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Abstract: Information on forest composition, specifically tree types and their distribution, aids in
timber stock calculation and can help to better understand the biodiversity in a particular region.
Automatic satellite imagery analysis can significantly accelerate the process of tree type classification,
which is traditionally carried out by ground-based observation. Although computer vision methods
have proven their efficiency in remote sensing tasks, specific challenges arise in forestry applications.
The forest inventory data often contain the tree type composition but do not describe their spatial
distribution within each individual stand. Therefore, some pixels can be assigned a wrong label
in the semantic segmentation task if we consider each stand to be homogeneously populated by
its dominant species. Another challenge is the spatial distribution of individual stands within the
study area. Classes are usually imbalanced and distributed nonuniformly that makes sampling
choice more critical. This study aims to enhance tree species classification based on a neural network
approach providing automatic markup adjustment and improving sampling technique. For forest
species markup adjustment, we propose using a weakly supervised learning approach based on
the knowledge of dominant species content within each stand. We also propose substituting the
commonly used CNN sampling approach with the object-wise one to reduce the effect of the spatial
distribution of forest stands. We consider four species commonly found in Russian boreal forests:
birch, aspen, pine, and spruce. We use imagery from the Sentinel-2 satellite, which has multiple
bands (in the visible and infrared spectra) and a spatial resolution of up to 10 meters. A data set of
images for Leningrad Oblast of Russia is used to assess the methods. We demonstrate how to modify
the training strategy to outperform a basic CNN approach from F1-score 0.68 to 0.76. This approach
is promising for future studies to obtain more specific information about stands composition even
using incomplete data.

Keywords: deep learning; remote sensing; tree species; classification

1. Introduction

Many ecological and forest management studies are based on knowledge about tree
species within a region of interest. Such knowledge can be used for the precise analysis
of natural conditions [1], the development of ecological models [2], and for conservation
and restoration decision-making [3]. Accompanied by other characteristics, such as tree
age and height, crown width, and tree species information can be leveraged for timber
volume [4,5] and biomass estimation [6].

A commonly used approach for forest type data gathering is field-based measurement,
which has the obvious drawbacks of acquisition cost and difficulty. Many studies are now
focused on the automatization of land-cover survey through the use of remote sensing-
derived data. This approach is more preferable when analysing vast territories. For instance,
the creation of large-scale maps has been described in [7,8]. For such tasks, both low spatial
resolution and high resolution data can be used. Examples of frequently leveraged data
sources with resolution lower than 30 m is Landsat satellite imagery [9,10]. Promising
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results have been shown in studies, both for single image and time-series data [11–13].
Nevertheless, some tasks require more precise data with higher resolution. Multispectral
images with high resolution strive to provide more thorough land-cover analysis. Many
studies have performed forest survey based on Sentinel images with spatial resolution
adjusted to 10 m [14]. For instance, one of the open source packages for Sentinel data
analysis is eo-learn project [15].

Recently, image classification algorithms have demonstrated high prediction accuracy
in a variety of applied tasks. Algorithms based on machine learning methods are now
commonly used for land-cover mapping—particularly for forest species prediction—using
satellite imagery. Classical methods, such as Random Forest [16], Support Vector Ma-
chine [17], and Linear Regression, usually work with feature vectors, where each value
corresponds to some spectral band or combination of bands (in the case of vegetation
indices) [18,19]. Deep neural network approaches have proved to be more capable for
many land-cover tasks [20–22]. In [23], a CNN was compared with XGBoost [24]. In [25],
a CNN approach was examined for tree mapping, through the use of airplane-based RGB
and LiDAR data. In [26], neural-based hierarchical approach was implemented to improve
forest species classification.

