
Article

Effect of Environmental Factors on Soil Nutrient Loss under
Conditions of Mining Disturbance in a Coalfield

Ziguan Wang 1,2, Guangcai Wang 3,4,* , Chengshu Wang 1,2, Xiaohui Wang 5, Meiling Li 5 and Tingyu Ren 6

����������
�������

Citation: Wang, Z.; Wang, G.; Wang,

C.; Wang, X.; Li, M.; Ren, T. Effect of

Environmental Factors on Soil

Nutrient Loss under Conditions of

Mining Disturbance in a Coalfield.

Forests 2021, 12, 1370. https://

doi.org/10.3390/f12101370

Academic Editor: Timothy A. Martin

Received: 3 August 2021

Accepted: 3 October 2021

Published: 9 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;
201931051004@mail.bnu.edu.cn (Z.W.); 202031051004@mail.bnu.edu.cn (C.W.)

2 State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University,
Beijing 100875, China

3 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences,
Beijing 100083, China

4 MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of
Geosciences, Beijing 100083, China

5 SpaceWill Info. Co., Ltd., Beijing 100089, China; xiaohui.wang@spacewillinfo.com (X.W.);
meiling.li@spacewillinfo.com (M.L.)

6 Rays Computational Intelligence Lab (RCIL), Beijing Inteliway Environmental Sci. & Tech. Ltd.,
Beijing 100085, China; rentingyu@pku.edu.cn

* Correspondence: wanggc@pku.edu.cn

Abstract: Underground coal mining can result in land deformation (e.g., land subsidence and ground
fissures), and may consequently change the soil nutrients. Soil organic matter (SOM), total nitrogen
(TN), and available phosphorus (AP) are critical indicators of soil fertility and eco-restoration in
mining areas. In this study, soil samples (depth: 0–20 cm) were collected twice from 20 sampling
points in pre-mining and post-mining in the No.12 panel of Caojiatan coalfield, in the Loess Plateau
of China. SOM, TN, and AP in soil samples were measured, and the nutrient loss was evaluated.
Ten environmental factors affecting soil nutrient loss were identified from a 5-m resolution digital
elevation map (DEM). The paired t-test was utilized to evaluate the differences between SOM, TN,
and AP in pre-mining and post-mining soil. The mechanisms of the effects of environmental factors
on soil nutrient loss were revealed based on multiple linear regression, redundancy analysis (RDA),
and the random forest algorithm (RF). Ordinary kriging and RF were utilized to predict and optimize
the spatial distribution of the soil nutrient loss. The results showed that significant differences existed
between the SOM, TN, and AP in the pre-mining and post-mining soil. The model established by
RF provided a higher accuracy in terms of fitting the correlation between soil nutrient loss and
environmental factors compared to the model established by multiple linear regression, and the
feature importance obtained by RF showed that profile curvature, distance to working panel margin,
and surface roughness were the most significant factors affecting the loss of SOM, TN, and AP,
respectively. This study provides a theoretical reference for eco-restoration, as well as soil and water
conservation, in subsided lands in coalfields.

Keywords: land deformation; soil nutrient loss; spatial distribution; random forest; environmental factors

1. Introduction

Coal is the most abundant fossil fuel in many countries, including Australia, In-
dia, Indonesia, the United Kingdom, and South Africa [1,2]. Coal is also the dominant
fuel for power generation, industrial production, and residential consumption in many
developing countries [3,4]. Although large-scale and high-intensity exploitation of coal
resources has promoted economic development, it extensively damages the ecosystem
and causes severe environmental problems, such as heavy metal pollution, soil erosion,
and land degradation [5–10]. China is the largest producer and consumer of coal in the
world, and coal accounts for about 70% of its primary energy [11]. More than 90% of coal
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in China is obtained through underground mining, and this mode of resource extraction
causes significant destruction to the ecological system and land environment [12–14]: the
root system and environment of microbes is destroyed, the soil material and soil nutrients
are lost or reduced, the cycling of the soil nutrients is less efficient, the availability of soil
microelements is reduced, and the ecological balance is destroyed [15–17]. Generally, this
destruction is not self-healing under the conditions of mining disturbance [18].

