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Abstract: Eucommia ulmoides Oliv., the only member of the family Eucommiaceae, is endemic to
China and has great development and utilization prospects. The seeds of E. ulmoides show dormancy
but the underlying mechanism remains unknown. The aim of this study was to determine the cause
of the seed dormancy and provide fundamental knowledge for the breeding, genetic improvement,
and conservation of the germplasm resources of this species. According to the seed dormancy
classification system developed by Jerry M. Baskin and Carol C. Baskin, we compared the germination
percentage between intact seeds and isolated embryos, constructed water absorption curves, and
evaluated the germination of seeds treated with scarification, cold/warm-moist stratification, after-
ripening during dry storage, and gibberellic acid (GA3). The results showed that the intact seeds
germinated only at 10 ◦C with a low germination percentage of 13.3% whereas the isolated embryos
had a high normal germination percentage among a wider range of temperatures. According to the
results from the scarified seeds, half seeds, and intact seeds, the seed coat significantly restricted
the embryo water absorption. The scarification, after-ripening, cold/warm-moist stratification, and
GA3 treatments promoted seed germination. Among them, cold-moist stratification was the most
effective method and the temperature range of seed germination increased in both directions from
10 ◦C with prolonged stratification. The germination percentage increased significantly at constant
temperatures with the highest germination percentage of 93.7 ± 0.3% at 10 ◦C and a light/dark cycle
after 90 days of cold-moist stratification. Therefore, the freshly harvested E. ulmoides seeds exhibited a
combinational dormancy comprising physical and Type 3 non-deep physiological dormancy, causing
limited embryo water absorption by the seed coat and a low embryo growth potential. Given the
unique phylogenetic characteristics and utility of E. ulmoides, our findings should promote studies of
seed dormancy evolution and the development and application of E. ulmoides germplasm resources.

Keywords: Eucommia ulmoides; embryo; dormancy; germination; stratification; after-ripening; phyto-
hormone

1. Introduction

Seed dormancy is the inability of viable seeds (or other germination units) to germi-
nate under favorable environmental conditions (e.g., water, temperature, light) during
a specific period [1,2]. Seed dormancy evolved in seed plants to regulate the timing of
seed germination and seedling establishment, allowing seedlings to avoid unfavorable
environmental conditions [3–5].

Seed dormancy is an adaptive trait that gradually developed during plant evolution.
Baskin and Baskin added the known dormancy types to the plant phylogenetic tree estab-
lished by Takhtaian and investigated the evolution of plant seed dormancy [2,5]. There are
limited plant species with known seed dormancy types and these species are mostly found
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in a handful of genera. The study of seed dormancy in other plant species—especially
E. ulmoides Oliv., given its phylogenetic significance as the sole species in the family
Eucommiaceae—will greatly contribute to the study of the evolution of seed dormancy.

Based on the dormancy classification system of Nikolaeva [6], Baskin and Baskin
categorized seed dormancy into five classes: physiological dormancy (PD), morphological
dormancy (MD), morphophysiological dormancy (MPD), physical dormancy (PY), and
combinational dormancy (PY + PD) according to the causes of seed dormancy [2,5,7].
Each class can be divided into levels and several levels can be further divided into types.
PD is the most common dormancy type found in wild plant seeds at present. The main
germination barrier is that the growth potential of the embryo is not enough to break
through the endosperm, the seed coat, and other surrounding structures. The dormancy
time is also the time required by the embryo to accumulate strength or weaken the barrier
for germination. Although the embryos of seeds with MD have been differentiated, their
development process is incomplete. After the fruits fall off, the embryos in the seeds
still need a certain time to continue development, which is the dormancy time. Seeds
with MPD have both MD and PD. Seeds with PY are due to the impermeability of the
surrounding structure outside the embryo. Seeds with combinational dormancy have both
PY and PD [2,5]. The cause of seed dormancy can be determined based on the seed coat
permeability and embryo development as well as the responses of seed germination to the
phytohormone gibberellic acid (GA3), after-ripening, and stratification [2].