In contrast with typical image classification tasks (such as in the Imagenet data set),
land-cover tasks involve spatial data. Vast study regions are usually supplied, with
a reference map covering the entire area. Classes within this area may not be evenly
distributed in many cases [27]. Moreover, classes of vegetation types of land-cover are
often imbalanced within the study region. In many works, the analysed territory can be
covered by a single satellite tile (e.g., the size for Sentinel-2 is 100× 100 km2). Therefore,
researchers must choose both how to select the training and validation regions and how to
organize the training procedure to deal with imbalanced classes and a spatial distribution
that is usually far from uniform. Sampling approach is vital for the remote sensing domain
as simple image partition into tiles is ineffective for vast territories [28]. The training
procedure depends on whether we use a pixel-wise [29] or object-wise approach [10,18].
In a pixel-wise approach, each pixel is ascribed a particular class label and the goal is to
predict this label using a feature description of the pixel. In an object-wise approach, a set
of pixels is considered as a single object. In some classical machine learning methods, a
combination of the two approaches has also been considered [19]. An alternative approach
to classical pixel- or object-wise has been provided in [25] for a CNN tree classification
task using airplane-based data. During the described patch-wise training procedure, the
model strove to predict one label for a whole input image of size 64× 64 pixels. However,
for some semantic segmentation tasks with lower spatial resolution, the input image can
include pixels with different labels and, therefore, the aforementioned approach is not
always applicable. The same issue was faced in [21], where patch-wise approach was
implemented for CNN for a land-cover classification task using RapidEye satellite imagery.
Some patches with mixed labels were excluded, in order to solve the problem. In our study,
we aim to provide sampling approach for medium resolution satellite imagery for forest
species classification. In contrast to [25], we focus on the particular area within a patch and
do not exclude from training patches with mixed labels as in [21].

Another important issue is markup limitations. Field-based measurements are com-
monly used as reference data. Vast territories are often split into small aggregated areas
comprised of groups of trees called individual stands [30]. These stands are not necessarily
homogeneous but, in some cases, the percentages of different tree species within the stand
is available [26]. The location of the non-dominant trees is unknown. In such cases, machine
learning algorithms are often trained to predict the dominant class even for regions with
mixed forest species [31], or just areas with a single dominant tree species are selected [32].
This raises the issue of weak markup adjustment. Among weakly supervision tasks, this
one belongs to inexact supervision when only coarse-grained labels are given [33]. Weakly
supervised images occur both in the general domain [34,35] and in specific tasks such as
medical images segmentation [36]. These studies involve new neural network architectures
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or frameworks development to decrease requirements for labor-intensive data labeling.
In the remote sensing domain weakly supervised learning was also considered in different
tasks such as cropland segmentation using low spatial resolution satellite data [37], cloud
detection through high resolution images [38], and detection of red-attacked trees with
very high resolution areal images [39]. However, in the field of forest species classification,
the weak markup problem requires additional analysis according to data specificity (both
satellite and field-based). In this study, we propose a CNN-based approach to extract
more homogeneous areas from the traditional forest inventory data that includes only
species’ content within stands and does not provide each species’ location. We focus on
semantic segmentation problem using high resolution multispectral satellite data. The
approach is particularly based on the Co-teaching paradigm presented in [40] where two
neural networks are trained, and small-loss instances are selected as clean data for image
classification task. In contrast, we split the data adjustment and training process into two
separate stages and implement this pipeline for the semantic segmentation task.

In this study, we aim to explore a deep neural network approach for forest type classi-
fication in Russian boreal forests using Sentinel-2 images. We set the following objectives:

• to develop a novel approach for forest species classification using convolutional
neural networks (CNN) combining pixel- and object-wise approaches during the
training procedure, and compare it with a typically used approach for semantic
segmentation; and

• to provide a strategy for weak markup improvements and examine forest type clas-
sification both as a problem of (a) dominant class estimation for non-homogeneous
individual stands and (b) more precise homogeneous classification.

2. Materials and methods
2.1. Study Site

The study was conducted in the Russian boreal forests of Leningrad Oblast. The
coordinates of these regions are between 33◦42′ and 33◦76′ longitude and between 60◦78′

and 61◦01′ latitude (Figure 1). The vegetation cover is mixed and includes deciduous and
conifer tree species. The main species are pine, spruce, aspen, and birch. The climate in
the region is humid. An average daily high temperature in the vegetation period (from
May to August) is above 15 °C. The rain period usually lasts for 7 months (from April to
November). From September to May, it is snowy (or rain mixed with snow). Throughout
the course of the year, the region is generally cloudy (with the clearer periods during the
summer time, when the probability of a clear sky is about 20%) [41].