With the advance of the working face and the exploitation of a coal seam, the initial
stress in the rock mass changes and is redistributed, and land deformation (e.g., subsidence,
ground fissures) may occur in coal mine areas [19–21]. The subsidence is more disturbed
in the marginal area zone (e.g., area adjacent to the working panel) than in the central part
of the working panel [22,23]. These cracks cannot be naturally closed, and consequently
the soil fertility severely deteriorates [24]. Soil organic matter (SOM), total nitrogen (TN),
and available phosphorus (AP) are the important limiting factors for plant growth in arid
and semiarid ecosystems [25–27]. However, mining activities cause a loss of the litter
layer in the topsoil, which is an integral storage and exchange site of nutrients and is
enriched with soil microelements [16]. Due to the loss of litter layers and organic matter,
the nutrient-holding capacity of the soil is drastically reduced [28]. Coal mining subsidence
can also accelerate soil erosion and underground leakage, which leads to a serious nitrogen
loss in the soil [29]. The additional slope caused by subsidence can aggravate nutrient
loss and thus reduce the availability of soil nutrients [30]. AP is significantly correlated
with soil microbes, and the decrease of AP can induce a drastic decline of the soil microbe
community [31]. Although studies have reported that the soil nutrients in the subsidence
area are often significantly lower than in unmined areas, only a few studies have focused
on a comparison between the soil nutrients in pre-mining soil and post-mining soil [32–35].
Such a comparison could quantitatively assess the effect of mining disturbance on soil
nutrient loss, and provide a better understanding of soil fertility degradation in the topsoil.

The soil nutrient loss in the topsoil is also controlled by various environmental factors
under the conditions of mining disturbance, including topography, vegetation, hydrology,
and other human activities [10,28]. Topography affects the nutrient loss by providing
a higher erosive power along the slope, and aggravating the formation of ephemeral
gullies on the edge of the land subsidence area [36,37]. These ephemeral gullies are likely
to develop in areas with irregular surface geometry, and abrupt changes of steepness
and curvature [38]. The subsidence area thus provides a favorable environment for the
occurrence of ephemeral gullies, and these topography factors affect the soil nutrient
loss [39]. Hydrology factors, such as the topography wetness index (TWI) and drainage
density, can reflect the soil water content, flow regime, flow energy, and flow discharge,
which also affect the soil nutrients [15,40]. The vegetation coverage also significantly affects
the soil nutrient loss, as the shear resistance ability and the anchoring effect provided by
the root system can protect the soil particles from ground fissures [41]. The distance to
the working panel margin may indicate the extent of the destruction from mining to the
topsoil, as the ground fissures and subsidence are not self-healing in the area adjacent to the
working panel margin, which allows the soil nutrients to be constantly lost [10]. The effects
of these environmental factors on the soil nutrient loss have not been comprehensively
discussed in previous studies.

The variation characteristics of soil nutrients and their relationships with environ-
mental factors are complex and generally non-linear. Thus, traditional multiple linear
regression analysis, path analysis, and other regression methods cannot accurately reveal
the effect of these environmental factors on soil nutrient loss [10]. Recently, machine learn-
ing has shown potential in regression and classification. Random forest (RF) is a powerful
algorithm in regression due to its unique out-of-bags technique to calculate the error [42].
Numerous case studies on soil mapping have proven the robust performance and accurate
prediction of the random forest algorithm, incorporating it with helpful environmental
factors; RF could thus improve the macro-spatial pattern of soil nutrient loss and provide
dependable results for unmeasured points.
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The coalfield in the Loess Plateau of China is well known for its fragile ecosystem.
Uneven land subsidence and ground fissures have occurred in the coal mine areas with
the advance of the working faces, and these land deformations have destroyed plant root
systems and caused severe soil nutrient loss [43]. The collapsible soil in the study area has
poor structure, low mechanical strength, and weak tensile deformation resistance, and the
vertical cracks in the soil layer have a high degree of development and form a weak surface
to block the movement and deformation transmission in the soil layer [10]. The cracks
expand to form a stretched ground fissure under the action of mining tensile stress. Thus,
the objective of this study was to: i) quantitatively assess the soil nutrient loss occurring
due to mining disturbance, ii) evaluate the impact of each environmental factor on the soil
nutrient loss, and iii) obtain the optimized spatial distribution of soil nutrients.

2. Materials and Methods
2.1. Study Area

The Caojiatan coalfield (109◦52′26.79′′–109◦56′48.61′′ E, 38◦39′41.98′′–38◦36′11.97′′ N)
is located in the north of Yulin City, Shaanxi Province, China. Elevations range from
1023 to 1350 m. The area has a typical semi-arid continental monsoon climate. The mean
annual precipitation is 447 mm, of which 70% falls in July, August, and September. The
average annual temperature is 9.7 ◦C. The Caojiatan coalfield is located at the southern
margin of the Maowusu Desert, and more than 70% of it is desert [44]. The soil parent
material is sandstone (J2z). The soil has a typical loamy sand texture, and the topsoil
is basically covered by aeolian sand. The main landforms are desert bottomland and
dunes. Currently, the main land-use types in the coalfield are industrial square, grassland,
shrubland, wasteland, and arable land [45]. The dominant species of grass communities
are Bothriochloa ischaemum (Linn.) Keng, Artemisia sacrorum, and Artemisia giraldii
Pamp. The dominant species of the shrub communities are Hippophae rhamnoides Linn.,
Caragana korshinskii Kom., and Sophora viciifolia [10,45].