Seed dormancy is a typical quantitative genetic trait that is regulated by many genes
and influenced by temperature and other environmental factors [8,9]. Seeds with differ-
ent dormancy types depend on different methods to release the dormancy, which are
generally divided into physical methods, chemical methods, biological methods, and com-
binational methods. Physical methods mainly include temperature, stratification, and
mechanical treatments. In temperature treatments, high, low, or alternative temperature
treatments can be tried. For a few seeds, a proper cooling or freezing treatment can pro-
mote the degradation of ABA and the synthesis of GA and cytokinin to break the seed
dormancy. The response to temperature during seed dormancy and the germination stage
varies between species [10–12], which is probably an important cause of plant adapta-
tion to the environment in a long-term evolutionary process. Studies have shown that
cold/warm stratification with well-ventilated sand or pumice can promote the dormancy
release of almost all kinds of seeds, often more efficient than temperature treatments
alone. Stratification is often used as the preferred method to break dormancy especially for
embryo-physiological after-ripening seeds. The mechanism of stratification is complex and
can promote the morphological development and maturation of embryos, the changing
of related hormones in the seeds, the degradation of inhibiting substances, the increase of
several enzyme activities, the expression activation of related genes, and the reduction of
the sensitivity to ABA in embryos [13,14].

Seed/pericarp scarification is a widely used mechanical method. On the one hand,
it increases the water permeability/air permeability of the seed/pericarp to break the
physical dormancy; on the other hand, it also releases the mechanical restraint of the
seed/pericarp on the embryo germination to break the seed physiological dormancy [15,16].
Chemical methods such as plant hormones, growth regulators, and special chemical
reagents can also release the seed dormancy. The hormone regulation theory holds that
seed dormancy and germination are mainly regulated by ABA and GA in which ABA
induces the dormancy and GA promotes the germination [17,18]. Several plant hormones
including GA, ethylene, and cytokinin can break the dormancy for a few species. After-
ripening refers to a physiological process in which mature seeds can germinate after they
leave the parent plant and undergo a series of physiological and biochemical changes. Dry
storage and after-ripening treatments also have good promoting effects on the dormancy
release and germination for many plant seeds but the mechanism is still unclear [19,20].

Eucommia ulmoides is a deciduous tree species belonging to the family Eucommiaceae
and is an endangered relict species endemic to China [21,22]. It is widely distributed in the
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subtropical and temperate regions of the southern Hunan, Shaanxi, Sichuan, Chongqing,
Henan, and Hubei provinces in China [23]. It is a rare economic tree species with important
applications in medicine and industry [24–26]. Seed propagation is primarily used for
seedling establishment in large-scale productions but the high level of seed dormancy
has seriously restricted the production of E. ulmoides [26,27]. Even after a long period of
stratification or dry storage, the germination percentage is low and non-uniform growth oc-
curs [28–30], which is ultimately attributed to the limited understanding of the mechanism
of seed dormancy. Therefore, a systematic study on the causes of E. ulmoides seed dormancy
not only has theoretical implications for the further understanding of seed dormancy as an
adaptive trait but also has important practical applications.

2. Materials and Methods
2.1. Seeds

In November 2019, seeds were collected from 20 E. ulmoides trees of approximately
30 years of age in a plantation in Yanjiatuo Village, Zhuyang Town, Lingbao City, Henan
Province, China (34◦27′ E, 110◦66′ N; elevation 950 m). Fresh ripe seeds were dried
in a room at 20 ± 2 ◦C and 50% relative humidity for 1 w to a moisture content of
0.1 ± 0.01 gH2O[g(DW)]−1. The remaining seeds were stored at 4 ◦C.

The seeds of E. ulmoides used in this study were samaras with a 1000 grain weight of
85 ± 2.6 g, which represented the natural dispersal and germination units of E. ulmoides.

2.2. Determination of the Moisture Content

The constant temperature oven-drying method recommended by the International
Seed Testing Association (ISTA, 2012) was used. Each treatment had four replicates and
50 seeds were used for each replicate. The moisture content was calculated based on the
fresh weight.

