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Abstract: Forests provide a range of ecosystem services essential for human wellbeing. In a changing
climate, forest management is expected to play a fundamental role by preserving the functioning
of forest ecosystems and enhancing the adaptive processes. Understanding and quantifying the
future forest coverage in view of climate changes is therefore crucial in order to develop appropriate
forest management strategies. However, the potential impacts of climate change on forest ecosystems
remain largely unknown due to the uncertainties lying behind the future prediction of models. To fill
this knowledge gap, here we aim to provide an uncertainty assessment of the potential impact
of climate change on the forest coverage in Italy using species distribution modelling technique.
The spatial distribution of 19 forest tree species in the country was extracted from the last national
forest inventory and modelled using nine Species Distribution Models algorithms, six different
Global Circulation Models (GCMs), and one Regional Climate Models (RCMs) for 2050s under an
intermediate forcing scenario (RCP 4.5). The single species predictions were then compared and
used to build a future forest cover map for the country. Overall, no sensible variation in the spatial
distribution of the total forested area was predicted with compensatory effects in forest coverage
of different tree species, whose magnitude and patters appear largely modulated by the driving
climate models. The analyses reported an unchanged amount of total land suitability to forest
growth in mountain areas while smaller values were predicted for valleys and floodplains than
high-elevation areas. Pure woods were predicted as the most influenced when compared with mixed
stands which are characterized by a greater species richness and, therefore, a supposed higher level
of biodiversity and resilience to climate change threatens. Pure softwood stands along the Apennines
chain in central Italy (e.g., Pinus, Abies) were more sensitive than hardwoods (e.g., Fagus, Quercus)
and generally characterized by pure and even-aged planted forests, much further away from their
natural structure where admixture with other tree species is more likely. In this context a sustainable
forest management strategy may reduce the potential impact of climate change on forest ecosystems.
Silvicultural practices should be aimed at increasing the species richness and favoring hardwoods
currently growing as dominating species under conifers canopy, stimulating the natural regeneration,
gene flow, and supporting (spatial) migration processes.
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1. Introduction

Climate change represents an important challenge for ecologists, biologists, and modelers whose
research interest is the study of the potential effect of climate change on ecosystem services provided
by forests [1–4]. The use of predictive models and statistical tools in scientific literature has increased
since the 1980s [5–7], aimed at stimulating the most likely effect of climate change. A predicted
spatial movement of ranges and suitable envelopes has been often the main result in many research
papers. This shift across a geographic or an altitudinal gradient [8] represents one of the possible
responses of forest tree species to climate change [9,10]. The colonization of a new environment
depends to the landscape fragmentation, species-specific seed dispersal ability, as well as the nutrient
availability in the new environment [11]. However there is scientific evidence that this is already
underway both in altitude [12,13] and in latitude [14,15]. In a climate change framework, forest
management and planning efforts must be oriented toward maintaining and improving biodiversity
and ecosystem services, assuring the long-term availability of forest resources and their biological
functioning [16,17]. The development of a sustainable forest management strategy (SFM) is a very
urgent topic in forestry and environmental sciences for human well-being [18–20] and for carbon
sequestration purposes [21,22]. Information about the ecological requirements of different tree species
are fundamental for its implementation [23–25] allowing conservation plans, ecological restoration
actions [26], as well as the detection of threatened areas and also possible refuges [27–29].