2.2. Soil Sampling and Lab Analysis

Soil samples were collected twice from 20 sampling points in pre-mining and post-
mining in the No.12 panel of the coalfield. For the first sampling period, twenty soil samples
were collected in April of 2019, using a soil auger, at a depth of 0–20 cm, in the pre-mining
soil prior to mining disturbance (Figure 1). Sampling was performed using the five-point
sampling method, in which soil was collected from five points within a 50 m radius and
combined to generate a mixed sample. The soil samples were air-dried and sieved through
a 2 mm sieve prior to the chemical and physical analyses. The second sampling period
was in October of 2019, post-mining. To ensure comparability with the first set of sampled
data, the sampling points and processes were the same. Land deformation (e.g., ground
fissures, uneven subsidence, ephemeral gullies) was found in the post-mining topsoil for
all 20 sampling points. The land use type of the 20 sampling points was shrubland, and the
shrub community was Caragana korshinskii Kom.

Three soil fertility indicators were chosen to evaluate the fundamental properties in the
pre- and post-mining soil. Our analytical items included soil organic matter, total nitrogen,
and available phosphorous. Soil organic matter was measured using a K2Cr2O7 heating
method, TN was measured using a semi-micro Kjeldahl method, and AP via alkaline
hydrolysis NaHCO3-extraction with Mo–Sb–Vc-colormetry [10]. We measured each sample
three times, and the mean value of each indicator was taken as the analysis value. All of
the aforementioned properties were analyzed at the laboratory of the Chinese Academy of
Agricultural Sciences. The soil nutrient loss was calculated using the following formula:

D (SOM, TN, AP) = Post mining soil (SOM, TN, AP) − Pre mining soil (SOM, TN, AP)

where D (SOM, TN, AP) is the decreased value of SOM, TN, and AP. Post-mining soil
(SOM, TN, AP) is the nutrients under the second sampling and pre-mining soil (SOM, TN,
AP) is the nutrients under the first sampling.
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Figure 1. Study area and sampling points.

A K-S test was performed to check the normality assumption and the paired t-test was
utilized to evaluate the difference between soil nutrients in pre-mining and post-mining
soil. The ordinary kriging coupled with RF were utilized to demonstrate the macro pattern
of the DSOM, DTN, and DAP.

2.3. Extraction of Environmental Factors

A total of 10 environmental factors that could potentially affect the nutrient loss
were considered. They were relief amplitude, slope gradient, variation of slope gradient,
profile curvature, plan curvature, topography wetness index, drainage density, distance
to working panel margin, surface roughness, and the normalized difference vegetation
index. A digital elevation model (DEM) with a 5-m resolution was applied to extract the
slope gradient, variation of slope gradient, curvature, and drainage. The stream network
was determined from DEM using a stream threshold of 400. The DEM was conducted by
Resources Satellite Three (ZY-3), the first civil high-resolution stereoscopic Earth mapping
satellite of China. It carries three high-resolution panchromatic cameras and an infrared
multispectral scanner. The relief amplitude (Formula (1)), TWI (Formula (2)), and surface
roughness (Formula (3)) were calculated as below [46]:

Relie f amplitude = hmax − hmin (1)

TWI = LN(AS/ tan S) (2)

Sur f ace roughness = 1/ cos(S ∗ π/180) (3)

where hmax is the maximum elevation value of all pixels in the neighborhood, and hmin is
the minimum elevation value of all pixels in the neighborhood. AS is the specific catchment
area in square kilometers, and S is the local slope gradient in degrees.

The working panel was delineated using the coordinates provided by the Xi’an Re-
search Institute of China Coal Technology and Engineering Group, and the distance to
mining was calculated using the Euclidean distance. All of the aforementioned environ-
mental factors were calculated and extracted using ArcGIS 10.2. The Normalized Difference
Vegetation Index (NDVI) was computed from Sentinel 2 (4 January 2019, 10 m resolution),
by ENVI 5.3 software.
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2.4. RDA and Multiple Linear Regression

Redundancy analysis (RDA) is a sorting method that combines regression analysis and
principal component analysis. By analyzing the correlation between the dependent variable
and the independent variables, the reasons for the variation of the dependent variables
can be assessed [47]. This method uses the nutrient loss as the dependent variable and the
environmental variables as the independent variables to establish a linear regression model
to describe the proportion of the dependent variable variation caused by each independent
variable. A higher proportion represents a more significant correlation [48].

The multiple linear regression can be expressed as follows (4):

D(SOM, TN, AP) = a1x1 + a2x2 + . . . a10x10 (4)

where a1, . . . , a10 are the partial correlation coefficients and x1, . . . , x10 are the environmen-
tal factors. The standardized regressive coefficient calculated based on the partial correla-
tion coefficient demonstrates the effect of the environmental factors on soil nutrient loss.

