fluctuated between 25% and 50% with a much weaker dependence on M1,j. Therefore, a two-phase
regression model could not be fitted to the point cloud shown in Figure 6h. Instead, the red curve is
the result from fitting a second order polynomial model to the VS11,j point cloud. However, there is an
increasing tendency in VS11,j with increasing wind load.

An opposite pattern to VS1i,j is found in the variance explained by OSi,j (VS2i,j). At low wind
loading of M7,j < 0.70 m2/s2, more than 20% of the variance contained in the O7,j time series was
assigned to stem motion in the fundamental mode (Figure 7a). With increasing wind load, VS27,j
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rapidly drops to just over 10%. Again, the value of M7,j < 0.70 m2/s2, where the distribution of signal
energy on the response components changes, corresponds to the change point of the results from a
two-phase regression model (Figure 7b). The dashed blue line in Figure 7a reinforces the impression on
the wind load-dependent drop of VS27,j further. Similar changes as in VS27,j can also be found in VS25,j

(Figure 7c) and VS23,j (Figure 7e). At the stem base, VS21,j is almost independent of M1,j (Figure 7g). It
varies at about 40% over the course of the day with decreasing tendency at higher wind loading.Forests 2020, 11, 145 12 of 21 
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Figure 7. (a, c, e, g) Explained variance associated with the oscillatory (OSi,j) singular spectrum analysis
(SSA) component (VS2i,j with i = 1, 3, 5, 7) in dependence of mean momentum flux at canopy top
(Mi,j) on 30 January 2019. The red lines that are shown in the subplots in the right column of the
figure were calculated with (b, d, f) two-phase regression models and (h) a second-order polynomial
regression model.

The change point values associated with the wind load-dependent drop of VS2i,j are in the same
wind loading range as the change point values of VS1i,j. This is a clear indication that the importance
of OSi,j in the fundamental mode for the total wind-induced motion decreases whereas NOSi,j gains
considerably in importance with increasing wind load. Moreover, it can be ruled out that wind-induced
resonance boosted tree motion. These findings are in line with results from previous studies [36,37,67]
and have important implications for the interpretation of wind-induced tree sway in the fundamental
mode. Since sway in the fundamental mode is largely decoupled from the canopy airflow, it is an
efficient way to dissipate kinetic energy that was transferred from the airflow into tree motion [59].

Although upper stem parts reacted strongly to the wind excitation, the wind loads were not strong
enough to cause pronounced reactions at the stem base. Therefore, it is assumed that the anchoring of
the tree in the ground was sufficient and that there was no acute risk of the tree being damaged by
the wind.
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The increasing importance of NOSi,j in dependence of the wind load has implications for the
significance of the dynamic excitation in the estimation of storm stability by static tree pulling tests. It
is very likely that sway in the fundamental mode does not severely affect the tree resistance against
wind loading. In addition to the quasi-static wind load, it is the occurrence of exceptionally strong
organized turbulence structures such as sweeps or ejections to which forest trees respond that cause
damage [68].