The ecological modelling of the spatial distribution of living organisms, both animals and plants,
is currently known as Ecological Niche Modelling (ENM) or Species Distribution Modelling (SDM).
These techniques can be used to link the spatial distribution of a target species with some ecological
drivers (climate, soil data, etc.) often extracted in a GIS environment. The gathered information is
then used as input data for mathematical models where the ecological information is used as predictor
(i.e., independent variable). Even if sometimes criticized as not a reliable predictive method in a
changing climate [30], they still represent the most used tool to support forest management strategies
worldwide [31–34]. SDM/ENM are statistical algorithms which have provided greater flexibility
and good performance in deriving and modelling the ecological requirements of single species or
ecological groups from its spatial distribution, assuming an equilibrium with climate. When future
scenarios prediction is the final aim of SDMs, many uncertainties lay behind the final prediction [35].
These uncertainties can be summarized into three main sources: (i) the parameter uncertainty i.e.,
imperfect species occurrence data, unavailableness of important predictor variables; (ii) the model
uncertainty, that it is linked to the choice of different SDM algorithms and their complexity; (iii) the
climate uncertainty which includes both the interpolation error and the climate change scenarios
uncertainties [36–38]. To deal with uncertainties, many modelling efforts were developed such as
probabilistic predictions [39] and the use of ensemble modelling strategies [40–42] where average
models are calculated from different algorithms, deriving confidence intervals and weighted means
according to the predictive power. While variability between different modelling techniques is typically
low [31], the variability in climate data is more relevant [36,38]. The variability in climate data is
strictly associated with general circulation models (GCMs) and regional circulation models (RCMs)
patterns for the same study area. This is one of the main issues responsible for the wide range of results
obtained by different research groups worldwide and often on the same environment of forest tree
species [31,43–45]. Overall RCMs are believed to be more reliable for small-scale studies thanks to the
statistical downscaling procedures involved in their development from original coarse GCMs where
novel climatic surfaces with higher spatial resolution are obtained [46–49]. In addition to downscaled
surfaces and RCMs, specific downscaling tools for custom queries [50–52] are often used in literature.
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According to the provided evidence, many uncertainties are still masked under the predictions
generally provided by researchers in their studies, with climate as one of the main drivers. At the
current time the SDM technique has been successfully used in Italy for some occurring tree species
using National Forest Inventory data [27] or wide-range projections and broad spatial distribution
data and forest categories [53], or spatial analysis on species richness [54]. However an extensive study
on the whole country for a wide range of tree species and evaluating the modelling uncertainties
is still missing The aim of this paper is to evaluate the uncertainties behind an SDM procedure in
the Mediterranean environment (Italy) to support future SFM strategies. In this work, several future
scenarios for 19 species, among the main forest tree species in Italy, were realized using six GCMs and
one RCM, quantifying the discrepancies between them and within species when different climatic data
are used. Suitability maps were obtained for Italy to provide indications to forest planners regarding
the possible consequence and impact of climate change in Italian forest systems. Then adaptive
forest management strategies were proposed dealing with potential impacts of climate change and
uncertainties detected behind the modelling efforts.

2. Materials and Methods

2.1. Spatial Data and Climatic Scenarios

Forest inventory plots represent one of the main input data for SDM procedures, given their
ability to provide tree-level information which allow a refinement of modelling steps. Among the
263 tree species detected in the framework of the last available national forest inventory (INFC 2005)
19 forest tree species were considered in this study and selected as the most interesting and relevant for
Italy under economic, ecological, and aesthetic aspects. Their ecological requirements were previously
studied by Pecchi et al. [25]. INFC 2005 was based on a three-phase sampling procedure resulting in a
total of 7272 sampling plots, spatially distributed according to a probabilistic sampling scheme [55] and
with associated data for 230,874 trees measured in the field [56]. In this framework, statistical inferences
on the realized ecological niche of the 19 considered tree species was possible due to the probabilistic
sampling scheme.

In order to derive the climatic niche of target species and to project its spatial distribution into
the future conditions, current climate data (1981–2010 normal period) were firstly retrieved from the
downscaled E-OBS climatological maps. This dataset is available for the whole Italy at 1 km of spatial
resolution as a result of a downscaling procedure [46,57]. Such data were then used to generate the
set of 19 Worldclim’s bioclimatic variables to be used as predictors in SDM. This set is format by a
series of biological important variables that better describe the annual and seasonality trends and the
extreme and limiting factors [58]. These variables are generated using dismo, a package available
for R statistical language [59] using the bioclim function. This step was done to compare the current
climate condition with six GCMs we downloaded from the WorldClim website with 30 arc-sec of
spatial resolution. The selected GCMs are those elaborated by the fourth version of Community
Climate System (CCSM) here and for the following models CC, the Hadley Centre Global Environment
Model version 2 family (HADGEM2 2-AO, 2-CC, 2-ES), respectively, HD, HE, and HG, the Max Planck
Institute for Meteorology Earth System Model (MPI-ESM-LR) hereafter MP and the Meteorological
Research Institute climate model (MRI-CGCM3) MG. To avoid potential biases that originated from
different climate data sources (i.e., WorldClim portal and E-OBS data), the WorldClim future projections
were recalculated as anomalies from the 1961–1990 climatic normal period, currently distributed as
WorldClim version 1.4 [60,61]. Once anomalies were calculated, these were added to the same climatic
normal period we obtained from E-OBS for Italy (1961–1990), using spatial reprojection to realign the
two grids. An additional climate dataset was then added to this study and provided by the Institute of
Bio-Economy (IBE) of Italian National Research Council (CNR), representing the RCM we used in this
study. The RCM model is here represented by the output of COSMO-CLM climate model hereafter,
COSMO, the climate version of operational weather forecast model COSMO-LM, developed by the
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German weather service [62]. This RCM was selected for its acknowledged ability to characterize the
Italian climate conditions [63]. All climatic scenarios were referred to RCP 4.5 of AR5 for 2050s.