2.5. Random Forest Regression Trees

A random forest (RF) regression was used to model the non-linear correlation between
nutrient loss and environmental factors under mining disturbance [49]. The machine
learning algorithm requires a large dataset to obtain an optimized and stable model,
avoiding underfitting. However, the powerful predicting ability of RF allows it to acquire
an optimized model with a small dataset. The RF algorithm uses a bootstrapping method
based on regression tree analysis to predict a continuous response variable. It fits a
collection of decision tree models to the dataset. Each tree, trained using different bootstrap
samples of the training data, acts as a regression function on its own, and the final output
given by the regression corresponds to the average of the individual tree outputs [50].
The samples that are not in the bootstrap sample are called out-of-bag (OOB) samples;
they are used to test the accuracy of the decision trees and estimate the overall model’s
misclassification error and variable importance [50]. The OOB ensures that each decision
tree in the RF is a relatively accurate classification model; thus, the ensemble of these trees
achieves a higher accuracy than the normally utilized BRT method. Hence, OOB is able
to strictly control errors. Due to its cross-validation capability, RF regression provides
realistic prediction error estimates during the training process, which gives it a powerful
generalization ability to predict the unmeasured value [51]. Other advantages of RF
include its minimized risk of overfitting, the possibility of including categorical along with
continuous explanatory variables, and the small number of model parameters that need to
be specified compared to other modeling approaches [50]. RF also provides several metrics
to aid in interpretation: for instance, it automatically computes a variable importance score
that assesses the contribution of individual predictors to the final model.

After the optimized model was established based on RF, it also provided a powerful
prediction ability to simulate soil nutrient loss in other unmeasured points. The kriging was
utilized to predict the spatial distribution of soil nutrient loss, and RF was subsequently
utilized to predict the other 20 unmeasured subsided points. These 20 unmeasured points
were added to the observation points into kriging as measured points, to optimize the
macro-spatial pattern of nutrient loss. The RF model was evaluated using mean absolute
error (MAE) (Formula (5)), root mean squared error (RMSE) (Formula (6)) and mean
squared error (MSE) (Formula (7)) as follows:

MAE =
1
n ∑xL

|yL − sL| (5)

RMSE =

√
∑xL

(yL − sL)
2

n
(6)

MSE =
1
n ∑xL

(yL − sL)
2 (7)
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These three parameters combined with the mean error (ME), root mean square stan-
dardized error (RMSSE), and average squared error (ASE) were utilized to inaugurate the
appropriate kriging model presentation. The formulae of ME, RMSSE, and ASE can be
found in a previous study [10].

3. Results
3.1. Comparison between SOM, TN, and AP in Pre- and Post-Mining Soil

Comparisons of SOM, TN, and AP in the pre-mining and post-mining soil were shown
in Figure 2. In the pre-mining period, SOM, TN, and AP varied from 2.6 to 14.4 g kg−1,
0.273 to 0.891 g kg−1, and 3.4 to 32.5 mg kg−1, with an average of 8.05 g kg−1, 0.539 g kg−1,
and 7.73 mg kg−1, respectively. In the post-mining soil, SOM, TN, and AP varied from
0.5 to 12.5 g kg−1, 0.182 to 0.890 g kg−1, and 1.1 to 23.4 mg kg−1, with an average of
5.2 g kg−1, 0.412 g kg−1, and 4.8 mg kg−1, respectively. The variation of the three soil
nutrient indexes is shown in Table 1. SOM, TN, and AP decreased in the post-mining soil in
the range of 0.1 to 7.1 g kg−1, 0.001 to 0.364 g kg−1, and 0.1 to 9.1 mg kg−1, with an average
of 2.9 g kg−1, 0.127 g kg−1, and 2.9 mg kg−1, respectively. The data of the samples satisfied
the normality assumption, with the p values of SOM, TN, AP, DSOM, DTN, and DAP all
above 0.05 (p > 0.05). The paired t-test was conducted to evaluate the differences between
SOM, TN, and AP in the pre-mining and post-mining soil (Table 1). The t values of SOM,
TN, and AP were 3.338, 4.539, and 4.742, with p < 0.005, p < 0.001, and p < 0.001, respectively.
The average decrease of SOM, TN, and AP compared to the pre-mining soil were 35.49%,
23.56%, and 38.06%, respectively. The results of the t-tests demonstrated a significant
difference between the three soil nutrient indexes in the pre-mining and post-mining soil.
We found that the soil nutrients dramatically decreased due to mining activities.
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Table 1. Comparison between SOM, TN, and AP in pre-mining and post-mining soil using the paired t-test.

Mean Std.
Deviation

Std. Error
Mean

95% Confidence Interval of
the Difference t Sig.