Figure 1. Region of interest. Enhanced RGB bands of Sentinel-2 image (tile id is L2A_T36VWN_
A010343_20170615T090713) are shown.
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2.2. Reference Data

Reference data was previously reported in [26]. It was collected by field-based mea-
surements carried out in July-August 2018. The methodology of data gathering corre-
sponded to the official Russian inventory regulation [30]. In accordance, the study area
was split into individual stands with the following characteristics: polygonal coordinates,
a certain percentage of each tree species, average age, and height within the stand. The
distribution of stand sizes is presented in Figure 2. The majority of polygons had their
longest side length between 100 and 600 m. Although the percentage for each stand was
defined, the spatial distribution within the stand was unknown. The number of individual
stands with particular dominant tree species (larger than 50% within the stand) is shown in
Figure 3 and in Table 1. The vast majority of individual stands consisted of mixed species;
for instance, there were less than 100 stands of pure (not mixed) birch type. Example of
mixed individual stands are presented in Figure 4.

Table 1. Dataset statistics.

Training Test All Area (ha)Individual Stands Individual Stands Individual Stands

aspen 520 205 725 2298
birch 1143 501 1644 4165
pine 1569 726 2295 3620

spruce 1087 450 1537 6315

(a) (b)
Figure 2. Size distribution of individual stands within the study area. Polygons with a side larger
than 64 pixels or smaller than 8 pixels were eliminated.

(a) (b)

(c) (d)
Figure 3. Distribution of classes.
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Figure 4. Composite of B12, B08, B04 Sentinel-2 bands (tile id is L2A_T36VWN_A010343_
20170615T090713). Example of mixed individual stands (red polygon) with percentages of species.

2.3. Satellite Data

For optical multispectral imagery, we acquired Sentinel-2 data. This data is available
for free download in L1C format from EarthExplorer USGS [42]. Tiles IDs and acquisition
dates are presented in Table 2. In this study, we considered only summer images. High
cloud cover imposes limits on data for this northern region. Therefore, only two summer
images from different years but of the comparable summer period were used to create
the training dataset. Images acquired in other summer dates did not provide a sufficient
amount of clear areas without clouds. There were no significant forest cover changes
between survey time and image acquisition time; therefore, both images are relevant for
the study. 10 bands of the following wavelengths were used: Band 2: Blue, 458–523 nm;
Band 3: Green, 543–578 nm; Band 4: Red, 650–680 nm; Band 5: Red-edge I (R-edge
I), 698–713 nm; Band 6: Red-edge II (R-edge II), 733–748 nm; Band 7: Red-edge III (R-
edge III), 773–793 nm; Band 8: Near infrared (NIR), 785–900 nm; Band 8A: Narrow Near
infrared (NNIR), 855–875 nm; Band 11: Shortwave infrared-1 (SWIR1), 1566–1651 nm; Band
12: Shortwave infrared-2 (SWIR2), 2100–2280 nm). Images were pre-processed with the
Sen2Cor package [43] for atmospheric correction. Although, Sen2Cor package provides
a cloud and shadow map, which can be used to eliminate irrelevant pixels, we selected
cloudless images for the study. The obtained data were in L2A format, including values of
Bottom-Of-Atmosphere (BOA) reflectances. For CNN-based tasks, image values are often
brought to the interval from 0 to 1 [44,45]. Therefore, pixel values were mapped to the
interval [0, 1] through division by 10000 (the maximum physical surface reflectance value
for Sentinel-2 in level L2A) and clipping to 0 and 1. We used bands with a spatial resolution
of 10 m per pixel (B02, B03, B04, B08 bands) and 20 m per pixel (B05, B06, B07, B11, B12, B8A
bands), adjusted to 10 m by Nearest Neighbor interpolation [46]. Each image covered the
entire study area, and images were considered separately without any spatial averaging
(the same as in [47]).

