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Abstract: There is an increasing trend in the use of environmentally-friendly materials in wood
protection. This includes the use of less toxic active ingredients, as well as better fixation. This study
investigates the formulation based on the combination of copper and Saqez resin on the physical and
biological resistance properties of poplar wood. Samples were treated by either copper-ethanolamine
(Cu/MEA) and/or Saqez resin at various treatment levels. A vacuum pressure procedure was applied.
The retention, weight percent gain, water absorption, volumetric swelling, and decay resistance of
the samples were then determined. The highest retention and weight percent gain were obtained
in the samples treated with the combination of copper-based system and Saqez resin. Additionally,
the combination of the copper and Saqez improved the physical properties and decay-resistance
against white-rot fungus Trametes versicolor.
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1. Introduction

Wood, as a versatile biocomposite material, has had a wide variety of applications, such as furniture,
construct structures, artifacts, toolmaking, for several centuries [1]. However, the application of less
durable wood species in outdoor applications is frequently limited [2]. Namely, wood is susceptible to
decay by wood-destroying organisms, such as fungi and insects. Predominant hygroscopicity, resulting
from the presence of the abundant hydroxyl groups in wood, renders it susceptible to fungal infestation.
Wood and wood-based products often need treatments with preservatives to increase durability and
achieve the desired service life [3–6]. One effective method to improve the bio-resistance features of
wood and wood-based products is the utilization of natural substances, such as plant essential oils and
resins [7,8]. There is an ever-increasing interest in the application of essential oils due to their natural
safety and environmentally friendly aspects. They are effective against bacteria [9,10], fungi and
molds [11–15], and insects [16,17]. Su et al. [18] found that the essential oils of Eucalyptus citriodora can
prevent the growth of fungi and molds. Yang and Clausen [19] obtained mold inhibition on southern
yellow pine by geranium and thyme oil. Mohareb et al. [20] monitored the antifungal activity of
18 essential oils from Egyptian plants against wood-decay fungi and concluded that the essential oils
of Cupressus sempervirens, Citrus limon, Thuja occidentalis, Schinus molle, A. monosperma, and Pelargonium
graveolens were the most potent inhibitors against fungi. Bahmani and Schmidt [21] studied 16 essential
oils against wood decay fungi and molds and found lavender oil, lemongrass oil, and thyme oil to
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be the most effective against mold and wood decay fungi. However, although these oils improve
the overall performance of wood, they are hardly classified as wood preservatives, as biocides have to
pass strict efficacy and eco-toxicity assessment, prescribed by authorization agencies, such as European
Chemicals Agency (ECHA) in EU.

Nevertheless, the use of plant essential oils in wood protection has some limitations. Applications
of the natural oils have some restrictions a due to their high volatility, insufficient fixation, and
leaching from treated wood if the oils are not combined with fixatives. The conjunction of natural oils
with other biocides, such as copper compounds, have been proposed for overcoming deficiencies of
environmentally friendly preservatives, such as natural oils, and may be able to improve their efficacy
against fungi and insects. Alfredsen and Flaete [22] obtained tall oil combined with copper that can
provide some protection for treated wood. Can and Sivrikaya [23] investigated the combination
treatment of tall oil and linseed and copper on some properties of pine wood. They concluded that
copper and oil combination could improve the physical and biological properties of wood as well as
decrease copper leaching.

Copper (Cu) is one of the most effective and extensively used wood biocide. It can be effective
against wood-decaying fungi and some termites if applied in sufficient quantities [24]. Copper-based
preservatives are traditionally applied for the protection of posts, bridges, vineyard poles, noise barriers,
fences, etc. In the past, copper was mixed with chromium compounds in chromated copper arsenate
compounds (CCA). Nowadays, CCA treatment is forbidden in Europe and the United State—for
many applications, mainly due to the end of life issues. The alternatives to these biocides are various
organic-based substances, such as ammoniacal copper quaternary (ACQ) copper azole (CA), and
bis-(n-cyclohexyldiazeniumdioxy)-copper (CuHDo) [25]. Copper-based preservatives are usually
combined with ethanolamine to improve fixation and enable better penetration [26]. Copper azole
preservatives are one of the most important solutions for wood preservation [27]. It is commercially
available for residential applications, free of arsenic and chromium, and able to be applied in
above-ground, ground contact, and freshwater applications. However, high levels of copper and
relatively high formulation cost [28], as well as copper release and disposal issues in the treated
wood, are recognized to be the main limitation for future use [29]. Moreover, Copper azole belongs to
the water-borne preservatives group, and treated wood suffers from poor dimensional stability [30].
To enhance the water repellent properties of copper azole-treated wood, adding hydrophobic materials,
such as rosin solutions, coating compounds, etc., is needed.

