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Abstract: Forest management traditionally has been based on the expectation of a steady climate. In
the face of a changing climate, management requires projections of changes in the distribution of the
climatic niche of the major species and strategies for applying the projections. We prepared climatic
habitat models incorporating heatload as a topographic predictor for the 14 upland tree species of
southwestern Colorado, USA, an area that has already seen substantial climate impacts. Models
were trained with over 800,000 points of known presence and absence. Using 11 climate scenarios for
the decade around 2060, we classified and mapped change for each species. Projected impacts are
extensive. Except for the low-elevation woodland species, persistent habitat is rare. Most habitat
is lost or threatened and is poorly compensated by emergent habitat. Three species may be locally
extirpated. Nevertheless, strategies are described that can use the projections to apply management
where it is likely to be most effective, to facilitate or assist migration, to favor species likely to be
suited in the future, and to identify potential climate refugia.

Keywords: forest adaptation; random forests; heatload; climate refugia; bristlecone

1. Introduction

Climate change impacts are accruing throughout the ecosystems of the world. For
forested lands, impacts are pronounced, from increased incidence of insects and dis-
ease [1–3] to advancing spring phenologies [4] and lengthening growing seasons [5]. Nu-
merous niche analyses show overwhelmingly that the changes in climate expected across
the 21st century will be accompanied by shifting limits of distribution, e.g., [6], such that
extirpation would be expected over substantial portions of contemporary distributions
of either single species, e.g., [7–9], or their associations [10,11]. Populations in decline
may be lost, largely because the adaptedness of local populations develops over multiple
generations but deteriorates rapidly under intense, adverse selection [12]. An inescapable
conclusion, therefore, is the speed that the climate is changing will challenge the capacity
of forest tree populations to adapt, e.g., [13–15].

While recommendations for adapting forests to climate change abound [16], rarely are
they based on spatially explicit, quantitative projections of impacts to the relevant species.
Among the exceptions, projections based on a bioclimate model were used to identify sites
in western North America where Larix occidentalis Nutt. has a high probability of future
suitability and to locate seed sources suitable for those future climates [17]. Recommenda-
tions based thereon were put into practice. Research in Mexico has shown that bioclimate
models can be used to formulate site-specific recommendations for assisted migration [18]
and to inform attempts to conserve overwintering habitat for the monarch butterfly [9].
In British Columbia, a projected increase in area suitable for Pseudotsuga menziesii (Mirb.)
Franco was used to anticipate needs for seed collection and seedling production [11], and
projected change was used to develop specific assisted migration recommendations for
Populus tremuloides Michx. [19]. Similarly, projected changes in the area and distribution of
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forest types in the Czech Republic were used to recommend conversion of affected stands
through harvest and planting [20].

Our goal is to develop climate niche models for 14 tree species forming the forests in
the mountains of southwestern Colorado, USA; incorporate topographic effects of slope
and aspect that are critical to model accuracy in mountainous terrain [21,22]; present
impacts and their projections on 90 m grids that mesh easily with management units;
and illustrate how the results can be used in selecting areas, species, and approaches for
management. These models, considered together, can give managers a window into the
future. Properly applied, they can indicate where certain kinds of management may be
futile, and conversely, where they have the best chances of success into the future.

Our study area comprises the mountains and plateaus of southwest Colorado (Figure 1),
a region of 94,238 km2. This region, bisected by the Continental Divide, contains headwater
drainages contributing to four major river systems: Platte and Missouri to the northeast,
Arkansas to the east, Rio Grande to the south, and Colorado to the southwest. Elevations
range from 1300 to 4400 m, producing a diverse flora that can be assorted into seven
biomes [23]: grassland and desert scrub at the lowest elevations followed ascendingly by
woodlands, montane scrub, montane forest, subalpine forest, and alpine tundra.
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Western Colorado and eastern Utah comprise the largest climate change hotspot in
the contiguous United States, with an increase in average temperatures from 2 to 3 ◦C
from 1895 to 2019 [24]. In our study area, mean annual temperature and mean annual
maximum temperature increased 0.9 ◦C between our reference period, 1961–1990, and
2006–2020 (raw data from [25,26]). Both variables increased especially in spring and
summer, by 1.2 ◦C. Precipitation did not change appreciably, but these periods do not
include the record-setting turn-of-the-century drought. Considered a climate-change-type
drought because it was exceptionally hot as well as dry [27], it built slowly from about
1990 and culminated in 2002. Climate projections for the area indicate that forests will
be threatened by increased temperature, earlier snowmelt with longer growing seasons,
increased frequency and severity of drought and fire, and increases in stress-related diseases
and insects.

This changing climate has already been accompanied by substantial forest impacts
in the southern Rocky Mountains. The peak of the turn-of-the-century drought (2002)
was Colorado’s biggest wildfire year to that point, with one fire over 554 km2, far larger
than any recorded before. Ips confusus (piñon ips) responded to the drought by killing
Pinus edulis Engelm. on over 11.7 thousand km2 in southwestern USA [27]. Sudden aspen
decline, which was clearly incited by the drought and followed patterns predicted by
bioclimate models for the future, impacted over 4800 km2 (17% of the Populus tremuloides
cover type) in Colorado [28,29]. Other bark beetles, facilitated in part by tree stress in
recurring droughts, have had historically unprecedented outbreaks in the last two decades.
Dendroctonus ponderosae (mountain pine beetle) killed trees on 13.7 thousand km2 in Col-
orado, and D. rufipennis (spruce beetle) has impacted 7.6 thousand km2 to date (Jennifer
Ross, US Forest Service, personal communication). Finally, the fire year of 2020 far eclipsed
2002 in the state, with the largest total forest area burned in history and four fires ranging
from 562 to 845 km2 [30,31].

Climate Niche Models and Limitations

We develop bioclimate niche models, as climate is overwhelmingly the most important
natural determinant of plant distribution [32]. Paleological evidence for past changes in
tree distribution correlate with changes in climate [32,33], and there is abundant evidence
of changes in plant distributions with the currently changing climate [34–38]. The reference
period for our analyses is 1961–1990, a climatic period similar to that when contemporary
populations were established. Factors other than climate, such as soil and competition, also
may influence distributions. The effects of soil are usually localized, and edaphic factors
are generally less predictive of tree distributions than for herbs or shrubs [39]. Bioclimate
niche models are based on actual distributions, where a species successfully completes its
life cycle, and thus model the species’ realized niche, as limited by competition and other
challenges that interact with climate.