2.2. Species Distribution Ensemble Modelling

According to the existing literature, the ensemble forecasting model from different SDM techniques
is recognized as the most powerful, stable, and well-referenced method to analyze the potential impact
of climate change on tree species [31,64]. An ensemble (or sometimes consensus) modelling is based
on the idea that each different modelling output represents a possible state of the real distribution.
With this technique, single-model projections are combined into a final surface where the predictions
are averaged. In this paper, the ensemble technique was used as predictive method for each of the
19 forest tree species to estimate their potential land suitability under current (i.e., 1981–2010) and future
climate conditions (i.e., 2050s, RCP 4.5). The averaging technique was represented by the weighted
mean of single model projections using the True Skill Statistic (TSS) indicator [65] calculated with a
cross-validation procedure using 75% and 25% for training and testing as weight [42,66]. Furthermore,
in order to account for the potential uncertainty that originated from different SDMs, nine algorithms
were used for modelling tree species distributions. Fifty replications were performed for each algorithm
for a total of 450 single-model projections for each investigated species. The algorithms implemented
here include general linear model (GLM), generalized additive model (GAM), classification tree
analysis (CTA), artificial neural network (ANN), flexible discriminant analysis (FDA), multivariate
adaptive spline (MARS), random forest (RF), and maximum entropy (MAXENT). Codes are available
in the biomod2 package [67] in the R statistical language [68].

To avoid collinearity problems amongst the predictors, a principal component analysis (PCA) was
performed on the complete set of climatic variables [69]. PCA transforms the original predictors in
uncorrelated (i.e., orthogonal) features by preserving the whole variability of the analyzed ecological
system (i.e., the ecological variability of the Italian environment). The PCA-derived features were then
used as input for the SDMs. Among all the NFI points a threshold of 15% for basal area share was used
to filter NFI plots to generate presences (i.e., all the plots where the target species was representing more
than 14.99% of total basal area) according to a previous investigation [25]. Afterwards, 10 different
pseudo absences datasets (PA) with an equal number each of pseudo-absences than presences were
generated with the Surface Range Envelope method [70]. Indeed, even if potentially available from the
NFI dataset and detectable from tree-level information, the use of all the plots where the species has
not been detected as absences can drive the models to biased predictions, even if setting prevalence to
0.5 [27]. The main reason behind this issue is that, in a managed environment, while the presence is
objectively defined, the absence can be due to both inhospitable environment or forest management
decision (selective logging, forest management, etc.) and no information is available to confirm any
of the above-mentioned possibilities in the NFI data. This generated the final dataset composed by
4500 different single-algorithm single-PA prediction for the consensus model calculation. No soil
information was added in the model as it was considered almost stable in the considered time period.

2.3. Suitability Maps Analysis and Uncertainties Quantification

From each single modelling cycle with species and climate scenario as cyclers, an ensemble map
of land suitability was generated reporting the probability of occurrence of a given tree species in
each pixel. A total of 133 future Land Suitability maps (LS) were obtained in addition to 19 current
distribution LS maps. A difference in suitability values between future and current distribution maps
was calculated for each species and used as input data for a further analysis where the connection
between combined use of species and GCM/RCM was evaluated. The variability within GCM/RCM
was then studied, with the aim of quantifying the climatic uncertainties in our study as well as the
most likely effect of climate change in the Italian environment. To achieve this the 133 LS maps were
grouped according to the used climatic simulation and, for each group, the maximum LS value for
each pixel was calculated. A single map for each climatic scenario was then obtained representing
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the probability of a specific location (pixel) to be populated in the future (2050s) by at least one of the
19 considered species. These maps were processed using several LS thresholds, ranging between 51%
and 90%, used to transform continuous values in binary predictions (1 or 0). Information on changes in
the suitable envelope (i.e., all pixels equal to or higher than the threshold) were derived and especially
concerning the total number of pixels (i.e., total forested area in the future) and altitudinal/latitudinal
shift (i.e., extension/reduction/movement of the suitable envelope) to determine whether a spatial
movement of the suitable envelope could be recognized. A simple linear model was then fitted to
examine the influence of different thresholds and climate projections:

LS = intercept + β1·CM + β2·TH + ε (1)

where CM represents the different climate simulation model we used, β1 and β2 were the model
coefficients of the fitted model, and TH is the threshold (between 51% and 90%) with ε as error term.