Table 2. Sentinel-2 images from USGS. Wavelength values corresponding to each band: Band 2: Blue, 458–523 nm; Band 3:
Green, 543–578 nm; Band 4: Red, 650–680 nm; Band 5: Red-edge I (R-edge I), 698–713 nm; Band 6: Red-edge II (R-edge II),
733–748 nm; Band 7: Red-edge III (R-edge III), 773–793 nm; Band 8: Near infrared (NIR), 785–900 nm; Band 8A: Narrow
Near infrared (NNIR), 855–875 nm; Band 11: Shortwave infrared-1 (SWIR1), 1566–1651 nm; Band 12: Shortwave infrared-2
(SWIR2), 2100–2280 nm).

Tile ID Date Cloud 10 m 20 m Level of
Coverage Bands Bands Processing

L1C_T36VWN_A010343_20170615T090713 2017.06.15 0 2, 3, 5, 6, 7, L1C
4, 8 8A, 11, 12

L1C_T36VWN_A016206_20180730T090554 2018.07.30 0 2, 3, 5, 6, 7, L1C
4, 8 8A, 11, 12
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2.4. Organizing Samples for Classification

Four tree species were considered: aspen, birch, spruce, and pine. We also considered
the ’conifer’ class as a combination of spruce and pine, and the ’deciduous’ class as a
combination of aspen and birch. As a sample for the further analysis, we chose individual
stands. There was no information on the spatial distribution of tree species within an
individual stand. Therefore, we defined the label for each stand as the dominant tree species
within it, if the stand contained more than 50% of this forest type (the same approach was
described in [31]). For conifer and deciduous classes, we summed the percentages for
spruce and pine, and for aspen and birch, respectively. The described sample definition
assumed that the markup had some pre-defined uncertainty for non-homogeneous stands.
However, it provided information necessary to the dominant species classification task.
Thus, for each sample in the data set, we know the label of the dominant forest type,
the percentage of secondary types (if any), and an ascribed polygon in a multispectral
satellite image.

For the experiment of training procedure adjustment, we selected 8 test regions of
about 450 ha each (Figure 5). For the experiment of weak markup improvement, 30% of
samples were selected randomly for test. Samples outside test regions were split into train
and validation sets randomly, in a ratio of 7:3, following the constraint of no occurrence
of the same individual stand in both validation and training sets. For each polygon it
can be more than one sample depending on the images’ number covering the polygon.
Non-overlapping parts of the same satellite image could appear in both the training and
test sets.

Figure 5. The whole study area (white polygon). Test regions (red polygons). Enhanced RGB bands
of Sentinel-2 image (tile id is L2A_T36VWN_A010343_20170615T090713) are shown.

2.5. Forest Species Classification

Instead of typical multi-class classification, we used an hierarchical approach described
in [26]. The task of four-species prediction was split into three tasks: (a) classification of
conifer and deciduous; (b) classification of birch and aspen; and (c) classification of spruce
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and pine. The final results followed from the intersection between the predicted mask of
birch and aspen and the predicted deciduous mask (with a similar approach followed in
the conifer case). Such an hierarchical approach allows for solving each task independently
and ensuring greater control over experiment at each step.

For the forest type classification, we implemented a deep neural network approach,
which have been widely used for image classification and segmentation tasks when spatial
characteristics are important in the remote sensing domain [48–50]. At the input of such
a neural network, there is usually a combination of spectral bands. The output of the
semantic segmentation model is a map, where each pixel is ascribed a particular class label.
During the training procedure, a model is forced to correctly predict as many pixel labels
as possible by observing random image patches with pre-defined size. This is achieved
through the implementation of a particular loss function. The loss is computed for each step
of neural network training, when all images patches from one batch have been processed.
For our study, we implemented the categorical cross entropy per-pixel loss function:

Loss = −∑N
i=1 ∑C

k=1(yik × log ŷik)

N
, (1)

where ŷik—predicted probability of the ith pixel to belong to the kth class, yik—ground
truth value for the ith pixel (1 if the pixel belongs to the kth class), N—number of not
masked pixels, C—number of classes.