2.3. Determination of the Seed Viability

To evaluate the germination potential of the freshly harvested seeds and the viability
of the ungerminated seeds after the germination tests, the viability of the intact seeds was
measured using the quick triphenyl tetrazolium chloride (TTC) staining method proposed
by Moore [31] Moore (1973). Each treatment had four replicates and 50 seeds were used for
each replicate. Embryos that were stained dark red were considered to be viable.

2.4. Germination of the Isolated Embryos

The embryos were isolated from the freshly harvested seeds and incubated to de-
termine the dormancy status. Each treatment had four replicates and 25 intact isolated
embryos were used in each replicate. The excised embryos were evenly sown in Petri
dishes (9 cm in diameter) lined with two layers of filter paper saturated with distilled water
and sealed with parafilm to prevent water evaporation. The dishes were incubated at 5, 10,
15, 20, 25, and 30 ◦C (constant temperature) as well as 12/22, 22/31, 14/22, and 5/10 ◦C
(alternating temperature) with a 12 h light/12 h dark cycle (PPDF = 121 µmol·m−1·s−1).
Light was provided during the warm phase. Embryos with a radicle length ≥ 2 mm and
green cotyledon were considered to be germinated.

2.5. Water Absorption by the Intact Seeds, Scarified Seeds, and Isolated Embryos

To test whether the seed coat and endosperm limited the water absorption, the changes
in water absorption by the intact seeds, scarified seeds, and excised embryos were measured
and water absorption curves were plotted according to the method of Li [32] Li (2018). Each
treatment had four replicates and 30 seeds or isolated embryos were used for each replicate.
The seeds or excised embryos were evenly sown in Petri dishes (diameter = 9 mL) lined
with two layers of filter paper saturated with distilled water (5 mL) and incubated at 10 ◦C
in the dark. The seeds were weighed at regular intervals that were adjusted according to
the progression of the test.



Forests 2021, 12, 1593 4 of 13

2.6. After-Ripening Treatment

Seeds that had been freshly harvested and dried in the shade for 1 week were packed
in paper envelopes and placed at 15 ◦C and 50% relative humidity for dry storage. Samples
after 30, 60, 90, and 120 days of dry storage were used for the germination tests. Each
treatment had four replicates and 25 seeds were used for each replicate. Freshly harvested
seeds dried in the shade for 1 w were used as a control.

2.7. Scarification Treatment

Freshly harvested seeds were dried in the shade for 1 week. The seeds were scarified
with a scalpel near the radicle or cut transversely into two halves of approximately equal
size and the halves with radicles were collected. The germination was tested at an optimum
temperature (10 ◦C) in the dark. Each treatment had four replicates and 25 seeds were used
for each replicate. Freshly harvested intact seeds were dried in the shade for 1 week and
used as the control.

2.8. Stratification Treatment

The freshly harvested seeds were dried in the shade for 1 week, well-combined with
perlite (70% moisture content) at a volume ratio of 1:3, sealed in black polyethylene bags,
and stored at 5 ◦C and 15 ◦C for cold/warm-moist stratification, respectively. Samples
were collected after 15, 30, 45, 60, 75, 90, and 120 days of stratification and the germination
was tested at 5, 10, 15, 20, 25, 30, and 35 ◦C in the dark. Each treatment had four replicates
and 25 seeds were used for each replicate. Freshly harvested seeds dried in the shade for
1 week were used as the control.

2.9. GA3 Treatment

Seeds freshly harvested and dried in the shade for 1 week were soaked for 24 h in
GA3 solutions at 0.5, 1, 1.5, 2.0, 2.5, and 3.0 mmol·L−1, respectively. The seeds were rinsed
three times with distilled water and tested for germination at an optimum temperature
(10 ◦C) in the dark. Each treatment had four replicates and 30 seeds were used for each
replicate. Seeds immersed in distilled water for 24 h were used as the control.