Finally, after uncertainty assessment, the most influencing climate change scenario
(i.e., the projection calculating the higher differences when referred to current situation) was used to
study the most potentially dangerous impacts of climate change on the currently forested areas in
Italy. Firstly, the raster of the “maximum pixels value” (i.e., the maximum LS value among all the
tested tree species for each pixel) was calculated for both current and most variable future scenario.
Then all the INFC 2005 inventory plots were superimposed on the raster and the plot-level LS variation
extracted and modelled as a function of plot’s attributes. Among these the spatial coordinates (latitude,
longitude) the altitude, the forest type (i.e., beech forests, silver fir forests), the admixture level (i.e., pure,
mixed), the admixture type (i.e., conifer and broadleaves or the opposite), the main species, and the
other components of the forest stand obtained from the INFC2005 dataset were used as predictors in a
model. Finally, a Tukey test was used to rank the LS change for each species in order to detect those
whose climate change might be more dangerous in the framework of the Italian forest system.

3. Results

The spatial prediction for the 19 investigated forest tree species showed a wide variability between
both algorithms and species. Concerning models, the best results were obtained with RF (average
value of TSS 0.844 ±0.092) while the worst performances were observed for MAXENT (average value
0.752 ±0.121). TSS values were more variable amongst species ranging between an average value of
0.647 (±0.113) for Pinus pinea and 0.922 (±0.087) for Pinus cembra (Figure 1).
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When the standard deviation between projection maps was calculated (Figure 2, left) the central
part of Italy was acknowledged as the most uncertain, with spatial projections poorly in agreement.
The observed geographical pattern was also partially connected to the spatial shape of the Apennines
chain between Latium, Tuscany, and Emilia-Romagna regions. Conversely, a general agreement
was observed in flat areas such as the Po valley, spatially next to the central Apennines chain
and currently characterized by farms, artificial Populus spp. plantations, agroforestry systems,
and agricultural lands. According to the PCA analysis the within-species variability was more
influential than the within-scenarios variability. Higher eigenvalues were obtained for factors
expressing the between-species variability (e.g., COSMO, CC, HE, HD labels in Figure 2) than those
obtained between scenarios which stressed the importance of a species-specific SDM approach. Among
the climatic scenarios, the COSMO RCM was the most independent with all the GCMs (i.e., CC, HE,
HD etc. labels in Figure 2) partially overlapping with some species and sharing the proportion of
explained variability.
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Figure 2. (a) Spatial pattern of the standard deviation of the LS difference between future (2050s) and
current (1981–2010) values for each species and using all the future climate realizations (133 layers) and
(b) PCA analysis run on the same data (i.e., LS variation at pixels level).

In agreement with the PCA results, the histogram analyses of “maximum suitability rasters”
reflected the COSMO climate scenario as the most divergent from the others and from current climatic
conditions (Figure 3).

While all the other GCMs used in this study showed a density plot mainly cumulated on the right
side of the image with values of pixels comprised between 900 and 1000, two distinct peaks were found
for COSMO, with the most important between values of pixels between 400 and 600, much lower than
those observed for the other GCMs as well as the current scenario too.

The results of statistical model we ran on SDM prediction are reported in Table 1. According to
this table, the number of pixels for a specific threshold was substantially similar between GCMs and
generally higher than the COSMO model. Then the COSMO was also the most important predictor in
the model, i.e., the prediction explaining most of the variability of the system.
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Table 1. Results of the linear model to determine the most important climate scenario between those
used. The statistical significance is expressed as follow: 0 ≤ *** < 0.001.

Predictor Sum of Squares Prop. of Explained
Variance df F Value Pr (>F)

Climate scenario 3 × 1010 0.20 7 6.2045 0.000137 ***

Threshold 1 × 1011 0.80 1 168.565 4.49 × 10−14 ***

Once the COSMO scenario was acknowledged as the most variable and different among the
different climate projections, an assessment of LS change along an altitudinal gradient was calculated
over the entire country (Figure 4, left) and only forested areas (i.e., the INFC2005 inventory plot, Figure 4
right side). A potential gain in terms of LS was predicted by the ensemble SDM especially at high
altitude but only in the case of the whole Italian country. However, this gain was not able to compensate
the global loss of LS, variable according to the threshold we used for binary transformation of the maps
but comprised between +4% with 500 as threshold and −81% with 900 and both referred to COSMO
modelling. Conversely, only a decrease in LS was found on the INFC2005 domain (i.e., forested areas).