Predicting the realized climate niche works well for climates for which the model
is trained. Consequently, application to future climates is most trustworthy when future
climates have reference period analogs. Analyses of climate change impacts to North
American vegetation suggest that the occurrence of truly novel climates without contem-
porary analogs should be of little consequence in our window until, perhaps, the end of
the century [10]. Yet, even though analogs may be abundant, some may occur beyond
our window.

In predicting niche suitability, bioclimate models differ from species distribution
models that attempt to predict the actual occurrence of the species by accounting for biotic
effects and physical factors other than climate. A species may be absent from a portion of
its climate niche for various reasons, such as substrate, disturbance history, competition,
land use change, or migration rates that are too slow to keep up with emerging niche.
Implementation of our modeled effects, therefore, relies on the expertise of land managers
to integrate local factors for determining which sites within the climate niche are unlikely
to be suitable.
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Like any distribution model incorporating climate, climate niche models are most
accurate when distributions are in equilibrium with the reference climate, and, therefore,
all niche space is filled. The same contingencies apply to prediction. Consequently, our
projections do not necessarily predict the future distribution of species, but rather the
future distribution of currently inhabited climates.

Because of this, proper application of niche model output in future climates requires
cognizance of additional factors that interact with the ecological characteristics to determine
species distributions. For instance, climate change alters fire regimes and affects the
behavior of insects and diseases. Fire-adapted species, therefore, may respond differently
to the future climates than other species. Likewise, reproductive and dispersal traits need
to be taken into account when considering colonization of new habitat. To consider such
factors, ecological response models can be developed and considered in conjunction with
bioclimate niche models, e.g., [40].

2. Methods
2.1. Assembling Presence–Absence Data

We used spatial vegetation files from 11 organizations (Appendix A, Figure A1) en-
gaged in land management within the study area. These vegetation data covered 50.3% of
our geographic window but accounted for nearly all of the forested lands; lands not covered
by the vegetation data were mostly agricultural, steppe, or desert scrub.

The vegetation files consisted of polygons that in most cases delineated the occurrence
of 14 tree species. We sampled most polygons with a 0.0025◦ grid, approximately 277 m
for latitude and 219 m for longitude, but used a slightly finer grid (0.0023◦) for polygons
from the smallest management units. These sampling procedures produced 840,069 data
points (see Appendix A.2 for sampling details). We assume that a species is present at a
data point if the point falls within a polygon delimiting the species’ occurrence.

An additional 7280 ground plot data points from within the study area and areas
peripheral to it were obtained from Forest Inventory and Analysis (FIA) (see Appendix A.3
and [41]). Treeless lands within the window but outside management unit polygons were
represented by 7493 additional data points obtained from a gridded sample (Appendix A.4).

These procedures produced a dataset of 854,842 point samples (Appendix A.5), each
identified by latitude, longitude, and the presence or absence of 14 species. Elevation, slope
percent, and aspect (azimuth) were obtained for the gridded data from 90 m DEMs [42]. At
least one of the tree species was present at ca. 81% of the data points. Populus tremuloides
and Picea engelmannii Engelmann. were each present at ca. 35% of the data points, while 5
species were present at less than 5% (Table 1).

2.2. Climate Variables

The coordinates of each point and its elevation were submitted to a server that provides
climate data [43] based on the thin plate spline climate model [44]. From the server, we
retrieved for each data point climate variables derived from monthly averages for the
reference period 1961–1990. Additional “transformed” variables were calculated from
these derived variables.

We pared the total number of climate variables down to 12 (Table 2) for use in the
climate niche modelling. These 12 have been found useful in related analyses, e.g., [22],
and have a reasonably low collinearity. We also use a topographic variable, heatload [45],
as a predictor (Table 2) to replace the Cartesian vectors used previously [22] for integrating
the effects of slope and aspect on mountain climates. Heatload estimates potential annual
direct incident radiation.
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Table 1. Species used in bioclimate modelling, number of point locations recording presence (which is also the number
of presence and absence points used in training the model), median elevation of presence data points, and vegetation
associations [23] in which the species occurs.

Species Acronym Number of
Presence Points

Median
Elevation (m) Vegetation Association

Juniperus osteosperma (Torr.) Little JUOS 66,827 2027 Woodland

Pinus edulis Engelm. PIED 112,895 2135 Woodland

Quercus gambelii Nutt. QUGA 148,180 2360 Woodland, montane forest,
montane scrub

Juniperus scopulorum Sarg. JUSC2 29,034 2433 Woodland, montane forest

Pinus ponderosa
Douglas ex C. Lawson PIPO 147,124 2549 Montane forest

Abies concolor (Gord.
and Glend.) Lindl. ABCO 33,587 2671 Montane forest,

subalpine forest

Pseudotsuga menziesii
(Mirb.) Franco PSME 142,639 2788 Montane forest

Picea pungens Engelm. PIPU 15,049 2803 Subalpine forest

Populus tremuloides Michx. POTR5 297,271 2903 Montane forest,
subalpine forest

Pinus flexilis E.James PIFL2 19,476 2984 Subalpine forest

Pinus contorta
Douglas ex Loudon PICO 70,266 3101 Subalpine forest

Pinus aristata Engelm. PIAR 31,935 3151 Subalpine forest

Picea engelmannii Engelm. PIEN 304,310 3210 Subalpine forest

Abies lasiocarpa (Hook.) Nutt. ABLA 183,434 3215 Subalpine forest

Table 2. Climate variables and the frequency of their ranking as the most important variables in predicting the presence of
14 species as measured by the mean decrease in accuracy.

Variable Definition
Number of Models in which

Variable Ranked

Highest Upper Two Upper Four

dd5 Degree days > 5 ◦C (based on mean monthly temperature) 1 1 2

map Mean annual precipitation 1 2 3

gsp Growing season precipitation, April to September 0 1 1

mindd0 Degree days < 0 ◦C (based on mean minimum
monthly temperature) 2 2 3

d100 Julian date on which the sum of degree days > 5 ◦C reaches 100 2 2 3

tdiff Temperature difference between warmest and coldest month 3 4 13

pratio Precipitation ratio, growing season to annual: gsp/map 1 3 8

mapdd5 (map × dd5)/1000 3 5 6

adi Annual dryness index: dd50.5/map 0 0 0

adimindd0 adi × mindd0 1 2 3

sdimindd0
(gsdd50.5/gsp) × mindd0, where gsdd5 is the degree-day sum

between the last freezing temperature of spring and the first
freezing temperature of autumn

0 0 0

heatload

0.339 + 0.808 × cos(L) × cos(S) + −0.196 × sin(L) × sin(S) +
−0.482 × cos(A) × sin(S), where L = latitude in radians, S = slope

in radians, A = aspect in radians, rotated and folded such that
minimum values are at 45◦and maximum values at 225◦ [45]

0 6 14
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2.3. Species-Specific Niche Models

Climate niche models were built for each species using Breiman’s random forests [46],
incorporating an abbreviated protocol of Huang and Boutros [47] to parameterize the
algorithm. Our fine-grained datasets, in which the number of observations is far greater
than the number of predictors, afford opportunities to advantageously use the “nodesize”
and “sampsize” options available in the R formulation of random forests [48] to fine-tune
the niche models. The “nodesize” option specifies the minimum number of observations
in a terminal node, while “sampsize” allows specification of the number of observations
from the minority and majority classes used for the construction of each tree.