2.10. Germination Test

Seeds were freshly harvested and dried in the shade for 1 week then treated by
scarification, dry storage, stratification, and GA3 and evenly sown in germination boxes
containing perlite moistened with distilled water. The seeds were incubated at a constant
temperature and/or an alternating temperature in the dark or at a 2 h light/12 h dark
cycle (PPDF = 121 µmol·m−1·s−1). Light was provided during the warm phase. The
number of newly germinated seeds was observed and recorded daily. Distilled water was
supplemented to maintain the moisture content of the perlite. The germination test was
terminated after 30 day and the viability of the ungerminated seeds was examined by TTC
staining. Seeds with a 2 mm radicle protrusion were considered to be germinated.

2.11. Statistical Analysis

The statistical analysis and plotting were performed using R (4.0) software [33] R
(4.0) software. The water absorption of the intact and scarified seeds and the isolated
embryos as well as the germination percentages of the seeds treated with scarification, dry
storage, stratification, and GA3 were subjected to a one-way ANOVA (p = 0.05). Post-hoc
multiple comparisons were performed using Student–Newman–Keuls (S–N–K, p = 0.05). To
ensure the homogeneity of the variance, the seed germination and isolated embryo growth
data were arcsine transformed before the statistical analysis. All data were expressed as
(mean ± standard error) and rounded to one decimal place.
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3. Results
3.1. Viability and Germination of the Intact Seeds

The intact seeds were freshly harvested and then dried in the shade for 1 week. The
seeds germinated only at 10 ◦C (12 h light/12 h dark) and the germination percentage was
13.3 ± 0.7% (Figure 1, p < 0.05) although TTC staining showed a 97.7 ± 0.7% viability of
ungerminated seeds (data not shown). The results of the germination experiments showed
that the E. ulmoides seeds had an obvious dormancy. We then separated the embryos to test
whether the isolated embryos were dormant.
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Figure 1. Germination of the freshly harvested seeds. Germination was performed at constant
temperatures (5, 10, 15, 20, 25, and 30 ◦C) or alternating temperatures (12/22, 22/31, 14/22, and
5/10 ◦C) with a 12 h light/12 h dark cycle and PPFD = 121 µmol·m−1·s−1. Each treatment had four
replicates and 30 seeds were used for each replicate. There is no significant difference between the
data labeled with the same lower case letters (p = 0.05).

3.2. Germination of the Isolated Embryos

As shown in Figure 2, the isolated embryos germinated and grew normally under
all conditions except 5, 30, and 0/5 ◦C. High germination percentages (>95%) were found
at 10, 15, 20, and 14/22 ◦C (Figure 2, p < 0.05). These results indicated that the isolated
embryos were not dormant, suggesting the tissues from the embryos might contribute to
the seed dormancy. In subsequent germination tests for the various treatments, 10 ◦C in
the dark was used as the optimum germination condition.

3.3. Effect of Scarification on the Dormancy Release and Germination

As shown in Figure 3, half seeds and scarified seeds showed a final germination
percentage of 71.7 ± 3.3% and 60.0 ± 7.7%, respectively, significantly higher than the intact
seeds (Figure 3, p < 0.05). This further confirmed that the coat was a major limiting factor
for E. ulmoides seed germination.

Seeds with different integrities were tested for germination at 5, 10, 15, 20, 25, and
30 ◦C as well as 12/22, 22/31, 14/22, and 5/10 ◦C. The germination percentages of intact
seeds, scarified seeds, and half seeds at 10 ◦C were higher than the other temperatures and
the germination percentage of the half seeds was higher than the intact and scarified seeds.
A two-way ANOVA showed that both the germination temperature and the coat integrity
affected the germination of E. ulmoides seeds and these two factors interacted with each
other (Table 1, p < 0.05).
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Figure 2. Germination of the isolated embryos at constant and alternating temperatures. Germination
was performed at constant temperatures (5, 10, 15, 20, 25, and 30 ◦C) or alternating temperatures
(12/22, 22/31, 14/22, and 5/10 ◦C) with a 12 h light/12 h dark cycle and PPDF = 121 µmol·m−1·s−1.
Each treatment had four replicates and 30 seeds were used for each replicate. There are no significant
differences between the data labeled with the same lower case letters (p = 0.05).
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Figure 3. Germination process of the scarified seeds, half seeds, and intact seeds. Germination was
performed at a constant temperature of 10 ◦C with a 12 h light/12 h dark cycle and PPDF = 121
µmol·m−1·s−1. Each treatment had four replicates and 30 seeds were used for each replicate. There
are no significant differences between the data labeled with the same lower case letters (p = 0.05).