One of the most economically important non-wood forest products of Zagros forests in the west of
Iran is pistachio tree resin known as “Saqez”. Saqez is used for a wide variety of industrial and traditional
applications, such as food and pharmaceutical formulation [31]. Saqez is a semi-dense, adhesive,
liquid resin comprising antioxidants, has antimicrobial, antibacterial, and antifungal properties, and
is applied in the preparation of ointments for skin disorders [32,33]. The increasing request in wood
protection technology for safe, low cost, sustainable, environmental, natural, and biodegradable
preservatives has convinced scientists and technologists to examine new sources of natural materials as
substitutes for chemical ones. Populus (poplar) tree species, including hybrid varieties, are cultivated as
a fast-growing bioenergy crop, but can also be utilized to produce wood and derived materials. Poplar
wood was chosen as it is one of the most important plantation species [34]. One of the most significant
disadvantages of poplar wood that limits its usability is low natural durability [35]. The respective
study aims to improve the durability and water performance of poplar wood with pistachio tree resin
(Saqez) alone or combined with copper-ethanolamine (Cu/MEA) and Saqez.

2. Material and Methods

2.1. Material

The boards were cut from the trunks of three 23-year-old poplar trees (Populus deltoids) located
in the Khirod area (Mazandaran province, Northern part of Iran). and air-dried. Wood samples
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were cut from the boards for the various tests. All samples were free of defects, such as knots, resin
pockets, and fungal infections. The wood sample sizes for the physical tests were 20l × 20r × 20t

mm3
, according to ISO 13061:2016 [36]. Five replicates were cut for each test, along with five replicate

control samples. For fungal durability studies, the sample size was 50l × 25r × 15t mm3 [37] with five
replicates. For the respective experiments, five samples were chosen, as prescribed by the respective
standard. The experiment was rather long-lasting, and the capacities of the incubation chambers
were limited, which limited the replicates numbers. Besides, the response of the respective fungal
strains to the treatment was rather uniform, as seen from the deviations of the mass loss. Before
treatment, samples were oven-dried (103 ◦C, 24 h), to obtain constant moisture content and to determine
their initial masses. The density of the oven-dried specimens was in the range of (460 ± 20) kg/m3.
To ensure maximum uptake of the treatment solutions, none of the surfaces of the wood samples
was sealed. The copper-containing wood preservative used in this study was copper-ethanolamine
(Cu/MEA), which consisted of CuCO3 (Merck) and ethanolamine (C2H7NO). The resin of wild pistachio
(Pistacia atlantica) trees called “Saqez” was obtained from the area located in Charmahal and Bakhtiari
province, Southwest of Iran.

2.2. Methods

Before the treatment process, samples were divided into three groups. The first group was treated
with copper-ethanolamine (Cu/MEA). The copper concentration was 0.5% in all tests. This concentration
is usually sufficient for the protection of wood in-ground applications. The second group was treated
with various concentrations of (5%, 10%, and 15%) pistachio tree resin. Ethanol, with 96% purity,
was used in the preparation of the resin. The third group was initially impregnated with copper
amine-based wood preservative and afterward treated with resin at a concentration of 15% (Table 1).

Table 1. Experimental design of the study.

Test Groups
Preservative Solution (%)

Cu (%) Saqez Resin (%)

A Control 0 0
B Copper/MEA * 0/5 0

C Saqez
0 5
0 10
0 15

D Copper/MEA + Saqez 0/5 15

* Copper-ethanolamine.