Building the species-specific models began by randomly selecting 90% of the total
observations for model development and reserving the remainder for validation. Parame-
terization ensued through iterations of the random forests algorithm to vet “nodesize” and
“sampsize” for each model. Criteria for judging developmental models were (1) an error
structure in validation analyses that was similar to the error structure in the developmental
models and (2) a reasonable balance between errors of omission and commission, which,
then, would yield an optimal out-of-bag error. Once satisfied that the fit of the develop-
mental model was reflected in the verification errors, we fit a final model of 200 trees using
all of the data. Fit statistics showed that errors were stable with one forest of 125–200 trees.

A stepwise elimination procedure was used to assess variable importance in each
model. The stepwise process began with the 12 predictor variables (Table 2) and ended with
one variable remaining, building a model at each step. In the past, we and others have used
mean decrease in accuracy (MDA) to select a variable to drop at each step, but we explored
the alternative statistic, mean decrease in node impurity (Gini), for variable selection. The
two methods resulted in models with very similar error but with very different estimates
of variable importance. In further exploration, we found that Gini could result in models
incorporating randomly generated variables, while those variables were dropped when
using MDA. Therefore, MDA was used at each step to quantify variable importance. The
most important predictor was assumed to be the last variable remaining from the stepwise
elimination process.

2.4. Mapping and Interpreting Model Output

To map reference period and future climate niches, we used 90 m grids, which, for our
window, comprised ca. 14 million cells. Climate variables and heatload of each cell were
estimated as described above. To make predictions, the variables for each cell were run
down all trees in the forest to obtain a vote, either yes or no, as to whether the conditions
in the cell were within the climatic niche of the species. Since each tree casts a vote, our
analyses yielded 200 votes on the suitability of each species for each cell.

For assessing the suitability of cell conditions in future climates, we used output
of 11 general circulation models (GCMs) for the decade around 2060, obtained from the cli-
mate data server, as described above for reference climate (Figure 2). For 3 GCMs (CCSM4.0
from Community Earth System, the GFDLCM3 from Geophysical Fluid Dynamics Lab-
oratory, and HadGEM2ES from the Met Office, UK), we used climates for 3 greenhouse
gas emission scenarios (RCP4.5, RCP6.0, and RCP8.5) [49]. We also used the CESM1BGC
(Community Earth System Model, National Center for Atmospheric Research, RCP8.5
and CNRMCM5 (National Centre for Meteorological Research and Centre Européen de
Recherche et de Formation Avancée en Calcul Scientifique, RCP4.5 output, as they, along
with HadGEM2ES, RCP8.5, describe the range in variation of future climates projected for
southwestern Colorado [40]. The RCP2.6 scenario was ignored because its assumptions
of reduced emissions already are invalid. Heatload is a topographic vector that remains
constant in time.
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Votes cast for each climate were averaged in each cell to obtain the proportion of “yes”
votes for future climates. We interpret niche suitability in terms of the vote proportions
generated by the models and map the change in votes between the two periods according
to the classification system of Table 3. In this classification, contemporary species habitat
is apportioned into three classes (lost, threatened, or persistent) that project the fate of
the species in future climates. An additional class, emergent, represents newly available
climatic niche. The “threatened” category incorporates uncertainty similar to that of GCM
projections. We refer to these classes as “habitat change classes”.

Table 3. Habitat change classes based on votes generated by models using reference period climate and eleven 2060 climates.

Change Classes
Proportion of Votes

InterpretationReference
Period Post Mid-Century

Always unsuitable <0.5 <0.5 Climate is unsuitable in reference period
and remains unsuitable in the future

Lost ≥0.5 <0.3 Future climate will be so unfavorable that the
species is unlikely to survive the century

Threatened ≥0.5 ≥0.3 to <0.5 Future climate will be unfavorable but the species
may survive under otherwise favorable conditions

Persistent ≥0.5 ≥0.5 Future climate will remain suitable

Emergent <0.5 ≥0.5 Areas outside current distribution that will
become climatically suitable
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3. Results
3.1. Niche Models

In comparing errors of fit in developmental models with those in the validation dataset
(Table 4), we found that out-of-bag errors could be reduced by increasing the size of the
majority class, which, in our cases, were the “absences” or, in random forests nomenclature,
the “nos”, and reducing the size of the minority class, the “yesses”. This, however, tended
to reduce the commission errors at the expense of the omission errors, such that the lowest
out-of-bag errors were accompanied by errors of omission of nearly 100%. For a niche
model, such an outcome is untenable. Omission and commission errors were closest to
equal when “sampsize” was set with the “yesses” equaling the “nos”, and with 100% of
the “yesses” being used for developing each tree. In the case of Juniperus osteosperma, for
example, each tree was built with 66,827 “yesses” (see Table 1) and the same number of
“nos” (randomly sampled for each tree). In all cases, “nodesize” = 1, the default value, was
superior to any other values tested.

Table 4. Errors of fit (%) for the developmental models, validation exercises, and final models.