(2-Tailed)
Lower Upper

SOM PRE-SOM POST 2.347 3.144 0.703 0.875 3.818 3.338 0.003
TN PRE-TN POST 0.127 0.125 0.028 0.068 0.186 4.539 0.000
AP PRE-AP POST 2.938 2.771 0.620 1.641 4.234 4.742 0.000

Note: std.deviation: standard deviation; SOM PRE, TN PRE, AP PRE: SOM, TN, and AP in pre-mining soil; SOM POST, TN POST, AP
POST: SOM, TN, and AP in post-mining soil.

As shown in Figure 3, the liner regression correlating SOM and TN in the pre-mining
and post-mining soil was fitted. The value of R square was 0.54 in the linear fitting of SOM
and TN in the pre-mining soil, while it reached to 0.95 in the linear fitting of SOM and
TN in the post-mining soil, demonstrating that mining activities enhanced the correlation
between SOM and TN. The correlation between SOM and AP, and TN and AP, in both
pre-mining soil and post-mining soil, was not significant.
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3.2. The Relationship between the Decrease of Soil Nutrients and Environmental Factors

The correlation between environmental factors and soil nutrient loss is shown in
Tables 2 and 3, using RDA. For SOM, the total contribution was 15.7%, and surface rough-
ness, distance to working panel margin, drainage density, and relief amplitude contributed
21.0%, 18.9%, 17.6%, and 16.6%, respectively. These four environmental factors contributed
significantly to the total explanation (p < 0.05) of DSOM. For TN, the total increased to
19.0%, and profile curvature, relief amplitude, and surface roughness contributed 47.6%,
15.8%, and 14.6%, respectively. These three factors significantly contributed to the total
explanation of DTN. In terms of AP, the total contribution reached 44.8%, and relief am-
plitude, profile curvature, and distance to mining contributed 47.8%, 13.3%, and 12.4%,
respectively. These three factors significantly contributed to the total explanation of DAP.

Table 2. Soil nutrients loss after mining disturbance.

ID DSOM DTN DAP

CJT-1 −3.287 −0.019 −0.1
CJT-2 −5.862 −0.126 −1.75
CJT-3 −3.02 −0.241 −1.7
CJT-4 −4.756 −0.234 −9.1
CJT-5 −0.095 −0.023 −2.6
CJT-6 −0.793 −0.343 −0.2
CJT-7 −2.036 −0.354 −1.45
CJT-8 −0.181 −0.001 −1
CJT-9 −0.116 −0.01 −0.05

CJT-10 −0.686 −0.018 −6.2
CJT-11 −7.1 −0.364 −4.75
CJT-12 −4.563 −0.172 −1.85
CJT-13 −2.072 −0.034 −2.6
CJT-14 −4.484 −0.017 −1.25
CJT-15 −4.488 −0.107 −7.8
CJT-16 −4.011 −0.23 −7.7
CJT-17 −0.157 −0.092 −1.55
CJT-18 −1.921 −0.041 −2.75
CJT-19 −1.994 −0.02 −0.3
CJT-20 −5.511 −0.094 −4.1

Note: D (SOM, TN, AP) = Post-mining soil (SOM, TN, AP) − Pre-mining soil (SOM, TN, AP).
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Table 3. The explanations of environmental factors on soil nutrients loss based on RDA.

Soil Nu-
trients

Dis.to
Margin Slope Slope

Variation
Plan Cur-

vature

Profile
Curva-

ture
Density Roughness

Relief
Ampli-

tude
NDVI TWI

Total
Expla-
nation

DSOM 2.9 0.1 0.9 2.0 0.7 2.7 3.3 2.6 0.4 0.1 15.7
DTN 0.2 1.7 1.6 0.2 9.0 0.2 2.8 3.0 0.2 0.1 19.0
DAP 5.5 2.6 1.7 1.2 5.9 3.9 0.6 21.4 1.0 1.0 44.8

Note: Dis. to mining: distance to working panel margin; Slope: slope gradient; Density: drainage density; Roughness: surface roughness.

Among the three predictors, the DAP model showed the most powerful predicting
function, with the highest total explanation. The DSOM model showed the lowest total
explanation, demonstrating that the environmental factors were not significant in terms
of predicting the decreased value of SOM. Among the environmental factors, distance
to working panel margin and drainage density were significantly correlated with DSOM
and DAP, while they scarcely contributed to DTN. Profile curvature was significantly
correlated with DAP and DTN, while it scarcely contributed to DSOM. Surface roughness
was significantly correlated with DSOM and DTN, while it scarcely contributed to DAP.
Relief amplitude was significantly correlated with all soil nutrients, while NDVI and TWI
scarcely contributed to any of the predictors.