For treatments, a vacuum pressure impregnation was applied in a pilot plant, whereby the vacuum
of 0.8 bar lasted for 30 min, followed by pressure at 4 bar for 120 min. After that, samples were stored
for two weeks in the lab ambiance for evaporation of the solvent. The retentions for each treatment
were calculated according to the Equation (1):

R =
G×C

V
× 100 kg m−3 (1)

where G is the amount of treating solution absorbed the samples (kg); C is the concentration of
the solution (%), and V is the volume of the samples (m3).

After treatment, the oven-dry (103 ◦C for 24 h) weight of all samples was evaluated and used to
calculate the weight percent gain (WPG) (Equation (2)):

WPG(%) =
M2 −M1

M1
× 100 (2)

where M2 is the sample weight after treatment, and M1 is the sample weight before treatment.
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2.2.1. Water Absorption and Volumetric Swelling Measurements

Water absorption and volumetric swelling tests were carried out by soaking the treated and
untreated samples for 2, 4, 6, 8, 24 h, and repeated at 24 h intervals at room temperature following
ISO 13061:2016 [36]. The water was replaced with fresh. Water absorption and volumetric swelling
were evaluated according to Equations (3) and (4), respectively:

WA(%) =
(W1 −W0)

W0
× 100 (3)

where WA is water absorption (%), W1 is the weight of samples after immersion, W0 is the oven-dried
weight before immersion.

VS(%) =
(V1 −V0)

V0
× 100 (4)

where VS is volume swelling (%), V1 is the volume of samples after immersion, and V0 is the volume
of samples before immersion.

2.2.2. Biological Durability

The European EN 84 standard [38] describes a method for artificial aging (leaching) of wood
before testing the biological effectiveness. This standard was designed to simulate extensive leaching
by natural precipitation. The first step was impregnation with demineralized water. The samples
were stacked in a container, weighed down, and vacuum impregnated (4 kPa) with demineralized
water for 20 min and soaked for an additional 2 h. Samples were then immersed in water for 14 days,
and during this period, water was replaced nine times. Biological durability was evaluated on both
leached and unbleached samples in accordance with the European method [37] to assess the resistance
to white-rot fungus. The decay chambers were Petri dishes containing 4.8% malt extract agar (Merck,
Darmstadt, Germany) that were inoculated with an agar plug cut from an actively growing culture of
Trametes versicolor (L.: Fr.) Pilát, strain CTBA 863 from France, derived from the strain collection of the
University of Hamburg. Wood samples were oven-dried at 103 ± 3 ◦C for 24 h and weighed before
fungal exposure. The treated and untreated samples were subjected to the respective fungi by placing
them on mycelia grown in the Petri dishes. The wood samples were incubated for 16 weeks at 23 ◦C
and 65 ± 5% relative humidity. At the end of exposure time, the mycelia coverings on the sample
surfaces were removed and weighed. After exposure, surface mycelium was scraped off, and wood
samples were dried at 103 ◦C for 24 h and weighed again to calculate the mass loss according to
Equation (5):

ML(%) =
M0 −M1

M0
× 100 (5)

where ML is the mass loss (%), M0 is the oven-dry weight of the sample before fungi test (g), and M1 is
the oven-dried weight after fungi test (g).

2.2.3. Statistical Analysis

The obtained data were subjected to the analysis of variance (ANOVA) using SPSS Version 25.0,
(IBM SPSS Statistics for Windows, IBM Corporation, Armonk, NY, USA). All data checked for normality
requirement with a Shapiro–Wilks test. Bootstrapping and robust homogenous groups were used.
Means were analyzed and grouped using Duncan’s multiple range test (DMRT).