Species
Developmental Model a Validation of Developmental Model b Final Model c

Out of Bag Commission Omission Total Error Commission Omission Out of Bag Commission Omission

JUOS 6.1 6.2 3.9 6.2 6.4 3.6 5.7 5.8 4.1

PIED 8.1 8.2 6.9 8.1 8.4 6.3 7.6 7.7 7.0

QUGA 8.6 9.1 6.0 8.7 9.3 5.8 8.2 8.6 6.5

JUSC2 7.8 7.9 6.1 8.0 8.0 5.8 7.2 7.2 6.1

PIPO 9.1 9.5 7.3 9.1 9.6 6.9 8.7 9.0 7.5

ABCO 5.3 5.4 2.9 5.4 5.5 2.9 4.9 5.0 3.0

PSME 14.3 14.5 13.3 14.4 14.7 12.7 13.6 13.6 13.9

PIPU 9.8 9.8 11.0 10.1 10.1 10.5 9.4 9.4 10.5

POTR5 15.8 16.4 14.6 15.9 16.8 14.2 15.4 15.5 15.2

PIFL2 9.0 9.0 5.9 9.1 9.2 5.8 8.1 8.2 6.4

PICO 6.8 7.1 3.6 6.9 7.2 3.5 6.4 6.6 3.9

PIAR 9.2 9.3 6.1 9.5 9.6 5.5 9.0 9.1 5.8

PIEN 12.6 13.7 10.6 12.5 13.9 9.9 12.3 13.1 10.9

ABLA 13.8 14.5 11.4 14.0 14.9 10.7 13.3 13.6 12.0
a built from a 90% sample of the presence–absence database. b calculated from running the 10% withheld through the developmental
model. c built from all data.

Out-of-bag errors of our niche models ranged from 4.9% in Abies concolor (ABCO) to
15.4% in Populus tremuloides (POTR5; Table 4). Errors of commission and omission were
reasonably balanced, although for A. concolor and Pinus contorta (PICO) commission errors
were nearly twice those of omission.

Niche models of Picea engelmannii, A. lasiocarpa, P. tremuloides, and Pseudotsuga menziesii,
four of the most abundant species (Table 1), had the largest errors of prediction. Error rates
for P. engelmannii and P. tremuloides are similar to those found in previous analyses [22]
dealing with a portion of our study area.

3.2. Variable Importance

The stepwise process of removing predictor variables according to importance values
produced an updated out-of-bag error at each step. The change in error at each step
was remarkably similar for all models. The change in error was negligible through the
first seven steps, with errors increasing <0.5 percentage points. The step by which a six-
variable model was reduced to five predictors on average increased errors by 1.3 points,
but thereafter, errors in subsequent steps increased by 4 to 8 points. It appears, therefore,
that four variables provide most of the predictive power of the model.
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No single variable dominated the list of the most influential; all but two of the variables
were among the top two for at least one model (Table 2). Two variables, MAPDD5 and
TDIFF, appeared as the most important variable in three of the models, and heatload was
among the top four variables in all models, although it was not ranked the highest for any
single model. Heatload, TDIFF, and PRATIO appeared together in four-variable models for
nine of the species.

To assess the contribution of heatload in accounting for micro-topographic climatic
effects, we re-built the final models without including heatload among the predictors.
For Pinus aristata, a denizen of high-elevation forests (Table 2), mapped comparisons
(Appendix B, Figure A3) showed that heatload increased suitability on south and south-
western exposures, while reducing it on the cooler aspects. For Populus tremuloides in
its broad distribution in montane and subalpine forests and for Picea engelmannii in its
subalpine habitat, heatload tended to reduce suitability on southern and southwestern ex-
posures, while adding suitability on north and northeastern exposures (Figures A4 and A5).
For Pinus ponderosa, a montane forest species often occurring at the woodland–forest mar-
gin, the effects of heatload at the upper limits of distribution added suitability on warm
exposures, while decreasing it on northerly exposures; but at the lower limits of distribu-
tion, heatload tended to decrease suitability in broad swaths on warm exposures, while
increasing suitability on the cool aspects (Figure A6).

3.3. Projected Changes

Projected impacts to the extant forests and woodlands of our window (Table 5) vary
from extensive to dire. Woodland species from the lowest elevations should have a rela-
tively secure future with high persistent habitat and with lost habitat balanced by emergent
habitat. Pinus edulis (PIED) and Quercus gambelii (QUGA) would actually increase in niche
area by about 30%, assuming survival where threatened. Yet, persistent woodlands account
for only 20% to 50% of the current distribution, making the secure future dependent on
emergent niche being filled.

Table 5. Allocation of reference period niches into lost, threatened, and persistent categories, plus emergent, leading to
changes in niche area expected in the future. Both niche change columns include emergent as future niche.

Species a Reference Period
Niche (km2)

Projected Fate of Reference Period
Niche (Percent) Emergent Niche Niche Change

(Percent)
Median Elevation

Change (m) d

Lost Area Threatened
Area

Persistent
Area

Percent of
Reference

Period Niche

Area
(km2) Optimistic b Pessimistic c

JUOS 19,198 15 64 21 7 1263 −8 −72 27–73

PIED 26,891 17 44 39 43 11,528 +26 −18 235–382

QUGA 21,919 13 39 48 47 10,223 +34 −6 185–311

JUSC2 14,349 47 41 12 23 3239 −24 −65 214–296

PIPO 19,553 34 55 10 6 1144 −28 −84 126–297

ABCO 6333 76 24 0 1 45 −75 −99 195–316

PSME 18,862 15 76 9 4 690 −12 −88 64–212

PIPU 7956 75 25 0 0 0 −75 −100 −44–NA

POTR5 25,332 55 43 2 17 4369 −37 −80 293–639

PIFL2 5809 100 0 e 0 0 0 −100 −100 NA

PICO 7980 100 0 0 0 0 −100 −100 NA

PIAR 7714 100 0 0 0 0 −100 −100 NA

PIEN 21,530 44 54 2 5 985 −39 −94 173–562

ABLA 15,496 56 43 1 5 824 −51 −94 214–597

a Sorted by median elevation in the reference period (Table 1). b Assuming survival of trees in threatened class. c Assuming mortality of
trees in threatened class. d Elevation change under optimistic to pessimistic assumptions. e Fifty-three cells of PIFL2 (6 × 10−5 percent of
reference area) are threatened.
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For the montane and subalpine forest species, persistent and emergent habitat is
generally rare; Pinus ponderosa (PIPO) has the largest proportion of persistent with 10% of
the reference habitat. Nearly all existing niche is categorized as lost or threatened. Con-
sequently, the fate of existing forests depends largely on whether the species survive in
threatened habitat. Because emergent habitat is far from balancing lost habitat, forest
tree species face a perilous future. The data of Table 5 portend widespread ecological
disruption, the extent of which depends on whether (a) trees in the threatened class live or
die and (b) species actually inhabit their emergent habitat.