In this loss, all pixels in the scene are taken into account. Therefore, if the classes are
highly unbalanced, a model rarely observes pixels labeled as the smaller class. This results
in poor performance of the model for a less represented class. A common solution is using
a larger penalty for errors on the smaller class samples, such as in the weighted categorical
cross entropy:

Weighted Loss = −∑N
i=1 ∑C

k=1(yik × log ŷik)× weights(yik)

N
, (2)

where ŷik—predicted probability of the ith pixel to belong to the kth class, yik—ground
truth value for the ith pixel (1 if the pixel belongs to the kth class), N—number of not
masked pixels, C—number of classes.

Another issue that should be taken into account is that samples of particular classes
may not be evenly distributed across the study region. This means that random selection
of image patches in batch can lead to a situation where samples concentrated in one area
may be seldom observed.

To tackle this problem, we modified the classical sampling approach for semantic
segmentation with CNN, as described in the next section.

2.6. Object-Wise Sampling Approach

We replaced the commonly used batch creation approach. The sample content was
taken into account, instead of simply using random patch selection. The choice of patch
size was governed by the relevant size of polygons. As we eliminated polygons with sides
less than 80 m and larger than 640 m, the patch size was selected as 64× 64 pixels. The
number of patches per batch was set to 128. Although we considered two classes, the
general approach is also applicable for more classes. For each class, we picked the same
number of polygons and cut patches around these polygons to create the batch. As the
polygon size could vary in the defined range, the patch crop could also differ for the same
polygon. The only demand was that the polygon’s bounding box should be within the
patch boundary. The patch was also geometrically augmented, in order to provide more
variability during the training procedure. We implemented random rotate, mirror, and flip
operations. The general approach for batch creation is described in Algorithm 1.
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Algorithm 1: Batch Creation

N ← Batch size;
M← Number of classes;
Pol_set0 ← Set of polygons of the class 0;
...;
Pol_setM−1 ← Set of polygons of the class M-1;
Batch← ∅;
Polygons_masks← ∅;
cl ← 0;
while cl 6= M do

patch_ind← 0;
while patch_ind 6= N/M do

pol ← SelectPolygon(Pol_setcl);
patch← CropPatch(pol);
patch_mask← ExtractPolLabel(pol);
Batch← Augment(patch);
Polygons_masks← Augment(patch_mask);
patch_ind← patch_ind + 1;

end while
cl ← cl + 1;

end while
return Batch, Polygons_masks;

The next step was loss computation. The approach is described in the Figure 6. For this
purpose, we used polygon mask. Patch has dimension Patch_Rows, Patch_Columns,
Number_o f _classes. The patch mask contains non-zero values for pixels within the poly-
gon’s area and for the appropriate correct class. Despite the fact that individual stands are
not often homogeneous, all pixels within one stand were ascribed the same label. The loss
was computed for this area. There can be an available markup for other pixels within the
patch, but this was not considered. The main reason for this is that it can affect the balance
of classes.

We compared this approach with the commonly used per-pixel semantic segmentation
approach, for which the batch was randomly formed and an extra penalty for mistakes in
the smaller class was added (Figure 7). In this approach, for calculation of the weighted
categorical cross-entropy loss, all pixels within the patch were considered. The weights
were set proportionally to the amount of each class represented.

Figure 6. The object-wise semantic segmentation approach. The model produces the map where
the probability of a class is recorded at each pixel. Loss is computed just for masked area of the
polygon. The percentage of dominant class is also can be taken into consideration (in the example,
the dominant species percentage for the individual stand is 0.8).
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Figure 7. The commonly used per-pixel semantic segmentation approach. The model produces the
map where the probability of a class is recorded at each pixel. Loss is computed for the entire patch.
The patch includes stands with different dominant species (class 0, class 1, etc.).