3.4. Dynamic Time Warping

Based on the findings from SSA, further analysis was focused on the non-oscillatory tree response
component. Since it has been demonstrated that this component is most strongly coupled with
components in Mi,j consisting only of frequencies below f0 [36,37], Mi,j time series were low-pass
filtered using a cut-off frequency of 0.2 Hz. The applied fourth order Butterworth filter attenuated all
variations of Mi,j shorter than 5.0 s. Figure 8 shows an example of low-pass filtered momentum flux
and NOS7,68. In the presented 68th interval with an original length of 5553 values, maximum low-pass
filtered M7,68 values exceeded 31 m2/s2 and NOS7,68 reached values of 12◦ (Figure 8a). It is evident
that the temporal variation of NOS7,68 does not always match the temporal variation of low-pass
filtered M7,68 although there are only a few meters distance between the sample tree and the airflow
measurement at the canopy top.
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Figure 8. (a) Low-pass filtered momentum flux (M7,68) and non-oscillatory SSA component (NOS7,68)
related to measurements at h7 = 12 m in the device-specific, irregular interval 68; (b) series of dynamically
time warped M7,68 and NOS7,68; (c) scatter plot of dynamically time warped M7,68 and NOS7,68. The
color bar indicates the density of the points. R2 is the coefficient of determination.
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After the feature alignment by dynamic time warping that synchronizes all strong wind load
events with the highest NOS7,68 values, the interval length increased to 9309 values. To enable the
comparison to the original time series, time warped M7,68 and NOS7,68 were downsampled to the
original interval length. Although the dynamic time warping considerably modifies low-pass filtered
M7,68 and NOS7,68, it cannot achieve a perfect match of the temporal dynamics in the two time series
(Figure 8b). However, the alignment significantly improves their coincidence. More importantly, the
approach includes all dynamic and quasi-static wind load components that effectively deflect the
stem of the sample tree. A scatter plot of the aligned M7,68 and NOS7,68 time series (Figure 8c), can
visualize this. Most of the values are tightly grouped along the regression line. The highest NOS7,68

point density occurs at the lowest M7,68 values.
The values from the time series segments in which the adjustments are not optimal appear as

arrays of column- and bar-like constant values (less than 10% of the total number of values) because
they are filled up with constant values. Ignoring these values, the robust fitting (with 95% confidence
bounds) of the points yields R2 = 1.00, which stands for an excellent fit. The slope of the regression line
(Sl) indicates the rate of change in NOS7,68 (0.37◦/(m2/s2)) in dependence of low-pass filtered M7,68.

The high R2 values obtained in this study are well in the range of R2 values (0.79–0.97) reported in
previous studies where interval maxima of tree response were compared to interval maxima of wind
speed [69] and wind speed squared [26]. On the other hand, the calculation of R2 of the relationship
between hourly maximum tree response and the square of the hourly canopy-top wind speed as
described in a previous study [26], yielded values between R2 = 0.51 at h1 to R2 = 0.84 at h6 which is
also in the range of R2 values reported in [26] but clearly lower than the R2 values obtained using the
approach proposed in this study.

The dynamic time warping resulted in a strong linear dependence of NOS7,68 on low-pass filtered
M7,68 over the entire NOS7,68 range. Because of this dependence, the impact of effective dynamic
and quasi-static wind loading on tree deflection can be directly estimated. Compared to static tree
pulling tests and maximum tree response vs. maximum wind speed approaches, this kind of response
assessment incorporates all turbulent and quasi-static components effectively involved in the occurrence
of the maximum wind-induced tree response.

A summary of all Sli,j values calculated from linear regression analysis between low-pass filtered
Mi,j and NOSi,j is presented in Figure 9 by boxplots. Median slope values as indicated by a red
vertical line, increase from 0.00 ◦/(m2/s2) at h1 to 0.32 ◦/(m2/s2) at h7. In the upper parts of the trunk,
the dispersion of the Sli,j-values also increases, which expresses the range of possible stem reactions to
the effective wind loads. In contrast to previous approaches, this type of analysis provides probabilistic
estimates of the wind load-dependent effective tree response instead of providing fixed Sl values.

Since O1,j was always very close to zero and did not increase after the impact of the highest
wind loads, it is assumed that the root plate resisted all wind loads. In the previous quasi-static tree
pulling studies [27,28], root plate inclination less than a benchmark of 0.25◦ was considered to be
sufficiently low to stay in the elastic deformation range below the limit of proportionality in stem
bending (Figure 10) and to prevent primary failure in the roots. If this benchmark is transferred to
this study, one can assume that the tree response at the stem base was always in the range of elastic
deformation and did not cause any plastic deformation in the roots.