Three Pinus species (P. flexilis, P. contorta, and P. aristata; PIFL2, PICO, and PIAR,
respectively) may be extirpated from the area, with all reference niche lost and none
emergent (except 53 cells of PIFL2 classed as threatened; Table 5). An additional species
(Picea pungens) may be locally extirpated if trees in the substantial threatened areas do
not survive. For these species, the models showed close agreement among climates in a
lack of future suitability (votes <50%). Close inspection of votes garnered individually for
each of the 11 climate scenarios showed that for PIAR, the climate would be unsuitable
in 99.99% of the modeling window. At best, only two of the climates predicted suitable
habitat, but only for 17 cells (0.12 km2). The PICO model predicted that all 11 climates
would be unsuitable in 99.96% of the modeling window. At most, only one climate was
predicted to be suitable on merely 34.5 km2. The PIFL2 model predicted that all 11 climates
would be unsuitable in 99.7% of the modeling window. At most, only two climates were
predicted to be suitable on 249 km2. The PIPU model predicted that all 11 climates would
be unsuitable in 96.2% of the window. The highest agreement for suitability was among
five climates, but only on 0.31 km2.

The species projected to remain within our window are expected to shift upwards in
elevation while tracking a niche that may shift a few hundred meters (Table 5, Figure 3),
depending on the disposition of the threatened habitat. Except for J. osteosperma, the secure
portion of the future habitat distribution (persistent or emergent) occurs in the highest
portion of the potential elevation distribution of the future (Figure 3).

Basic to adapting forest management to climate change are the habitat change maps that
use voting classifications to portend impacts to species. The change map for Picea engelmannii is
Figure 4; the remainder are Figures S1–S14. The change maps illustrate the distribution of
impacts detailed statistically in Table 5. The contemporary distribution of P. engelmannii of
ca. 21,500 km2 is represented in Figure 4 by the sum of three categories, lost, threatened,
and persistent. About 44% of this area is expected to be lost, and only 2% is confidently
expected to remain P. engelmannii forest. That leaves more than half of the contemporary
distribution in the threatened class. This means that the fate of the contemporary forests
depends in a large part on whether the forests in the threatened class are lost or persist.
While a small amount (5%) of new habitat may emerge as alpine communities are converted
to forests, managers are left with the unsettling view that P. engelmannii forests will decrease
in area by as much as 94% or as little as 39% of what exists today. Concomitantly, the
median elevation of these forests should move upwards between 173 and 562 m.
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class is represented by two columns, one for the reference period and one for 2060. The latter represents the optimistic niche
area including threatened habitat (orange); the black portion is the secure niche area, with only persistent and emergent.
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Maps of habitat change classifications reveal several general patterns. On the Colorado
Plateau in the western portion of the window, where forest habitat is intermingled with
desert-scrub, change is projected to be especially negative. Most of the niche of the
montane and subalpine species that occur there is projected to be lost (e.g., P. ponderosa
in Figure S10, see Uncompahgre Plateau and the western part of its distribution in the
San Juan Mountains). However, low-elevation woodland and montane scrub species are
projected to flourish (P. edulis, J. osteosperma, Q. gambelii; Figures S3, S7 and S14). In contrast,
the most favorable projections for montane and subalpine species tend to occur east of
the Continental Divide (e.g., P. ponderosa, Figure S10) and at high elevations (Figure 3).
The impression is that west of the Continental Divide, the climate is changing to support
Great Basin communities, while east of the Divide, the climate remains supportive of the
southern Rocky Mountain vegetation.

The uncertainties surrounding the threatened and emergent classes make it nearly
impossible to integrate the fate of forest and woodland species into a single assessment
of impacts to the forests as a whole. If all emergent niche is occupied and if all species
survive in their threatened habitat, then forest and woodland niche (where at least one
of the 14 species is suited) would decrease only 4% (Table 6). However, if emergent and
threatened are not contributing to future niche space, woodlands and forests together
should decrease 67%. If Q. gambelii is ignored as a tree species, as it is often shrub-like
and considered undesirable in stands managed for timber production, those decreases in
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forests plus woodlands become 9% and 78%. If threatened areas do not survive, the lower
timberline of woodlands may climb 300–400 m (Figure 3). The lower limit of montane
forests would climb about 500 m and that of subalpine forests about 800–1000 m.

Table 6. Changes in forest and woodland niche area projected in the future based on integration of
species changes.

Change from Reference Period (%)

with Emergent without Emergent

with QUGA

Optimistic a −4 −13

Pessimistic b −42 −67

without QUGA c

Optimistic −9 −20

Pessimistic −56 −78
a Assuming survival of trees in threatened class. b Assuming mortality of trees in threatened class. c QUGA
removed before analysis both in reference period and future.

Concomitantly, the treeless portion of the study area should increase, perhaps greatly.
In the reference period, treelessness accounts for 19% of our window. That portion is
projected to rise to 23% at best. Yet, if threatened habitat is lost, 53% of the area could be
treeless, and if, in addition, emergent habitat is not colonized, then ca. 73% of the area is
projected to be treeless. If, moreover, Q. gambelii is considered to be a shrub rather than a
tree, then 83% of the future window would be classified as treeless.

To be sure, our analyses concentrate on the fate of existing forests and their role
in establishing a new generation. The extent that our dire forecasts can be alleviated
by assisted migration from areas outside our window have not yet been systematically
explored. Cursory analyses by us, however, suggest a high potential for extant populations
from areas external to our window to find suitable niche among the future climates of our
window. The role of assisted migration in the management of future forests of our window
is a topic worthy of in-depth analysis.

4. Discussion
4.1. Uncertainty and Management

We are confident that the bioclimate models are statistically sound. By validating
each model with data reserved for that purpose, errors of prediction are as low as can
be expected for niche models. The models were developed for the study area with the
best data and methods available. They reliably predict current distributions of realized
climate niches.

Less confidence can be placed in projections of future climates that are used to predict
vegetation changes. Variation in projected climates of the GCMs and scenarios is notori-
ously large, leading toward discussions of climate change impacts being dominated by
uncertainty. Because no climate scenario is considered more likely than another, we feel
the most reasonable and practical course for managers is to consider the average projected
impact, which for our bioclimate models is based on the votes. Our view is to consider
the variation among GCMs and emissions scenarios as a matter of time. That is, impacts
tend to follow similar trajectories but occur at different times. For planning, therefore,
one can assume that projected climates are reasonably accurate in their trajectory, but
may be reached sooner or later than projected. Thus, the uncertainty should be no cause
for inaction.