2.7. Weak Markup

Another adjustment was aimed at addressing weak markup. It includes two stages,
as shown in the Figure 8. The first stage was as follows. The aforementioned reference
data consisted of the percentage of each class within the individual stand. We took this
knowledge during the loss computation. The loss was calculated for each individual stand
and multiplied by the dominant species percentage. For example, for a stand that consisted
60% of conifers and 40% of deciduous trees, the penalty will be 0.6. If the percentage is
higher, then the penalty becomes stricter. For a homogeneous stand, all pixels have the
maximum loss weights. Therefore, in Equation (2), weights were defined as the dominant
species percentage. When the learning curve started to change less rapidly and could
achieve sufficient results on the validation set (after about 15 epochs), we changed the
training data set. We eliminated all individual stands with percentage less than 90%. Thus,
for a few epochs (about 2 epochs), the model observes more pure data. Obviously, such
a model will perform poorly, in terms of the initial dominant species problem statement.
However, at the same time, it will not strive to label deciduous trees within a conifer
individual stand as conifer trees (as for case with 60% conifer and 40% deciduous). Then,
we used this model to predict conifer and deciduous species both for training and validation
regions. The first stage of markup adjustment results was the intersection between the
predicted mask and initial dominant species markup. It was assumed that the map acquired
in this way contained less pixels of minor (i.e., non-dominant) classes.

Figure 8. Markup adjustment strategy.
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The next stage of the weak markup study was the implementation of the newly
obtained markup in further training. We intersected the new conifer mask with the initial
spruce and pine dominant masks, and the same for the deciduous classes. The goal of
this intersection was to reduce the number of deciduous pixels within individual stands
dominated by pine and spruce, and vice versa. For this study, we created the validation
data set only from homogeneous individual stands.

2.8. Experimental Setup

For all experiments, the U-Net architecture [51] with ResNet [52] encoder was used,
as it has been shown to successfully perform in popular image classification tasks both
in general and remote sensing domains [50]. The model implementation referred to [53].
It used Keras [54] with Tensorflow [55] backend. For model training, a PC with GTX-
1080Ti GPUs was used. The batch size was 128 patches, where each patch had size of
64× 64 pixels. The batch size was chosen accord-ing to GPU memory limitations. There
were 100–200 steps per epoch and the number of epochs varied from 10 to 30, depending
on the size of classes. Similar results reproduction was achieved by fixing a random seed
for pseudo-random number generator for all training methods.

2.9. Validation Methods

To assess the classification quality, we considered F1-score (Equation (5)). It is a com-
monly used score for semantic segmentation tasks [56], in particular in cases of unbalanced
datasets. F1-score is also often considered in the remote sensing domain [50].

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

F1 =
2× P× R

P + R
(5)

where P is precision, R is recall, TP is True Positive (the number of correctly classified
pixels/stands of a given class), FP is False Positive (the number of pixels/stands classified
as a given class while being of another class), and FN is False Negative (the number of
pixels/stands of a given class missed by the model).

In the one case, we evaluated the number of correctly predicted individual stands.
To this end, per-pixel predictions within stands were aggregated and the dominant class
was defined for each stand. Based on reference and predicted stand labels, the amounts of
true positive, false positive, and false negative samples were estimated. In the second case,
we evaluated the F1-score in a per-pixel manner.

A CNN model for each experiment was trained five times with different random
seeds, and then results were averaged. Standard deviation was computed.

3. Results
3.1. Sampling Approach For Species Classification

We compared a typical sampling procedure for forest species semantic segmentation
with our modified one. The results are presented in Table 3. For all classes, the object-wise
sampling approach performed better. The average F1-score before aggregation was improved
from 0.8 to 0.85. The final aggregated results were obtained by multiplying the predicted
conifer binary mask with spruce and pine masks and multiplying the predicted deciduous
mask with aspen and birch masks. Aggregated results for four forest classes are shown in
Table 6. The object-wise sampling approach allows us to improve segmentation’s F1-score
from 0.68 to 0.74. The larger difference between the two methods was for the birch and aspen
classes. The reason for this is that these classes were the most difficult to distinguish due to
imbalance. The proposed approach leads to a more balanced training samples choice.
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Standard deviation was computed for averaged F1-score of different model training
running. It shows that achieved results are relevant for further forest analysis studies.

Table 3. Forest types classification using different sampling procedure (per-pixel F1-score).