The results of the multiple linear regression correlations with environmental factors
and DSOM, DTN and DAP are shown below (Formulas (8)–(10)):

DSOM = −1.034 ×relief amplitude− 0.14× slope gradient− 0.045× slope variation
−0.841× plan curvature− 0.027× profile curvature + 1.816 ∗NDVI
+0.008× TWI + 0.007× distance to working plane

−0.228× drainage density− 0.039× surface roughness− 8.014
(

R2

= 0.16)

(8)

The standardized coefficients showed that relief amplitude (−0.35) and distance to
working panel margin (0.33) significantly affected DSOM, followed by drainage density
(−0.264) and surface roughness (−0.253).

DTN = −0.298 ×relief amplitude− 0.052× slope gradient
−0.008× slope variation− 0.024× plan curvature
−0.025× profile curvature + 0.193×NDVI + 0.014× TWI
−0.0008× distance to mining + 0.002× drainage density
−0.008× surface roughness− 0.424

(
R2 = 0.20

) (9)

The standardized coefficients showed that relief amplitude (−1.748) and slope gradient
(−1.364) significantly affected DTN, followed by slope variation (−0.647) and surface
roughness (−0.432).

DAP = −6.210 ×relief amplitude− 1.194× slope gradient
−0.083× slope variation− 0.872× plan curvature
−0.578× profile curvature + 9.417×NDVI− 0.354× TWI
+0.009× distance to mining + 0.267× drainage density
−0.026× surface roughness− 3.674

(
R2 = 0.56

) (10)

The standardized coefficients showed that relief amplitude (−1.646) and slope gradient
(−1.410) significantly affected DAP, followed by distance to working panel margin (0.328)
and slope variation (−0.298).
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3.3. Modelling DSOM, DTN, and DAP Using Random Forest

The multiple linear regression between DSOM, DTN, and DAP with the environmental
factors showed a relatively low value of R square, demonstrating that the correlations may
be better fitted using a non-linear algorithm. The result of feature importance conducted
by random forest is shown in Figure 4. The MAE, MSE, and RMSE values in the model
correlated with DSOM and environmental factors were 0.072, 0.013, and 0.112, respectively.
The feature importance showed that plan curvature (0.228) was the most significant factor
affecting DSOM, followed by profile curvature (0.191), NDVI (0.124), TWI (0.095), drainage
density (0.094), distance to working panel margin (0.083), surface roughness (0.062), slope
variation (0.058), slope gradient (0.038), and relief amplitude (0.027). In terms of the DTN
model, the MAE, MSE, and RMSE were 0.093, 0.032, and 0.181, respectively. The feature
importance showed that distance to working panel margin (0.222) was the most significant
factor affecting DTN, followed by profile curvature (0.164), NDVI (0.149), slope variation
(0.108), drainage density (0.098), plan curvature (0.072), TWI (0.053), relief amplitude (0.049),
surface roughness (0.046), and slope gradient (0.039). As for the DAP model, the MAE,
MSE, and RMSE were 0.05, 0.004, and 0.065, respectively. The feature importance showed
that surface roughness (0.398) was the most significant factor affecting DAP, followed by
slope gradient (0.217), slope variation (0.153), relief amplitude (0.127), profile curvature
(0.076), drainage density (0.008), NDVI (0.006), distance to working panel margin (0.006),
TWI (0.005), and plan curvature (0.003). The results showed that random forest had a
higher accuracy in terms of predicting DSOM, DTN, and DAP. Thus, the feature importance
could be a more reliable index to analyze the influence of environmental factors on soil
nutrient decrease, compared to the standardized coefficients.
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3.4. Predicting the Spatial Distribution of DSOM, DTN, and DAP by Combining Random Forest
and Kriging

The sampling points were relatively deficient in the present study. Thus, random
forest was utilized to predict the correlation of DSOM, DTN, and DAP with environmental
factors, using 20 further mining disturbance points. These points were added to the study
area with all environmental factors extracted. The tendency of the spatial distribution was
smooth with the addition of the 20 points predicted by random forest (Figure 5). SOM
decreased drastically in the north-east of the study area, adjacent to the working panel
margin, and the decline slowed away from the working panel margin. The SOM decreased
least in the north-west of the study area. TN decreased drastically in the northern and
eastern area, except for the south-west corner of the study area, and this result was reversed
from that of SOM. TN also decreased by the least in the middle and south-west corner of
the study area. In terms of AP, the spatial distribution was homogeneous, with the greatest
decline occurring in the middle and south-east of the study area, and the smallest decline
in the west of the study area.
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20 unmeasured points predicted by random forest.

The accuracy of kriging interpolation was validated by 10-cross validation (Table 4).
With ME and MSE close to 0, RMSE close to ASE, and RMSSE close to 1, the interpolation
was perceived as accurate. The ME of DSOM, DTN, and DAP using 20 points and 40 points
was 0.504 and 0.053, −0.051 and −0.002, and −0.094 and −0.025, respectively. The MSE of
DSOM, DTN, and DAP using 20 and 40 points was 0.146 and 0.029,−0.620 and−0.020, and
−0.041 and −0.010, respectively. The RMSSE of DSOM, DTN, and DAP using 40 points
were all closer to 1 than those using 20 points. Thus, the kriging combined with random
forest provided an optimized spatial pattern of soil nutrient decline.