3. Result and Discussion

Populus deltoids was chosen for this study because it is used prevalently in a wide variety of
applications in Asia, Europe, and America. The majority of this wood is used for energetic purposes,
composites, veneers, packaging [34]. However, the industry is looking for applications with higher
added value as well, such as furniture, decking, etc. If poplar wood is to be used in more exposed
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applications, it has to be protected to limit fungal decay [39]. The retention of preservatives is the first
substantial factor that shows the quality of the impregnation. Retention of the active ingredients
increased with increasing resin concentration (Figure 1). Namely, wood treated with the lowest
concentration of resin retained 18.4 kg/m3 of the resin, while the samples that were treated with
the highest concentration of the resin system, took up 74.5 kg/m3 of the resin. It seems that ethanol
solution has sufficient viscosity that enables good penetration into wood. ANOVA test results indicated
that there was a significant difference between the retention of preservatives at the 99% confidence
interval (p < 0.01) (Table 2). Duncan’s test classified the value of retentions into four groups.
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Figure 1. Boxplot of wood preservative retention in the treated wood samples.

Table 2. Analysis of variance and Duncan’s multiple range test (DMRT) for preservative retention in
the treated wood samples.

Treatment Retention *
(kg/m3)

Shapiro–Wilk Test
p-Value

ANOVA
p-Value DMRT **

Saqez 5% 18.42 ± 3.09 0.434

0.000

a
Saqez 10% 49.85 ± 5.20 0.910 b
Saqez 15% 74.55 ± 5.19 0.911 c

Cu/MEA + Saqez 15% 120.56 ± 4.82 0.689 d
Cu/MEA 15.24 ± 2.32 0.914 a

* Retention as average ±robust confidence interval. ** Means with the same letter are not significantly different
according to DMRT.

The highest retentions were observed at samples that were first treated with the copper-based
system and in the later stage with the resin-based system. These kinds of impregnations are called dual
treatments and are reported in the literature already [40]. Retention of wax into the copper-ethanolamine
based system was higher than non-copper treated wood. It can be assumed that one of the possible
reasons for this occurrence could be assigned to the wood swelling efficacy of ethanolamine [41].

Wood retention data were in line with WPG data. In general, WPG increased with increasing resin
concentration. Similarly, as reported for retention data, the highest WPG was determined in samples
treated with copper-ethanolamine solution subsequently treated with resin (Figure 2). High WPG can
be ascribed to the reaction of copper-ethanolamine complexes with wood and resin [42]. However,
negative WPG was determined in samples treated with the lowest concentration of the resin. This can
be ascribed to the fact that there might be some extractives leached from wood during impregnation
with the ethanol-based solution. Besides, part of the resin might evaporate from the wood during oven
drying. Predominately, the melting point of the resin was rather low. The melting point was between



Forests 2020, 11, 667 6 of 11

50 ◦C and 60 ◦C. ANOVA test results showed that there was a significant difference between the WPG
of samples (p < 0.01) (Table 3). Duncan’s test classified the value of WPG into five groups.
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Table 3. Analysis of variance and Duncan’s multiple range test (DMRT) weight percent gains in the
treated wood samples.

Treatment WPG * (%) Shapiro–Wilk Test
p-Value

ANOVA
p-Value DMRT **

Saqez5% −0.81 ± 0.05 0.148

0.000

a
Saqez10% 6.17 ± 1.61 0.721 b
Saqez15% 9.66 ± 1.47 0.327 c

Cu/MEA + Saqez15% 23.21 ± 3.21 0.380 d
Cu/MEA 2.53 ± 0.12 0.346 e

* WPG as average ± robust confidence interval. ** Different letters show a significant difference at 5% probability,
according to DMRT.

Recent studies clearly indicate that the performance of wood in above-ground outdoor applications
is a function of inherent durability (presence of biologically active extractives and/or fungicides) and
water exclusion efficacy (the ability of wood to remain dry) [43]. Therefore, studies of water ability
are essential. In addition, water repellents can slow down copper leaching [44]. As can be resolved
from Figure 3, resin impregnation had a positive effect on water performance. Wood treated with
resins took up less water than control wood. This can be ascribed to the lumen filling as well as to
the hydrophobic nature of the resins. A rather notable difference was evident from the beginning.
Water repellency increased with increasing retention. The moisture content of wood treated with 5%
concentration of resin was 25.2%, while the MC of the samples treated with copper and 15% ethanol
concentration of Saqez resulted in an MC of 14.1%.