Table 1. Effects of coat integrity and germination temperature and their interaction on the germination
percentage.

Source of Variation Sum of Squares Df Mean Squares f -Value p-Value

Seed integrity 43,575.729 3 21,787.87 992.60 0.00
Temperature 55,389.446 9 6154.387 280.38 0.00

Seed integrity × temperature 22,433.146 27 1246.29 56.78 0.00
Freshly harvested intact, scarified, and half seeds were incubated at 5, 10, 15, 20, 25, and 30 ◦C as well as 12/22,
22/31, 14/22, and 5/10 ◦C for 30 days and the germination percentage was calculated (mean ± standard error).
Each treatment had four replicates and 30 seeds were used for each replicate. Df = degree of freedom (p = 0.05).
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3.4. Water Absorption by the Intact Seeds, Scarified Seeds, and Isolated Embryos

Water availability is the prerequisite for seed germination so the ability to absorb
water was measured in the intact seeds, scarified seeds, and isolated embryos. At 4 h,
the water absorption of the scarified seeds and isolated embryos was 64.5 ± 1.3% and
45.8 ± 1.8%, respectively, significantly higher than the intact seeds (Figure 4, p < 0.05). The
water absorption of the scarified seeds did not show an obvious increase (Figure 4, p > 0.05)
from 4 h on whereas that of the intact seeds and embryos gradually increased from 4 to 36 h.
When the water absorption of the intact seeds decreased, the isolated embryos still showed
a significant increase in water absorption from 36 to 48 h (Figure 4, p < 0.05) and then leveled
off. At the end of the experiment, the water absorption of the scarified seeds, isolated
embryos, and intact seeds was 72.5 ± 0.5%, 74.0 ± 0.4%, and 62.8 ± 2.3%, respectively.
These results suggested that scratching improved the water absorption capacity of the
seeds, which may be one of the reasons why it promoted seed germination.
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Figure 4. Water absorption curves of the intact seeds, scarified seeds, and excised embryos of
Eucommia ulmoides. The intact seeds, scarified seeds, and excised embryos were allowed to absorb
water in the dark at 10 ◦C, following which they were weighed. Each treatment had four replicates
and 30 seeds or excised embryos were used for each replicate. The percentage of water absorption
was expressed as mean ± standard error. The 0 in the x-axis denotes the control (CK). There are no
significant differences between the data labeled with the same lower case letters (p = 0.05).

3.5. Effects of Stratification on the Dormancy Release and Germination

According to the data in Table 2, cold-moist stratification at 5 ◦C was much more
effective than warm-moist stratification at 15 ◦C in promoting the dormancy release and
germination (p < 0.05). Only a few seeds successfully germinated at 75 days of cold-
moist stratification whereas approximately 5% and 11% germinated at 90 and 120 days,
respectively (data not shown).

With the extension of cold-moist stratification, the germination percentages for the
constant temperatures increased and maximized at 90–120 days of cold-moist stratification.
The temperature window of seed germination was broadened with a prolonged cold-moist
stratification (Table 2, p < 0.05). For example, the temperature range was 10–15 ◦C at
15 days and 5–25 ◦C at 75 days. Under the same germination conditions, the seeds treated
with warm-moist stratification showed a much lower germination percentage and much
narrower germination temperature window when compared with cold-moist stratification
(Table 2, p < 0.05).
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Table 2. Germination after stratification.