Table 4. The validation of the Kriging interpolation using 20 and 40 points.

20 Points-SOM 40 Points-SOM 20 Points-TN 40 Points-TN 20 Points-AP 40 Points-AP

ME 0.504 0.053 −0.051 −0.002 −0.094 −0.025
RMSE 2.351 1.556 0.112 0.065 2.896 2.244
MSE 0.146 0.029 −0.620 −0.020 −0.041 −0.010

RMSSE 1.081 0.985 0.904 0.987 0.864 0.975
ASE 2.205 1.564 0.128 0.069 2.986 2.250

Note: 20 points-soil nutrients, using 20 points as measured points; 40 points-soil nutrients, using 20 original points and 20 RF predicted
points as measured points. ME, mean error; RMSE, root mean square error; MSE, mean square error; RMSSE, root mean standard square
error; ASE, average sampling error.

4. Discussion
4.1. Effects of Mining Disturbance on Soil Nutrient Loss

As shown in Table 2 and Figure 2, the three measured soil nutrients declined signif-
icantly in the post-mining soil, demonstrating severe destruction of the topsoil and soil
nutrient loss under conditions of mining activity. With the implementation of the “Grain
for Green” project, the soil nutrients increased in the study area with the treatment of a
covering of caragana microphylla due to its nitrogen fixation capacity, litter residue, and
root system, which protect the soil aggregates from soil erosion [45,52]. However, the soil
nutrients drastically decreased in the post-mining soil, demonstrating that the root system,
as well as the soil aggregates, were destroyed by underground mining. Surface deforma-
tion may significantly alter the soil texture in the topsoil, as clay and silt particles may be
entrained through the cracks and sustain vertical loss. These particles are enriched with
soil nutrients, and their loss directly causes soil nutrient decline in post-mining soil. Due to
the loss of these finer particles, nutrient-holding capacity is also drastically reduced [53,54].

The soil microbial community is essential for the accumulation and decomposi-
tion of SOM, and microbes are responsible for decomposition of plant litter and animal
residues [28]. They also contribute to the decomposition of organic matter that produces
slimes and gums, which aid in the formation of soil structures and humus [28]. Previous
studies have shown that the diversity and richness of the bacterial community drastically
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decrease with mining disturbance, which affects the stability of the soil aggregates and
leads to the decrease of SOM and TN [27,35]. The loss of these soil nutrients induced by
mining disturbance may directly affect the richness and diversity of the bacteria, thus affect-
ing the mineralization of organic N and p, and dissolution of inorganic N and P. Meanwhile,
surface subsidence and ground fissures can alter the soil physical properties (e.g., porosity,
soil bulk density). With an increase of soil porosity, the SOM loss can be aggravated [24,55].
SOM is the major source of N and P; with the decrease of SOM, the aggregation and the
availability of nutrients could drastically decline, which may lead to a decrease of TN and
AP in post-mining soil [3,10]. The R2 values of the correlation of TN and SOM were 0.54
and 0.95 in the pre- and post-mining soil, respectively, and an increased correlation could
be induced by the loss of the inorganic form N. Plant and microbial N uptake is likely less
in post-mining soil. Due to the cracks and increased infiltration, inorganic N is potentially
susceptible to greater losses from leaching, volatilization, and conversion to gaseous forms
than organic forms of N [10,28]. With the development of ground fissures, surface runoff
may gather though these tunnels, while the runoff stored by topsoil may decrease. Ground
fissures also promote the evaporation of soil moisture [15]. As a result, soil moisture in
areas exposed to mining disturbance, especially areas with ground fissures, is likely to
decrease. AP is related to the soil moisture, and with the decrease of soil moisture, AP
drastically decreases. AP loss can generally be attributed to low primary productivity
and high nutrient immobilization by calcium and magnesium [15]. Meanwhile, cracks,
which result in the leakage of soil water, increase the effective flow path of water and
promote soil water movement to the bottom layers of the soil, which further induces the
loss of AP [2,10]. SOM, TN, and AP are the dominant factors for the development of soil
bacteria communities.