Figure 4 shows a good correlation between volumetric swelling and wood MC. That which
exhibited good water exclusion efficacy exhibited good dimensional stability. The influence of
the retention on wood swelling was even more prominent than on wood moisture content. In contrast
to wood MC, the differences between treatments increased with immersion time. Thus, the highest
difference was noted at the end of the 192 h lasting immersion. Namely, swelling of control samples
was 26.7%, while swelling of samples treated with a combination of copper and Saqez resin resulted in
swelling of 13.3%.
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One of the prime objectives of this study was to determine the performance of the respective
treatment against wood decay fungi. Samples were exposed to white-rot fungi. White rot fungi are
the most important organisms degrading hardwoods [45]. Mass loss of the leached and unleached
samples was rather high, ranging between 39.3% at non-leached and 44.8% at leached specimens
(Figure 5). These data are in line with the low durability classification of poplar wood [35]. Resins have
a limited effect on the fungi. Mass loss of the Saqez treated samples was a bit lower than the mass
loss of the controls. The efficacy of the resin increased with increasing concentration of resin in the
treatment solution. For example, the mass loss of the wood treated with 5% ethanol solution of
Saqez was 30.1%, whereas the mass loss of the wood treated with a similar solution with three times
higher concentration was 20.4%. This mass loss was higher than the mass loss of the comparable oil
or wax-based systems [12,46]. The major constituents in the Saqez are α-pinene (60.15%), β-pinene
(8.68%), and α-terpinene (3.94%) [47,48]. The antifungal activity of Saqez resin could be related to
the respective components. Antifungal activity of α-pinene, β-pinene, and α-terpinene was indicated
in previous studies [49–51]. Duncan’s test grouped the value of mass loss into four groups (Table 4).
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Figure 5. Mass loss of wood samples subjected to Trametes versicolor.

Table 4. Analysis of variance and Duncan’s multiple range test (DMRT) for Mass loss in untreated and
treated wood samples.

Leaching Test Treatment Mass Loss * (%) Shapiro–Wilk
Test p-Value ANOVA p-Value DMRT **

Before Leaching

Control 39.30 ± 2.17 0.86

0.000

a
Saqez5% 30.06 ± 2.64 0.37 b
Saqez10% 28.15 ± 2.95 0.94 b
Saqez15% 20.43 ± 2.74 0.49 c

Cu/MEA + Saqez15% 0.92 ± 0.21 0.72 d
Cu/MEA 1.10 ± 0.23 0.84 d

After leaching

Control 44.77 ± 3.88 0.58

0.000

a
Saqez5% 35.22 ± 2.05 0.39 b
Saqez10% 33.74 ± 2.58 0.80 b
Saqez15% 26.43 ± 2.99 0.29 c

Cu/MEA + Saqez15% 1.55 ± 0.051 0.98 d
Cu/MEA 3.51 ± 0.40 0.18 d

* Mass loss as average ± robust confidence interval. ** Means with the same letter are not significantly different.

The presence of copper in wood slowed down wood decay considerably. Leaching reduced
the influence of the copper-based system, predominately as there were no secondary fungicides
present [52]. However, as can be seen from the comparison of mass losses of leached and non-leached
copper and copper-Saqez treated wood, a combination of copper and Saqez acted synergistically.
At the moment, we cannot conclude whether this is because of the limited effect of Saqez resin on the
fungi, or due to the limited copper leaching.

4. Conclusions

The synergistic effect between copper and Saqez was investigated. Saqez had a positive influence on
water performance. Wood treated with Saqez exhibited better water performance, which was reflected
in better dimensional stability and likely limited copper leaching as well. The impregnation of wood
with Saqez was not sufficient to limit fungal decay. However, the combination of copper-ethanolamine
based wood preservatives with Saqez had a positive effect on copper efficacy against wood decay fungi.
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7. Žlahtič, M.; Mikac, U.; Serša, I.; Merela, M.; Humar, M. Distribution and penetration of tung oil in wood
studied by magnetic resonance microscopy. Industr. Crop Prod. 2017, 96, 149–157. [CrossRef]
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