Although this study allows only limited portability using only one plantation-grown Scots pine
tree, there is a great potential to transfer the described approach to more complex structured trees.
Previous studies have already shown for other trees and other tree species that non-oscillatory tree
response strongly depends on the effective wind loading [34–36,38,39]. However, for now the results
can only be interpreted over the range of non-destructive wind loading.
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Figure 10. Idealized dependence of tree response at stem base to wind loading. The relationship is
based on examples provided in previous studies [24,27,28].

3.5. Turbulence Factor

Boxplots depict the variation of Ti,j along the stem in all intervals, where low-pass filtered
Mi,j > 1.0 m2/s2 (Figure 11). The median of T1,j = 6.5 is significantly (95% confidence) higher than at
all other heights. The medians of T2,j = 5.4 to T7,j = 4.8 vary in a narrow range with no significant
differences as indicated by the overlap of the notches in the boxes. That Ti,j is not a constant value can
be deduced from the displayed interquartile ranges. At h1, T1,j shows the greatest variability. There, it
varies by 2.1 between T1,j = 5.8 and T1,j = 7.9. From h2 to h7, the interquartile ranges span 1.3 to 1.7.
Since Ti,j is not a constant along the stem and is dependent on the wind load, it would therefore not
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be appropriate to use Ti,j as a fixed value in systems for storm damage analysis, but to implement
it probabilistically.Forests 2020, 11, 145 16 of 21 

 

 

Figure 11. Turbulence factor 𝑇i,j at heights ℎଵ to ℎ଻ for all intervals where mean momentum flux at 
canopy top 𝑀ഥ୧,୨ > 1.0 m²/s². The red vertical line indicates medians of 𝑇୧,୨. The whiskers include all 
values that lie within a distance from the first and third quartiles that is less than 1.5 times the inter-
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Figure 11. Turbulence factor Ti,j at heights h1 to h7 for all intervals where mean momentum flux at
canopy top Mi,j > 1.0 m2/s2. The red vertical line indicates medians of Ti,j. The whiskers include
all values that lie within a distance from the first and third quartiles that is less than 1.5 times the
interquartile range.

The significantly higher median T1,j value at stem base may be explained by the strength of the
effective wind load. It was sufficient to excite the upper part of the stem in a similar way, but mostly
too low to stimulate stem reactions at h1. Only the highest wind loads were able to excite a pronounced
response at the stem base. This implies that the height, at which the turbulence factor, the gust factor
and the turning moment coefficient are quantified as a function of the wind load, affects their value,
and thus also the assessment of the storm hazard.

The comparison of the Ti,j values determined here shows that they deviate from the gust factors
reported in previous papers [64,65]. These papers report both lower and higher gust factors from
field and wind tunnel experiments. Thus, it can be concluded that there is still great uncertainty in
the quantification of the impacts of maximum and quasi-static wind loading on the tree response.
These differences are certainly largely due to the different approaches chosen in the studies. One
advantage of the approach applied here is that only effective wind loads and tree response components
were considered and not the entire range of wind loads and response components, which includes
ineffective components such as oscillatory sway in the fundamental mode. We therefore argue that the
consideration of oscillatory components leads to biased relationships between response maxima and
wind maxima.

4. Conclusions

In contrast to previous approaches, the proposed method uses only effective wind loads to quantify
wind-induced reactions of the sample tree. It excludes sway at the damped fundamental frequency
that is only to a small extent directly caused by wind loads. The linearization of the relationship
between effective wind loading and non-oscillatory tree response allows the direct quantification
of the resistance of the tree to wind-induced deflection. Separating effective from ineffective wind
loading improves the estimation of the impact of maximum loads from turbulence under high wind
conditions. Under high wind loads, the separation is particularly important and necessary because
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trees are exposed to a preload, which is caused by the quasi-static load associated with high mean wind
speed. We argue that the combined assessment of the impacts of high quasi-static wind loads and high
dynamic wind loads improves the of quantification of the damage probability. This is because the
proposed method can be used to localize the limits of elastic stem deformation by extrapolating the
observed linear relationships of effective wind-tree coupling. Because of the expected changes in the
dependence of the tree response on wind loading in the range of plastic deformation until tree failure,
the method is certainly capable of better delimiting the plastic deformation range. The proposed
approach also enables probabilistic estimates of the wind load-dependent tree response to effective
wind loading using slope values of the regression calculated from low-pass filtered momentum flux at
canopy top and non-oscillatory SSA components instead of using absolute tree response measures that
are very likely to fluctuate under real conditions.