In combination with the histogram analysis and the models described above, the use of a threshold
for evaluating the total suitable forested area in Italy stressed the elevation as an important driver
(Table 2).

When such changes were modelled as a function of forest stand characteristics, the altitude
variable intercepted the higher proportion of explained variance, close to the 45%. Latitude was highly
relevant too, with about 35% of the total variance (Table 3). The forest category was the last relevant
predictor (11%) while the total basal area of the stand and admixture type were much less important
than the other variables with values of explained variance of 0.3% and 0.4%, respectively.
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Figure 4. Maximum suitability values grouped by altitudinal envelopes (100 m) across the whole
country (left) and on the 7272 INFC2005 inventory plots only (right). In the last two pictures on the
bottom, boxplots were colored according to the average value if below (red) or above (green) zero,
expressing on average a decrease or increase of LS values, respectively, for the total forested area in the
studied country.

Table 2. Maximum number of pixels that exceed of different threshold level and values of mean,
standard deviation, minimum, maximum of altitude.

Climatic
Scenario

LS
Threshold

Number
of Pixels

N. of Pixel
Variation

Mean
Elevation

Elevation
SD

Minimum
Elevation

Maximum
Elevation

Current

500 277,469 - 570.2 584.0 0 4322
600 270,012 - 565.3 561.8 0 3536
700 259,095 - 565.9 544.1 0 3536
800 241,857 - 563.5 522.7 0 3154
900 202,913 - 580.5 496.9 0 2974

CC

500 272,212 −2% 551.0 560.3 0 3786
600 253,718 −6% 551.8 538.2 0 3050
700 232,846 −10% 557.3 524.3 0 3033
800 191,699 −21% 572.0 514.0 0 3033
900 117,636 −42% 580.1 498.2 0 2841
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Table 2. Cont.

Climatic
Scenario

LS
Threshold

Number
of Pixels

N. of Pixel
Variation

Mean
Elevation

Elevation
SD

Minimum
Elevation

Maximum
Elevation

COSMO

500 302,091 +9% 535.2 586.3 0 4783
600 161,849 −40% 794.8 622.7 0 4322
700 117,167 −55% 911.1 622.1 0 3840
800 83,045 −66% 1005.3 610.5 0 3536
900 38,627 −81% 1122.9 560.5 2 3536

HD

500 271,421 −2% 559.0 571.4 0 4322
600 249,366 −8% 556.8 537.2 0 3478
700 227,487 −12% 562.3 523.2 0 3093
800 186,541 −23% 570.0 498.9 0 3033
900 107,279 −47% 526.5 444.1 0 2921

HE

500 264,667 −5% 571.2 575.2 0 4412
600 243,331 −10% 567.0 541.5 0 3346
700 220,858 −15% 574.7 530.2 0 3093
800 175,290 −28% 588.2 511.6 0 3033
900 97,472 −52% 561.2 468.0 0 2921

HG

500 266,667 −4% 563.0 575.6 0 4783
600 248,089 −8% 553.3 538.4 0 3478
700 225,522 −13% 557.4 523.1 0 3346
800 183,055 −24% 555.1 504.9 0 3033
900 111,688 −45% 513.8 441.4 0 2921

MG

500 263,520 −5% 553.5 562.4 0 3786
600 245,959 −9% 548.4 536.0 0 3213
700 225,935 −13% 541.2 514.4 0 3038
800 183,215 −24% 553.1 503.0 0 2974
900 103,091 −49% 549.1 495.1 0 2810

MP

500 266,133 −4% 558.3 561.1 0 3840
600 245,089 −9% 558.2 534.0 0 3478
700 222,756 −14% 563.2 520.9 0 3216
800 170,854 −29% 588.6 516.9 0 2974
900 90,737 −55% 579.7 493.0 0 2680

Table 3. Results of linear model function on the INFC 2005 domain. In this table, the variable fortype
indicates the forest type category (i.e., beech forest, silver fir forest, etc.), the Gtot variable indicates the
total basal area in m2 and finally, the variable TypeFor considered the typology of forest (if pure or
mixed, this characteristic is established on the base of basal area of different species) and the forest tree
species (if tree was coniferous or broadleaves). The statistical significance is expressed as follow: 0 ≤ ***
< 0.001 ≤ ** < 0.01.