Aspen/Birch Pine/Spruce Conifer/Deciduous Average

Simple sampling
procedure 0.48/0.88 0.91/0.88 0.81/0.85 0.8 ± 0.003

Modified sampling
procedure 0.63/0.91 0.94/0.88 0.85/0.87 0.85 ± 0.004

3.2. Markup Adjustment

We conducted experiments aimed to improve conifer and deciduous markup. Some
areas were eliminated by the model predictions intersected with the initial dominant
species map. It aims to leave only homogeneous areas with conifer or deciduous trees.
The per-pixel metric is intended to label all pixels even within inhomogeneous individual
stand as the dominant class type. Therefore, at this stage of the task, the goal was not to
improve the per-pixel score. The average per-pixel F1-score for conifer and deciduous
classification became 0.76, in comparison with the previously achieved 0.82 (Table 4).
However, we aimed to preserve the score per individual stands than the per-pixel one. The
score of dominant classification per individual stands was still approximately at the same
level (F1-score 0.85). It means that the model was trained to ignore pixels of non-dominant
classes within the stand. For the further assessment, homogeneous stands were considered.

Table 4. Conifer and deciduous classification (average score) using source markup and updated markup.

Per-Pixel F1-Score Per-Stand F1-Score

Source markup 0.827 0.851
Updated markup 0.769 0.854

The obtained map was then used for species classification. We compared the model
trained on the source markup and that trained on updated one. Their performances were
assessed on homogeneous individual stands for four species from the test set. The results
are presented in Table 5. Although we eliminated pixels from the (non-homogeneous)
training set, the model performed better than when using the larger training data of weaker
quality. It allowed us to improve the average F1-score for four species from 0.74 to 0.76
compared with initial markup usage (Table 6). The results confirmed the benefit of the
proposed approach.

Table 5. Forest types classification for more homogeneous individual stands (per-pixel F1-metric)
using source markup and updated markup. Results on test samples.

Aspen/Birch Pine/Spruce Average

Source markup 0.77/0.9 0.94/0.88 0.87 ± 0.003
Updated markup 0.79/0.91 0.95/0.9 0.89 ± 0.002

Table 6. Final aggregated results for forest types classification using modified sampling procedure
and markup adjustment (F1-score).

Aspen Birch Pine Spruce Average

Simple sampling procedure 0.42 0.72 0.84 0.74 0.68 ± 0.007

Modified sampling procedure 0.6 0.8 0.81 0.74 0.74 ± 0.004

Modified sampling procedure with
new markup 0.62 0.83 0.82 0.76 0.76 ± 0.005
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Example of the final predictions using both modified sampling approach and adjusted
markup is presented in Figure 9.

Figure 9. Sentinel-2 RGB image (tile id is L2A_T36VWN_A010343_20170615T090713). Final predic-
tions using modified sampling approach and adjustment markup.

4. Discussion
4.1. Sampling Approach for Species Classification

The analysis showed that the sampling procedure is highly essential for the forest
species classification task. The same approach can be implemented for other problems
where maps of vast territories are used and some classes are distributed not uniformly. The
proposed object-wise sampling approach for CNN leads to better results than the commonly
used approach where patches are chosen randomly within the entire satellite image.

It is worth mentioning the reason why a classical patch-wise approach was not consid-
ered suitable for our problem. It implies that we can choose the patch size small enough
to include just the pixels of one class. However, in our case, there are two obstacles to
implement this. The first being that individual stands are not of rectangular shape and,
therefore, the patch size must be rather small. The other point is that individual stands are
not homogeneous and we do not know the spatial distributions within stands. Therefore,
a random small patch within an individual stand may turn out to, in fact, be a set of
pixels of a minor class. This makes the approach described in [21] inappropriate in the
presented case.

Another alternative approach to classical pixel- and object-wise classification for
remote sensing applications (e.g., airplane-based) has been discussed in [25]. It should be
noted that, despite the apparent similarity of airplane and satellite-derived remote sensing
data, they have substantive differences. The main difference is spatial resolution. The
relevant observation field can vary by 100 times (e.g., 0.1 m for UAV and 10 m for satellite
images). Thus, the approach have to be modified.

4.2. Markup Adjustment

Clear markup is essential for remote sensing tasks. In some cases, non-homogeneous
areas are excluded from training set [32]. Another approach is to use plots with different
species and ascribed it by the dominant species class [31]. It is reasonable to move further
in the direction of an automatic markup adjustment, in order to make the data clearer
without extra manual labeling. The next step of the study can be label adjustment for all
classes, not only for conifer and deciduous. The weighted loss function adjustment can
also be considered to improve homogeneous areas detection.