Since the sampled Scots pine is a simply structured tree whose wind-induced response is clearly
dominated by vibrations of the stem in the first mode, it is to be expected that there are not only
differences in the parameterization of the observed linear relationships specific to different trees and
tree species, but also differences caused by stand structure and site diversity. Therefore, further work
needs to be carried out to determine these relationships for many more trees in order to prepare their
implementation in existing systems used for storm damage analysis. With the implementation in
these systems, the effective impact of wind load on trees can be better estimated and thus improve
the estimation of critical wind speeds. Further investigations must also be carried out regarding the
comparability between the proposed method and tree pulling tests. Since this study has shown that
the quasi-static, and not the dynamic tree reaction in the range of the fundamental sway frequency
dominates the maximum wind-induced response of the sample tree, there is certainly a great potential
for connecting the results from both approaches in future studies on wind damage to trees.
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Nomenclature

Acronyms
BOD bi-orthogonal decomposition
CWS critical wind speed
D1-D7 seven MEMS motion-tracking devices installed at h1 to h7

MEMS micro electro-mechanical systems
S1-S5 five ultrasonic anemometers installed on the meteorological measurement tower
S3 ultrasonic anemometer installed close to canopy top
SSA singular spectrum analysis
Symbols
d Euclidean distance
f0 fundamental sway frequency of the stem (Hz)
g gravity acceleration (m/s2)
G gust factor
hi mounting heights (i = 1, . . . , 7) of D1-D7 along the stem of the Scots pine tree (m)
L embedding dimension
Mi,j momentum flux in height i and interval j (m2/s2)
Mi,j interval mean of Mi,j (m2/s2)
M̂i,k mean of Mi,j assigned to four classes (m2/s2)
NOSi,j non-oscillatory sway component determined with SSA in height i and interval j (◦)
NOS50i,j 50th percentile (median) of NOSi,j (◦)
NOS98i,j 98th percentile of NOSi,j (◦)
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Oi,j orientation in height i and interval j (◦)
Oi,j interval mean of Oi,j (◦)
Ôi,k mean of Oi,j assigned to four M̂i,k classes (◦)
OSi,j oscillatory sway component determined with SSA in height i and interval j (◦)
R2 coefficient of determination
Sli,j slope of regression line calculated between NOSi,j and low-pass filtered Mi,j (◦/(m2/s2))
Ti,j turbulence factor calculated in height i and interval j
ui,j wind vector component in east-west direction in height i and interval j (m/s)
u′i,j fluctuation of ui,j (m/s)
vi,j wind vector component in north-south direction in height i and interval j (m/s)
v′i,j fluctuation of vi,j (m/s)
VBj variance explained by BOD components in interval j (%)
VSi,j variance explained by SSA components in height i and interval j (%)
VS1i,j variance explained by NOSi,j (%)
VS2i,j variance explained by OSi,j (%)
wi,j vertical wind vector component in height i and interval j (m/s)
w′i,j fluctuation of wi,j (m/s)
xi,j orientation component in east-west direction in height i and interval j (◦)
x′i,j fluctuation xi,j (◦)
yi,j orientation component in north-south direction in height i and interval j (◦)
y′i,j fluctuation of yi,j (◦)
Subscripts
i index for MEMS motion tracking devices
ix index for horizontal moves in dynamic time warping
iy index for vertical moves in dynamic time warping
j index for irregular, device-specific analysis intervals
k index for mean momentum flux class
p index for momentum flux sample in dynamic time warping
P maximum of p
q index for orientation sample in dynamic time warping
Q maximum of q
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