Predictor df Sum of Squares Prop. of Explained
Variance F Value Pr (>F)

Altitude 1 1.72 × 107 0.45 1401.5 <2.2 × 10−16 ***

Longitude 1 2.96 × 106 0.08 241.161 <2.2 × 10−16 ***

Latitude 1 1.33 × 107 0.35 1086.71 <2.2 × 10−16 ***

Fortype 18 4.21 × 106 0.11 19.0496 <2.2 × 10−16 ***

Gtot 1 1.15 × 105 3.04 × 10−3 9.4081 0.00217 **

TypeFor 3 1.58 × 105 4.15 × 10−3 4.2801 0.00502 **

A large variability between tree species was detected by the multiple comparison test we
ran (Tukey HSD test) where the single-species predictions were analyzed in terms of LS change.
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According to our models, the laricio pine (Pinus nigra subsp. laricio), Douglas fir (Pseudotsuga menziesii),
and arolla pine (Pinus cembra) were characterized by a positive mean value of LS change, indicating a
sort of possible expansion for the three species. Such values were +275.62 for laricio pine, +330.99 for
Douglas fir, and finally +460.16 for Arolla pine that represented the highest value among analyzed
species. Such values were statistically significant too (alpha < 0.05) and classified as three different
groups (“c”, “b”, and “a” letters) of statistical similarity where the group are represented by the
different letters on the right end of the figure (Figure 5). All the remaining species were characterized
by negative average values expressing a decrease of LS, sometimes included in a unique group such as
cork oak (Quercus suber) and silver fir (Abies alba) whose means were −63.59 and −63.89, respectively
(letters “g”). The second group is composed downy oak (Quercus pubescens) with a predicted decrease
of −157.11 and holm oak (Quercus ilex) with −158.17 (letters “k”). Norway spruce was the most stable
species with a mean value of −44.47, while the worst projection was calculated for the Mediterranean
cypress (Cupressus sempervirens) and stone pine (Pinus pinea) with values of loss of −380.76 and −457.08,
respectively. All other species were intermediate and comprised between −100 and −150. However,
and despite average values which were just indicative, a wide range of uncertainty was clearly
detectable and expressed by the wide range of variability. None of the 19 studied species were placed
totally below or above the zero indicating that increasing and decreasing LS values were detected for
all the species across the whole study area.Forests 2020, 11, x FOR PEER REVIEW 11 of 20 
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4. Discussion

4.1. Species-Specific Requirements against a Changing Climate

The species-specific ecological requirements of forest tree species are one of the main drivers for
ecological modelling. While similar output can be obtained with species sharing the same climatic
envelope (i.e., silver fir and European beech), different projections are instead calculated for species
that are highly differentiated (e.g., European beech and holm oak). Even if just one RCP scenario was
used in this study, large differences were found between RCMs and GCMs. Our results underly how
the uncertainty on climate change projections have a great impact on spatial model simulation. The use
of different types of climatic data (GCMs or RCMs) can lead to very different SDM projections and
with potential impacts on SFM decisions [36,71,72]. The use of RCMs with respect to GCMs generally
leads to better final climate projection and also to a systematic reduction of bias [73]. This aspect can
represent a fair improvement especially for mountainous areas where the use of coarse data can only
partially capture the effect of orography [74]. The results we obtained also highlighted the difference
in the use of GCMs versus RCMs which are probably optimized scenarios for local areas but very
complex and whose calculation is time consuming [61,75,76]. Unfortunately, the use of local data is
not still very common and ensemble models are lacking in literature [77]. While several GCMs are
sometimes used and then averaged, the use of a single average layer causes the loss of variability
with no information on the range of all the potential predictions made by the same SDM procedure.
For this reason, an uncertainty assessment should be always mandatory when forecasting climate
change impacts. Some papers have also introduced the consensus method to assess the uncertainty in
different climate scenarios [78,79], but the use of more GCMs, RCMs, and RCP projections seems to
be necessary.