Stratification
Temperature (◦C)

Stratification
Duration (Day)

Germination Percentage (%)

5 ◦C 10 ◦C 15 ◦C 20 ◦C 25 ◦C 30 ◦C

5

0 0.0 Dc 13.3 ± 0.7 DEa 5.0 ± 1.7 DEFb 1.7 ± 1.7 Dc 0.0 Cc 0.0 Ac

15 0.0 Db 13.3 ± 0.7 Ea 3.3 ± 3.3 EFb 0.0 Db 0 Cb 0.0 Ab

30 0.0 Dd 28.3 ± 6.9 Da 18.3 ± 7.4 CDab 10.0 ± 4.3 Cbc 1.7 ± 1.7 BCcd 0.0 Ad

45 0.0 Dd 48.3 ± 9.2 Ca 20 ± 3.9 Cb 10.0 ± 3.3 Cbc 5.0 ± 3.1 ABcd 0.0 Ad

60 5.0 ± 1.67 Cb 51.7 ± 5.0 Ca 30.7 ± 5.7 CEb 13.3 ± 2.7 Cb 0.0 Cc 0.0 Ac

75 6.6 ± 0.0 Cc 72 ± 4.7 BCa 58.3 ± 6.8 Ba 35.0 ± 3.2 Bb 8.3 ± 1.7 Ac 0.0 Ad

90 18.33 ± 1.67 Bd 93.7 ± 0.3 ABa 61.7 ± 6.3 Bb 36.7 ± 3.3 Bc 8.3 ± 1.7 Ac 0.0 Ae

120 26.7 ± 1.92 Ac 92.7 ± 0.7 Aa 83.3 ± 7.2 Aa 46.7 ± 6.4 Ab 10.0 ± 1.7 Ac 0.0 Ad

15

0 0.0 Da 0.0 Fa 0.0 Fa 0.0 Da 0.0 Ca 0.0 Aa

15 0.0 Db 0.0 Fb 5.7 ± 3.2 EFa 0.0 Db 0.0 Cb 0.0 Ab

30 0.0 Dc 20.0 ± 13.6 DEa 6.7 ± 2.7 DEFa 1.7 ± 1.7 Dab 0.0 Cc 0.0 Ac

45 0.0 Db 11.7 ± 4.2 Ea 0.0 Fb 0.0 Db 3.3 ± 3.3 BCb 0.0 Ab

60 0.0 Da 0.0 Fa 0.0 Fa 0.0 Da 0.0 Ca 0.0 Aa

75 0.0 Db 10.0 ± 0.0 Ea 3.3 ± 3.3 EFb 1.7 ± 1.7 Db 1.7 ± 1.7 BCb 0.0 Ab

90 0.0 Da 6.7 ± 4.7 EFa 0.0 Fa 0.0 Da 0.0 Ca 0.0 Aa

120 0.0 Da 1.7 ± 1.7 Fa 0.0 Fa 0.0 Da 0.0 Ca 0.0 Aa

Seeds were treated with stratification at 5 ◦C or 15 ◦C in the dark for 0, 15, 30, 45, 60, 75, 90, and 120 days, respectively. Seeds were then
incubated in the dark at set temperatures for 30 days and the germination percentage was calculated (mean ± standard error). Each
treatment had four replicates and 30 seeds were used for each replicate. Multiple comparisons between different stratification durations are
indicated by upper-case superscript letters and the same letters denote no significant differences. Multiple comparisons between different
stratification temperatures are indicated by lower case superscript letters and the same letters denote no significant differences.

The optimum germination temperature of the E. ulmoides seeds was 10 ◦C according
to the germination of the seeds treated with cold-moist stratification for 15–120 days.
The optimum cold-moist stratification duration was 60–120 days at a 10 ◦C germination
temperature. Seeds treated with cold moisture stratification for 90 d had a maximum
germination percentage of 93.7 ± 0.3% at 10 ◦C (Table 2). A two-way ANOVA showed a
significant interaction between the cold-moist stratification duration and the germination
temperature (Table 3, p < 0.05).

Table 3. Effects of cold-moist stratification duration and germination temperature and their interaction on the germination
percentage.