Weakly supervised learning is now applied in different remote sensing tasks. They
vary by the target objects and remote sensing data properties such as spatial resolution and
spectral bands number. In our study, we focus on 10 m spatial resolution and 10 multi-
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spectral bands. In cases of very high spatial resolution and just RGB bands such as in [39]
markup constraints differ significantly. Particular tasks also pose some limitations and
additional opportunities for a weakly supervised learning approach [38]. Therefore, remote
sensing datasets can differ drastically from such datasets as MNIST or CIFAR considered
in [40]. Another difference is that the forest species classification is considered as a semantic
segmentation task instead of an image classification task, such as in the case of noisy labels
problem in [40].

Markup adjustment can be also studied in the case with machine learning algorithms
instead of neural network based such as methods described in [57–59].

The main error source in such land cover tasks is diversity within each forest species.
Spectral characteristics vary drastically for different tree age and depend on environmental
conditions. Therefore, markup adjustment and optimal sampling choice are promising
approaches to improve model performance. Another error source is mixed border pixels of
neighboring individual stands. In the case of 10 m spatial resolution, even for homogeneous
forest stands, spectral characteristics on the border can be affected by other species outside
this stand. A possible approach to address this problem for homogeneous stands is to
consider just inner pixels remote from the border.

One of the potential limitations is the time and computational cost for markup ad-
justment model training. In our case, we used the same CNN architecture to perform this
stage. We trained the model for markup adjustment and the final segmentation model
sequentially. In future studies, an alternative approach can be developed and implemented
to perform markup adjustment on the fly for remote sensing tasks.

In this study, we considered forest species classification. However, the proposed
approach can be transferred in future studies for other tasks where samples are grouped,
and for a group, label distribution is known. The described approach is also applicable
for other neural network architectures. Therefore, experiments with new state-of-the-art
architectures can be conducted using the same method. Both the sampling and markup
adjustment approaches are transferable to new satellite data sources. We considered
multispectral Sentinel-2 imagery with a spatial resolution of 10 m. However, it can also be
implemented for high-resolution multispectral data such as WorldView or just RGB images
such as base maps.

Vegetation indices are significant for environmental tasks as they provide relevant
surface characteristics. Therefore, they are widely used as features for classical machine
learning methods. However, in the case of deep neural networks, it is assumed that
neural networks can learn non-linear connections between raw input data and use prior
information for more general characteristics extraction. In our study, we considered only
multispectral satellite bands. However, future studies might include vegetation indices
or supplementary materials such as digital elevation or canopy height models to achieve
higher results and reduce training time.

It is promising to study different augmentation techniques combined with improved
markup and the object-wise sampling approach. For example, the object-based augmenta-
tion described in [60] can further be implemented to create more variable training samples
with different homogeneous stands.

Precise forest species classification can also be implemented in ecological and envi-
ronmental studies, as large forest patches have been proved to affect human health [61].
Detailed forest characteristics can be helpful for such analysis.

5. Conclusions

The sampling approach and ground truth markup quality are crucial in forestry tasks
involving remote sensing data. In this study, we analyzed the potential of combining
CNN and Sentinel-2 images for the task of forest species classification using weak markup
with non-homogeneous individual stands. During the first stage, a CNN was trained
to find the homogeneous areas within each stand, providing a more accurate markup.
During the second stage, the final model was trained to predict four forest species. This
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markup adjustment allows us to increase F1-score from 0.74 to 0.76 compared to the initial
markup. The experiment confirms the opportunity of finding weak labels and shows
promising results for further classification enhancement. We also proposed the CNN-
based sampling approach for spatial data in forest species classification. The proposed
modification outperformed the prediction quality of a commonly used per-pixel semantic
segmentation model (the average F1-metric was increased from 0.68 to 0.74). The described
pipeline helps to address the issue of highly imbalanced and not evenly distributed classes.
The provided training strategy can help solve forest species classification tasks more
precisely, even when the reference data has significant limitations. Further study for other
vast territories is promising, and the proposed sampling technique seems to be beneficial
in such spatial studies.
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