Concerning the mathematical structure of SDM, the importance of the quality of data sources is
confirmed as well as its relationship with the uncertainty in species occurrence data and the different
statistical technique used to predict the species distribution [45]. Uncertainty in species occurrence
data can have a negative effect on the accuracy of a model and any possible correction might bring
a potential reduction of the total number of records, removing the uncertain or filtering possible
outliers [27]. However, this effect can have different impacts on the SDM according to the modelling
technique. Even if MAXENT is the most used in scientific literature and acknowledged as able to
provide high accuracy despite the use of occurrence data [31,80], this algorithm was the worst in this
study. The reasons might be found in the low number of absences we used (i.e., the background points
for MAXENT), probably too few to allow the model to work properly [70]. As a consequence a real and
powerful SDM should be based on high-quality data, representative of the phenomena and without
any prejudice on the modelling algorithm to be used, with the unbiased comparisons as the unique
technique to assess their predictive power [42].

The above-mentioned differences between algorithms, climate projections, target species,
LS thresholds to be used for binary transformation etc. (i.e., modelling uncertainties), might heavily
impact the operational use of SDM as a decision support system to support strategic sustainable
forest management. One of the main uses of SDM is the possibility to identify candidate tree species
(genotypes) and provenance types (genotyping) which may be more adapted to future climate conditions
in a specific area [9,81]. Provenance selection has the potential to support Assisted Migration strategies
(AM) and in-situ or ex-situ conservation efforts to improve the resilience of forest systems [3,82].
While AM represents a possible action for a quick response to climate change threats, this should
be realized carefully [10,83]. Such action is probably the most expensive, extreme, and potentially
dangerous for ecosystems in case of biased SDM. In fact, despite the advantages attributable to this
operation, linked to the avoiding of extinction of species and to supporting economic activity such as
timber production, there are many potential disadvantages connected with AM operations that are
related to a series of biological risks (the maladaptation or the introduction of invasive species or pests
and disease) as well as ethical problems that are connected to the different points of view with respect
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to the relationship between nature and human and, therefore, the conflict among anthropocentric and
eco-centric positions [84,85]. Consequently, AM must be driven by reliable models, averaging different
models and GCMs outputs in a framework of statistical probability. The higher the uncertainty in the
modelling steps is, the more dangerous and biased the efforts could be, with the probability of failure
which is proportional to the magnitude of disconnection between what is projected and what is likely
to occur.

4.2. SDM as a Tool for Forest Management Options in the Italian Framework

According to the provided evidence, the altitudinal gradient will play a very important role in Italy
determining different patterns of species distributions in future climate conditions. This parameter
already influences the shape, structure, and specific composition of forests worldwide with a direct effect
on a series of important processes, such as water availability, temperature, and soil properties [51,86,87].
The tendency in altitudinal shift of different organisms, both animal and plant, is often confirmed by
many research papers [8,12,88,89] with the altitudinal shift generally occurring at much lower speed
than latitudinal [83]. If the velocity of colonization of new areas is too low when compared to expected
climate change scenarios, then AM might be planned. In this case most of the studies are focused on
the upper elevational limit, sometimes also called the leading edge, while the lower elevational limit or
rear edges is less investigated even if it is fundamental to plan adequate conservation scenarios for
threatened species [28,89,90]. According to Lenoir et al. [8] an average trend shift of 29 m in upward
sense for a decade seems to be a reliable value for forest tree species in southern France considering
the variation in optimum climate of species in two different periods, that is 1905–1985 and 1986–2005.
A confirmation of this process regarding Italian mountains can be found in Rogora et al. [91], where a
progressive thermophilization process of climate and a progressive natural introduction of typical
species of lower altitudinal strip both for Alps and Apennine has been detected. According to our
results, the altitudinal movement of the forested areas with the worst scenario (COSMO) seemed to be
lower and around 18 m per decade, demonstrating a possibility of Italian forest tree species to colonize
new lands. In this sense, the higher sensitivity to climate change of pure broadleaf stands is one of
the main results of our modelling efforts. This result confirms the recent literature where a general
contraction of broadleaf species, especially those species that are adapted to cold and wet conditions,
was studied [92,93].

According to the provided results, forest management will play a fundamental role in a changing
climate. Silvicultural practices in Italy should be aimed at increasing the species richness and favoring
hardwoods currently growing as dominated species under conifer canopy, stimulating the natural
regeneration, gene flow, and supporting (spatial) migration processes. The spatial variation we found
in our models confirms the results of previous studies that establish for Mediterranean areas a general
tendency to a loss in habitat suitability as consequence of decreasing precipitation amount and increase
in temperature and in frequency and severity of drought period [53,74,94,95]. The possible consequence
of climate change may also be accompanied by an increased wildfire and safety risk. This issue has
also been acknowledged in many other research studies and mainly connected to extreme climatic
events [96,97]. However, uncertainty assessment has also been detected as fundamental in this case
too when predictive models are generated [98].