We classify niche changes between the reference period and the future as an integrated
way to compare the two time periods and use thresholds to facilitate management decisions.
Although averaging votes hides the underlying variation among the climate scenarios, use
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of the “threatened” habitat class re-introduces the variation seemingly lost in averaging
and classifying vote counts.

4.2. Locally Adapted Populations (Climatypes) and Natural Selection

Our analytic approach tacitly portrays the erroneous view that species occupy a
single, broad climatic niche to which all individuals are physiologically suited. Yet, most
broadly distributed species are composed of climatypes that are genetically adapted to
local climates (see [50]). As the climate changes, populations may become maladapted to
the new conditions [14,51], even though suitable climatypes may occur elsewhere. Thus,
even in habitat considered to be persistent according to the bioclimate models, the local
populations may not be suited to the new climate. Obtaining new forests of adapted trees
may require planting programs to assist the migration of trees to the new location of the
climate to which they are suited [52]. Wherever planting is a viable option, managers have
the opportunity to introduce populations from within or beyond our window to the new
location of their optimal climate.

Alternatively, in persistent zones, natural selection may help the local population to
adapt to the changing climate. To facilitate selection, treatments that stimulate high rates of
reproduction should be encouraged. Indeed, the recent stand-replacing disturbances in the
modeled area from spruce beetle and wildfire may provide a large population of seedlings
and saplings that can be selected naturally as the climate changes. However, multiple
generations may be needed to develop a climatype for a new climate, and climates seem
to be changing faster than this process can accommodate [14,15]. For this reason alone,
planting seems to be the most viable option.

4.3. Vegetation Change and Climate Analogs

A concept basic to interpreting vegetation change is that future climates will be suited
for the vegetation occurring in their reference period analogs. That is, species and their
climatypes will track the climate to which they are adapted, and, therefore, the realized
climate niche of the future will recur in climates similar to where they occurred in the past.

Yet, seemingly counter-intuitive projections frequently occur. Since climate is the
primary factor controlling niche changes in an elevational sequence, it is often assumed
that species will systematically move up in elevation as a result of climate change. Indeed,
our analysis suggests that the future occurrence of contemporary climatic niches will
generally be at higher median elevations than reference niches. However, our projections
also show that the upwards shift will not necessarily occur in such an easily predictable
fashion. In fact, some altitudinal sequences disappear entirely in portions of our window.

On the west side of the Continental Divide, particularly the southwest portion of
our study area, species change maps suggest that two montane species, P. ponderosa
and P. menziesii, may eventually disappear, having little habitat classified as persistent or
emergent (Figures S11 and S13). Yet, Populus tremuloides and subalpine species (Picea engelmannii
and A. lasiocarpa) are expected to shift upwards into emergent habitat. However, east of the
divide in the northeast corner of our window (Figures 5 and S11) P. ponderosa retains its
position in the altitudinal sequence, as all of these species shift upwards. This apparent
anomaly has been addressed in preliminary analyses of climate analogs that suggest to us
that the P. ponderosa niche suited to extant populations west of our study area should arise
in the southwest portion of our window, particularly in the San Juan Mountains, as the
contemporary niche deteriorates.
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For understanding seemingly illogical projections, climate analog analyses appear as
a useful complement to niche projections, e.g., [53]. Climates analogous to future climates
within our window undoubtedly exist today beyond the window. It is also possible that
future climates could arise within our window that have no contemporary analogs beyond
the window. Such occurrences are expected to render niche projections less reliable, as
competitive interrelationships are known to break down in novel climates [54]. Either case
could be identified readily with analog analyses.

4.4. Application to Management
4.4.1. General Application of Change Classes

The most important use of change zones may be not changing how management
is done, but where it is done. Conservation can be optimized and resources used most
efficiently by identifying areas with the most favorable projected habitat and managing to
protect and regenerate the appropriate species there. The goal is focusing each management
action where it is likely to be most effective into the future. If, however, management areas
are pre-determined because of a project’s purpose and need, projections can be used to
identify which species to favor during management.

A good way to address uncertainty in management is the use of “no regrets” strategies,
those that are beneficial under multiple scenarios and have little or no risk of socially
undesired outcomes [55]. Such actions benefit resources and values, regardless of climate-
change effects. Actions discussed below generally meet those criteria.

Lost Habitat. In general, investment with the goal of improving or managing for the
future of a species should be a low priority where its habitat is projected to be lost, as it
has the least likelihood of long-term success. However, management may be needed for
other reasons, such as reducing fire risk near communities. In that case, establishing young
age classes and managing at low stocking levels may help the “lost” species persist longer.
More future-suitable species should be favored or introduced where possible. For valuable
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species that are projected to be almost or completely lost, we can identify areas where their
survival is most likely and manage those appropriately (see Refugia below).

Threatened Habitat. If other options are limited, consider treating sites within the
threatened class that have the highest future votes to increase resilience to drought, diseases,
and insects, especially in stands where more future-suitable species can be favored. In both
lost and threatened habitat, a species may persist for many years as mature individuals if,
for instance, the climate no longer favors recruitment but can sustain mature trees. This
may be especially true for P. aristata and P. flexilis, which are long lived and known for
withstanding extreme drought after they are well established.

Persistent Habitat. Normal management can proceed with reasonable confidence, but
in our window, persistent habitat is limited and may be considered a climate refugium (see
Refugia below). In general, enhancing species’ resilience is important in persistent habitat,
as it may become threatened later, and the local populations may become maladapted,
even if it remains persistent at the species level. Consideration can be given to increasing
opportunities for regeneration, enhancing age diversity, and creating landscapes that
reduce vulnerability to bark beetles and large-scale catastrophic fire.

Emergent Habitat. Facilitate migration as appropriate for the species and site. For
example, some species may benefit from soil disturbance or fire on some sites for seedling
establishment. Consider assisted migration (planting) as the climate changes. Emergent
habitat will not be colonized quickly in many cases and will depend on proximity to and
fecundity of seed sources [56]. Migration will be most successful where emergent habitat is
adjacent to threatened or persistent habitat. Natural migration rates vary widely among
species, but, except perhaps for light-seeded species such as aspen, natural migration is
expected to be much slower than rates of habitat change, e.g., [13].

4.4.2. Management Tactics and Examples

Here, we offer examples of how the models can be used in planning management
under various circumstances.

Encourage a Mix including Future-Suitable Species

When planning management activities in a predetermined project area for any reason,
compare current species composition with species projected to be suitable there in the latter
part of the century. Encourage any existing future-suitable species over those projected to
be lost or threatened and consider planting species for the future.