Source of Variation Df Mean Squares f -Value p-Value

Cold-moist stratification duration 9 3266.52 82.75 0.00
Germination temperature 5 10,079.32 255.34 0.00

Cold-moist stratification duration × germination temperature 45 315.15 7.94 0.00

Freshly harvested intact, scarified, and half seeds were incubated at 5, 10, 15, 20, 25, and 30 ◦C as well as 12/22, 22/31, 14/22, and 5/10 ◦C
for 30 days and the germination percentage was calculated (mean ± standard error). Each treatment had four replicates and 30 seeds were
used for each replicate. Df = degree of freedom (p = 0.05).

3.6. Effect of After-Ripening on the Dormancy Release and Germination

After seeds are separated from the mother plants, after-ripening still occurs. We
posited whether this might be the cause of the dormancy of the E. ulmoides seeds. As shown
in Figure 5, after-ripening significantly promoted seed germination (Figure 5, p < 0.05). The
germination percentage of the freshly harvested seeds was only 13.3 ± 0.7% but reached
25.2 ± 1.3%, 23.3 ± 1.1%, 21.7 ± 1.2%, and 20.0 ± 0.8% after 30, 60, 90, and 120 days of
after-ripening, respectively. The germination percentage increased and then decreased;
the germination percentage was the highest after 30 days of after-ripening (Figure 5). The
results showed that a short period of after-ripening could be an important physiological
mechanism of E. ulmoides seed dormancy.
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Seeds treated with after-ripening for different days were incubated for 30 days at 10 ◦C in the dark
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replicates and 30 seeds were used for each replicate. There are no significant differences between the
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3.7. Effect of GA3 Treatment on the Dormancy Release and Germination

GA is the plant hormone most closely related to seed germination. As shown in
Figure 6, GA3 significantly promoted the dormancy release and germination of the intact
seeds (f = 38.23, p < 0.05). With the increase of GA3 concentration, the germination per-
centage increased and then decreased. The germination percentage was 48.5 ± 0.3% at
2.0 mmol/L GA3, which was significantly higher than that under the other GA3 concentra-
tions (Figure 6, p < 0.05).
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seeds were treated with different concentrations of GA3 for 24 h, incubated in the dark at 10 ◦C
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differences between the data labeled with the same lower case letters (p = 0.05).

In conclusion, a suitable temperature, a scarification treatment, a phytohormone such
as GA3, cold moisture stratification, and after-ripening were effective conditions on the
dormancy release and germination of E. ulmoides Oliv. seeds. These results suggested that
E. ulmoides seeds have a combinational physical and physiological dormancy.
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4. Discussion

Seed dormancy is an environmental adaptation strategy formed during the long-term
evolution of plants. Dormancy and the depth of dormancy can be determined by detecting
whether fresh and mature seeds can germinate under optimal germination conditions
within a specified time (usually 30 days) and germination percentages [5]. E. ulmoides is a
monophyletic plant, which is mainly based on seed reproduction. Therefore, the study of
seed dormancy has both an evolutionary and a productive significance.

4.1. Determination of the Dormancy Type

In this study, 13.3% of freshly harvested E. ulmoides seeds germinated only at 10 ◦C
and a light/dark cycle (Figure 1). A viability measurement by TTC suggested the ungermi-
nated seeds were not dead, indicating that E. ulmoides seeds had dormancy characteristics.
Whether a fully developed isolated embryo can produce normal seedlings is a simple
and intuitive method to determine whether the embryo has dormancy (PD) [2]. In this
study, the isolated embryos could germinate and produce normal seedlings under all other
temperatures and dark conditions except at 5, 30, and 0/5°C (Figure 2). These results
indicated that the dormancy of E. ulmoides seeds might be caused by the seed coat. The
probable reasons include coat-limited water absorption (physical dormancy) or the me-
chanical restraint of the embryo germination by the coat, i.e., a low growth potential of the
embryos (physiological dormancy).