Our results highlight that only three species seem to be favored by climate change phenomenon:
Arolla pine, Douglas fir, and laricio pine. The scientific literature confirms these results. As example,
Casalegno et al. [99] indicated an increment of spatial distribution of Arolla pine as consequence of the
progressive abandonment of pastures in the Alps. Instead, Douglas fir is indicated as a tolerant species
versus drought events [100,101] and its habitat suitability is indicated in increment in Europe in future
time periods by Dyderski et al. [102]. In the end, laricio pine is indicated as tolerant to heat and drought
events [103]. Considering broadleaf species and the oaks group, our outcome is partially in agreement
with the existing knowledge. A negative variation in habitat suitability was also predicted in Perkins
et al. [104] while a negative decrease in habitat suitability can be read in Kim et al. [105] for cork oak in
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the Mediterranean area. Finally, a decrease in habitat suitability during the future period was predicted
for holm and turkey oak by Vitale et al. [106] in the same environment we studied. Conversely a
contrasting result with existing literature was found for downy oak. In this sense, our outcome
highlights a possible decrease in habitat suitability while a potential increment was calculated by
Vacchiano and Motta [88]. However, the difference might be attributed to the spatial extent they studied,
a small region of Northern Italy where our model predicted an increase too. With attention to other
broadleaf species, a possible negative variation in suitability values is expected for European beech
that confirms the hypothesis by Noce et al. [53] and especially in the center and south of Apennine.
With attention to conifer species such as European larch and Norway spruce, a reduction of habitat
suitability is a possible event. A negative variation in habitat suitability of Norway spruce represents a
focal point for the high economic value of timber and it reported by different previous works [92,107].
A negative variation in habitat suitability for European larch is also confirmed by Dyderski et al. [102]
and Mamet et al. [108]. Additionally, silver fir loss in habitat suitability values is in agreement with
Vitasse et al. [109]. Given the economic relevance of this group of species, SFM in Italy should take
particular care in their management and supporting local enterprises and avoiding species substitution,
maybe using different provenances and genotypes [110,111]. Finally, despite being considered as
typical Mediterranean species, a possible decrease in suitability was predicted for species such as
Italian cypress and stone pine. This possibility was confirmed in Klein et al. [112] with attention to
Italian cypress and in Freire et al. [113] if stone pine is considered. A decrease in suitability values is
also a possibility for Aleppo and Maritime pine and finally for black pine as previously reported by
Silvério et al. [114] and by Buras and Menzel for black pine [74]. All the cited literature reports as main
causes of the decrease in habitat suitability a high sensitivity towards drought events, an increase of
wildfire events, and in the end an increase of pests and pathogens. Even if probably in agreement with
literature, the low occurrence across INFC2005 might be the main shortcoming of our model for these
tree species, owing to a possible underestimation of their potential ecological niche which will be the
real niche responding to climate. In this framework, only monitoring efforts and provenance trials
will support the solution of the issue in the next decades and allowing models to consider phenotypic
plasticity [9].

5. Conclusions

Climate change will probably affect the spatial distribution of forest tree species worldwide and
many research groups are currently working to adapt GCMs to local contexts. Anyway, the uncertainty
is still wide. Many factors are involved with physical and anthropogenic processes on one hand and
all the possible adaptive processes of forest systems to deal with climate change scenarios on the other,
which are only partially known in a long-term period. With this study, an initial framework of the
possible consequences of climate change phenomenon in Italian forest was proposed under the Fifth
Assessment Report projections, trying to understand the different dynamics between different variables
and not merely describing the potential expected species geographical shift. While any model can be
built with any data coming from different sources, a real uncertainty assessment is fundamental to
support useful and effective SFM strategies. Dealing with uncertainties and working with self-updating
procedures seems to be the main path to address climate change effects properly, mitigating the negative
effects and maintaining the delivery of ecosystems services from forests. Anyway, only monitoring
networks and species-specific analysis will be able to certify or confute this tendency. Such new data
will be fundamental to test current SDM and adjust projections properly. Additional results may be
then provided using the new climate change pathways provided by the new IPCC projection in the
Sixth Assessment Report.
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