For example, project areas may be identified to fulfill a project’s purpose and needs
other than climate adaptation (Figure 5). Pinus aristata and P. flexilis, which are widespread
in the reference period, are expected to be completely lost. In area A (Figure 5), at high
elevation, spruce–fir forests recede, becoming threatened at best, while P. ponderosa and
Pseudotsuga menziesii emerge from below. Populus tremuloides is threatened in its reference
niche, but emergent around the peaks. Based on these change projections, harvesting or
otherwise disturbing patches of spruce–fir near P. ponderosa and P. menziesii may create
opportunities for migration into their emergent niches. Dead and dying Picea engelmannii
stands farther from P. ponderosa seed sources could be planted with appropriate P. ponderosa
seed sources. Where P. menziesii is persistent, it is desirable to encourage regeneration
and maintain fire-resilient stand structure. Where aspen is threatened, aggressive cop-
picing is likely to increase drought resilience [29], but emergent or persistent conifers
should be retained.

In area B, at lower elevation, P. ponderosa is well established and persistent through-
out. Picea pungens is threatened, and Pseudotsuga menziesii is threatened to persistent.
Piñon–juniper woodlands (Pinus edulis–Juniperus sp.) are emergent. To optimize survival,
P. ponderosa can be managed for age diversity, resilience to fire and bark beetles, and re-
duction of dwarf mistletoe. Where P. menziesii is persistent, it can be managed similarly.
Piñon–juniper should be retained and protected if it migrates into its emergent areas. Be-
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cause migration of woodland species is notoriously slow, planting may be necessary for
timely site occupancy.

Use Projected Change and Votes as Criteria to Choose Locations for Management

When planning a project that has flexibility in choosing areas to manage, criteria
often include stand conditions, road access, slope, and management emphasis. Projec-
tions can be added to those criteria to choose areas where management has the greatest
chances of success.

For example, in the San Juan National Forest (Figure 6), P. ponderosa in lost habitat
may be given lower priority, unless there are other important criteria for site selection.
Work there may include salvage and favoring species projected to be more suited to the
site in the future. Persistent areas near Piedra Campground (Figure 6) could be prioritized
to enhance stand resilience to drought, fire, and bark beetles. Because persistent habitat
is so limited, the best quality threatened habitat can be selected based on the highest
future votes (Figure 6, inset), focusing on increasing stand resilience and favoring other,
future-suitable species.
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Identify Potential Climate Refugia for Special Management

Species that are considered valuable ecologically, culturally, or economically may be
in jeopardy if the local habitat is projected to be all lost or all lost and threatened. Models
can be used to identify sites with the most favorable habitat, which can then be managed
to minimize the chances of local extirpation.

For example, P. aristata (bristlecone pine) is a valued cultural resource as well as
being important to wildlife, but projections show its habitat to be lost with none emergent.
By using continuous votes rather than the change classes, areas most likely to approach
persistence can be identified (Figure 7A). Then, by examining the projections based on each
of the 11 GCM climate scenarios we use, we find two climates that result in suitable habitat
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in pockets at high elevation (Figure 7B), the most favorable being CNRMCM5_rcp45. A
change map based on that climate alone suggests limited amounts of persistent habitat
along with a broad belt of threatened habitat should accompany the lost habitat at lower
elevations (Figure 7C). The potential persistent habitat, thus, identifies the most likely
climate refugium in the study area. Consideration can then be given to management to
increase regeneration opportunities, reduce potential for stand-destroying fire, and increase
resilience to mountain pine beetle.
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Facilitate Migration

Consider strategies to enhance natural colonization of emergent habitat. In many
cases, this is not feasible, and assisted migration (planting) should be considered.

For example, the upper Uncompahgre Plateau is projected to lose most habitat for
species that are currently there, but Pinus edulis (piñon), which is currently on the lower
shoulders of the Plateau, has emergent habitat there. Various corvid species, jays and
nutcrackers, are important in long-distance seed dispersal of piñon. Treatments can be
considered to improve habitat for these birds, especially at and above the current upper
elevation of piñon. Implementing these tactics may facilitate natural migration of piñon
toward the mesa top.

Populus tremuloides (aspen) has very light, wind-blown seed, and many studies have
shown that seedling establishment is much more common than previously believed. Where
aspen has emergent habitat, disturbance, especially fire, will enhance the likelihood of
seedling establishment. Aspen stands upwind of emergent habitat can be evaluated readily
to identify female clones. In those stands that have been heavily invaded by conifers,
coppice-cutting would re-establish pure female aspen, ensuring a long-term supply of
abundant seed.

4.4.3. Management Restrictions

Applying tactics based on model results can be stymied by current management
restrictions. For instance, the only extensive area of persistent Picea–Abies forest projected
for the future by our models is on the central San Juan National Forest in the Weminuche
Wilderness, the largest wilderness area in Colorado (Figures S2 and 4). Roads and machin-
ery are currently prohibited there, making active conservation of this climate refugium
difficult to impossible. Existing mining claims, grazing allotments, and water rights may
also interfere with implementation of worthy programs.
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Supplementary Materials: Figures S1–S14 are available online at https://www.mdpi.com/article/
10.3390/f12121780/s1: Distribution of habitat change classes (i.e., change zones) based on the
categories defined in Table 3 and mapped at 90-m resolution. Change maps for Abies concolor,
Abies lasiocarpa, Juniperus osteosperma, Juniperus scopulorum, Picea engelmannii, Picea pungens, Pinus aristata,
Pinus contorta, Pinus edulis, Pinus flexilis, Pinus ponderosa, Populus tremuloides, Pseudotsuga menziesii, and
Quercus gambelii.
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Appendix A. Assembling a Presence–Absence Dataset

Appendix A.1. Vegetation Data

Spatial vegetation data were obtained from 11 land management units within our
study area (Figure A1), bounded by longitudes −109.1, −105.3 and latitudes 36.9, 39.45.
These data were at the highest resolution used by these organizations for management
purposes. There were 299,071 polygons, varying in size from 1.2 × 10−4 to 11,728 ha, with
a median of 7.9. The 11 organizations cover 50.3% of the study area. The area not covered
was mostly steppe, grassland, or agricultural, containing little forest.

https://www.mdpi.com/article/10.3390/f12121780/s1
https://www.mdpi.com/article/10.3390/f12121780/s1
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Figure A1. Modeled area in southwestern Colorado, showing the land management units whose spatial vegetation data
were sampled for the study. Blue line is the Continental Divide.