Coat scarification is one of the common methods to break the dormancy of seeds.
In this study, the germination percentages of the half seeds and scarified seeds were
significantly higher than those of the intact seeds (Figure 3), suggesting that E. ulmoides
seeds likely have both PY and a shallow PD. These results were consistent with those of
Yang et al. [13,34]. According to the imbibition curve, from four hours of imbibition on,
the water absorption of both the scarified seeds and the isolated embryos was significantly
higher than the intact seeds (Figure 4). This indicated that the seed coat significantly limited
the water absorption by the embryos (Figure 4, Table 1), confirming the presence of PY in
the E. ulmoides seeds. The seed coat of E. ulmoides (i.e., the peel) is rich in gutta-percha; up
to 10%. Gutta-percha is insoluble in water and has a high elasticity and certain mechanical
strength. This may be the reason why the seed coat is waterproof and acts as a mechanical
barrier to embryo germination. Based on the above results and the dormancy classification
system of Baskin and Baskin [2], we suggest that E. ulmoides seeds have a combinational
dormancy, i.e., a physical and non-deep physiological dormancy, which is caused by a
coat-limited embryo water absorption and a low embryo growth potential, respectively.

4.2. Effective Methods for Releasing Dormancy

Stratification is a widely used and effective method to break seed dormancy. It in-
volves temperature, imbibition, and gravity effects [13]. In this study, cold/warm-moist
stratification (Table 2) significantly promoted the seed germination. However, cold-wet
stratification at 5 ◦C was much better than warm-wet stratification at 15 ◦C (Table 2). Addi-
tionally, with cold-moist stratification, the temperature window of the seed germination
expanded from 10 ◦C with a prolonged stratification duration (Table 2). According to the
dormancy classification system of Baskin and Baskin [2], the subtype of PD is likely to be a
Type 3 shallow PD in E. ulmoides seeds.

After-ripening can remove seed dormancy in many species and the time required
is closely related to the type and degree of seed dormancy [3]. Baskin and Baskin also
regarded the existence of after-ripening in the dry storage process as a judgment indicator
of PD [2]. In this study, the germination percentage increased by 89.5% after dry storage at
room temperature for 30 days (Figure 5), indicating that this method could partially release
the dormancy of E. ulmoides seeds. There is considerable evidence that GA enhances the
growth potential of embryos by weakening the surrounding tissues, promoting the release
of dormancy and the germination of seeds. In this study, soaking the seeds in 2.0 mmol/L
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GA3 significantly increased the germination percentage of E. ulmoides seeds up to 48.5%
(Figure 6). This was consistent with the results of Li et al. [35,36].

Based on all the tested methods, we propose an optimal protocol for the dormancy
release and germination of E. ulmoides seeds. Freshly collected E. ulmoides seeds should be
selected by flotation and dried in the shade, followed by dry storage at room temperature
for 30 days. This should then be followed by outdoor cold-moist stratification at 5–10 ◦C
for 90 days in winter, resulting in the seeds being ready for sowing in the early spring of
the next year.

4.3. Seed Germination and Phylogeny of E. ulmoides

As shown in the phylogenetic tree of seed dormancy, physical dormancy and combi-
national dormancy have the narrowest distributions with combinational dormancy mainly
found in Leguminosae, Geraniaceae, and Cucurbitaceae [2,5,37,38]. Fossil evidence from
Cercis [39] and Tilia [40] suggests that PY and PD originated in the middle and late Eocene
and PD may have occurred after PY. During the Eocene–Oligocene transition [41], the cli-
mate became significant colder. That probably caused the acquisition of PD, enabling seed
germination after the end of a cold winter. E. ulmoides also has combinational dormancy
and, as the sole species in the family Eucommiaceae, may be of particular importance in
the phylogenetic and evolutionary studies of plant seed dormancy and germination.

5. Conclusions

Fresh and mature E. ulmoides seeds have both physical dormancy and Type 3 shallow
physiological dormancy, namely, combinational dormancy. Cold-wet stratification for
90 days effectively released the dormancy and the germination percentage reached more
than 90% at 10 °C. As an ancient relic species and a monotypic taxon, this study on
the dormancy characteristics is of great significance for the systematic evolution of seed
dormancy and germination.
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