4.2. Effects of Environmental Factors on Soil Nutrient Loss

Based on the results of the linear regression and random forest, plan curvature was
the most significant factor and was negatively correlated with DSOM, demonstrating that
a convex surface is related to divergence of the flow across the topsoil surface, and can
aggravate the SOM loss under the conditions of mining disturbance. Ground fissures and
subsidence in the topsoil can aggravate the SOM loss with divergence of the flow, as the
cracks increase the potential of preferential flow and thus aggravate the damage to the
humus layer in the topsoil [2]. Divergence of flow also contributes to the formation of
ephemeral gullies, which generate the incision of overland flow into the cracks, and thus
aggravate soil erosion and SOM loss [56]. Soil materials are voided by slumping of these
unstable gullies and cracks, and are subsequently transported by the flowing runoff in both
the vertical and horizontal directions [56]. SOM decreases slightly under a convergence of
the flow, demonstrating that the accumulation of runoff could alleviate the SOM loss in the
topsoil. Previous studies have demonstrated that convergence of the flow may cause less
tensile stress compared to divergence of the flow, which may prevent the development of
ground fissures [57]. Convergence of the flow could also contribute to the accumulation
of SOM in the center of the subsidence, which would also alleviate the SOM loss. Profile
curvature contributes significantly to the decrease of the SOM, suggesting that accelerated
flow could aggravate the loss of SOM, and decelerated flow could alleviate the loss of SOM.
The erosive power of accelerated flow could increase and thus aggravate the destruction of
soil aggregates, and lead to SOM loss [58].

The distance to working panel margin significantly affected TN loss, with a negative
correlation. Ground fissures occurred on the edge of the working panel due to tensile
stress, and these are not able to spontaneously recover [10]. Ground fissures in the middle
part of the working panel first expand and then compress, and may eventually recover
though self-healing [21]. Thus, N-fixing bacteria could prevent TN loss in the middle
part of the working panel; these bacteria are susceptible to mining disturbance, and their
community and abundance also drastically decrease at the edge of the working panel [59].
Profile curvature also contributed significantly to TN loss, as accelerated flow aggravates
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the leaching of TN. NDVI significantly contributed to both SOM and TN loss, with a
positive correlation, demonstrating that plants and their root systems can increase the
nutrient-holding capacity and prevent soil erosion under uneven subsidence.

Surface roughness and slope gradient significantly affect AP loss, with a negative
correlation. With elevating surface roughness, the soil erosion is aggravated, increasing
AP loss. The availability of P is limited in the study area. Thus, the AP in the topsoil
is susceptible to ground fissures, and can be eroded through cracks [10]. The uneven
subsidence, which induces an additional slope, can also aggravate AP loss. With an
elevated slope gradient, AP loss is aggravated as the clay and silt particles in which P is
enriched are transported and eroded.

The standardized coefficient of relief amplitude was greatest in the linear regression.
However, it barely affected DSOM, DTN, and DAP in the RF model. Meanwhile, the
standardized coefficient of NDVI was low in the linear regression; it significantly affected
DSOM and DTN in the RF model. Thus, it could be inferred that the intricate non-linear
regressions among the nutrient loss and environmental factors could be better simulated
using a machine learning algorithm.

4.3. Optimized Spatial Distribution Modelling Based on RF

By comparing the results of the kriging interpolation, we inferred that RF contributed
to the improved accuracy of the macro-spatial pattern, with a smooth distribution and
tendency. By using ordinary kriging, the nutrient loss at the unmeasured points was
predicted only by the semi-variance. With the addition of predicted values using RF, the
correlation with the soil nutrient loss and environmental factors achieved a higher accuracy
and well-distributed measured points, which significantly enhanced the performance of
the interpolation of DSOM, DTN, and DTN.

5. Conclusions

This study analyzed the effects of environmental factors on soil nutrient loss in
topsoil under land deformation (e.g., land subsidence and ground fissures) in the Caojiatan
coalfield. Significant differences were found between SOM, TN, and AP in pre-mining
soil and post-mining soil. The soil nutrients at 20 measured points all decreased after the
mining disturbance, demonstrating severe destruction of the soil fertility caused by mining
activities. The results of RDA analysis demonstrated that the distance to working panel
margin, profile curvature, and relief amplitude significantly contributed to the decrease
of SOM, TN, and AP. Multiple linear regression demonstrated that relief amplitude was
the most dominant factor affecting the decrease of SOM, TN, and AP. The results of RF
showed that plan curvature, distance to working panel margin, and surface roughness
were the most significant factors affecting DSOM, DTN, and DAP. Mining disturbance
caused loss of the litter layer and microbes, which affected the availability of soil nutrients
and nutrient-holding capacity in the topsoil. Inorganic N is potentially subject to greater
losses from leaching, volatilization, and conversion to gaseous forms than organic forms
of N. Meanwhile, the profile curvature contributed to the formation of ephemeral gullies,
and thus aggravated SOM loss. The distance to working panel margin contributed to the
formation of fissures, and thus aggravated TN loss. The surface roughness contributed
to aggravating the soil erosion intensity and AP loss. RF predicted the soil nutrients
at unmeasured points, and thus optimized the macro-spatial pattern of DSOM, DTN,
and DAP.
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