Appendix A.1.1. National Forest System

For national forest data (including Tres Rios BLM, whose data are maintained together
with San Juan NF), we used two geodatabases, the regional R2_FSVeg_Spatial and national
USvegNRIS. In the regional database, we searched the DLF and MLF (dominant and
majority life form) species fields. Any species in those six fields was considered present in
the associated polygon; otherwise, it was considered absent. Presence was supplemented
with the national database, NRIS_VegSubpopulations table, SPECIES_SYMBOL field that
is used to indicate presence of each species, with multiple records per polygon. We found
no species data in the few polygons of the Carson NF inside our window. In the few
polygons of the Manti-La Sal NF, most had species codes in the NRIS_VegSubpopulations
field SUBGROUP_1, so those were used to indicate presence/absence.

The floor of the San Luis Valley, not part of the Rio Grande NF, contained very large
polygons (>12,000 ha). Most of them had no vegetation data; one had several tree species
represented, although most of the polygon was treeless. Those polygons were deleted.

For the Uncompagre NF, 78 polygons around Ouray known to have ABCO were set
to “present” for that species, because this species was erroneously not represented in the
vegetation data.
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The PICO that occurs in the Uncompahgre, San Juan, and southern Rio Grande NFs is
all composed of plantations outside of the native range. In the shapefile, we set PICO to
“absent” in these areas, west of longitude −107.4 or south of latitude 37.7.

Appendix A.1.2. Southern Ute Indian Tribe

Vegetation data for Southern Ute lands were recorded as forest types. Species were
assigned to the forest types by a set of rules developed for us by foresters representing the
Tribe and Bureau of Indian Affairs. Species, which could be present or absent for a type,
were assigned “NA” for that type. When building models for a given species, any sample
points showing “NA” for that species were first deleted.

Appendix A.1.3. Mesa Verde National Park

Vegetation data on Mesa Verde National Park (MVNP) were recorded as vegetation
types. We used the most specific, the Base_Class field, and developed rules for each type
as for the Southern Ute Indian Tribe. For polygons in developed areas, we assigned NA for
any species that occurred anywhere in the park.

Large burned areas in the park were mapped as “post-fire”, and the pre-existing vege-
tation was not indicated. However, the best data for our purposes are the vegetation that
grew there recently, even if it is currently absent. Therefore, MVNP provided supplemental
files including a 1996 vegetation shapefile, together with data from 147 vegetation plots in
the park. For the post-fire polygons from the main shapefile, we substituted polygons for
the same areas from the 1996 shapefile with associated vegetation attributes.

To take advantage of the plot data, we extracted the presence of tree species noted in
each plot. Because the plot is a small part of the polygon in many cases, plot data were
used to assign presence but not absence. Plot coordinates were used to identify the polygon
containing each plot and to assign the corresponding presence data to each polygon. If the
polygon already had presence for a species based on shapefile attributes, it was unchanged.

Appendix A.2. Sample Points

All shapefiles containing presence–absence data for each species were sampled with
a grid of points. For Southern Ute and Mesa Verde shapefiles, we used a grid interval
of 0.0023 degrees. For the remainder, which represent large areas, we used a slightly larger
interval, 0.0025 degrees (grid interval about 219 × 277 m in our area). Each point was
assigned presence–absence data of the polygon over which it fell for all 14 species. This
process assured sampling proportional to area and covered the topography thoroughly.
The final count of sample points from vegetation shapefiles was 840,069, distributed among
units, as shown in Table A1.

Figure A2 illustrates sampling intensity (dots) within polygons describing the presence
and absence of P. tremuloiders within an area of about 80 km2 (10 × 8 km) of high elevational
diversity and of fine-scale mapping of polygons. In considering that aspect and slope add
additional topographic diversity, it becomes obvious that a fine-grained sampling intensity
is required to represent plant distributions in the mountains of our study region.

On the San Juan NF, ABCO and ABLA were confused during automated analysis of
satellite imagery to populate the vegetation data. The result was that ABCO appears to
exist much higher in elevation than it does, all the way to the Continental Divide. To correct
this, on the San Juan NF, any points above 3000 m (approximate upper limit of ABCO at
this latitude) that contained ABCO in the vegetation attributes were set to ABLA being
present and ABCO absent. This resulted in 746 new ABLA points and dropped 12,853
ABCO points.
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Figure A2. An example of vegetation polygons and their sampling from the San Juan National Forest. Shading indi-
cates presence of Populus tremuloides; black dots indicate a sampling grid with spacing of 0.0025 degrees. At this scale,
presence/absence is strongly influenced by topography. Elevation of the map ranges from 2390 to 3530 m.
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Appendix A.3. FIA Plots

Sample points from spatial vegetation data were supplemented with data from FIA
plots. As a supplement, FIA plots are attractive because they offer accurate species iden-
tification and complete census on about 0.17 acre (subplots were lumped in each plot).
Additionally, they occur on all land ownerships. In addition, outside our window, they
provide access to vegetation data for climates that do not currently occur in the window,
but are projected to occur in the future.

We retrieved complete FIA plot records for six states (AZ, CA, CO, NM, NV, UT) in
August and September 2015. We eliminated any plot sample records before 2002 and any
plots with PLOT_STATUS 3 (not sampled, may or may not have forest). We eliminated
duplicate plot records so each plot was represented only once. We dropped plots that
had any condition 4 (census water). To focus on the southwestern desert climates, in
Nevada, we dropped plots north of latitude 38.5; in California, we dropped plots west of
longitude −118.3.

We then compared the provided elevation of the true location with the 90 m DEM
elevation of the public (fuzzed/swapped) location. We removed plots with more than 50 m
discrepancy, on the assumption that those were fuzzed or swapped to a greater distance.
All remaining plots inside our study area window were kept and used as training data.

In preliminary trials, PIED and JUOS appeared to become emergent at lower elevations
than where they currently occur in the southern part of the area. We determined that (a)
the future climates in these areas do not occur to any extent in the window in the reference
period, and (b) these areas were underrepresented in the grid sampling. After obtaining
reference climate data for each FIA plot, we filtered the remaining external plots to retain
only those that had climates similar to future climates in the desert areas shown as emergent
for PIED and JUOS.

We accessed the FIA TREE tables to assemble species presence/absence records for
each plot. Because exact locations of FIA plots are secret, FIA staff provided DEM slope
and aspect for true locations of each plot. The final count was 7280 FIA plots: 2633 inside
the window and 4647 outside. All FIA plots were placed in the pool of points to be sampled
as training data.

Appendix A.4. Desert Grid

Because the treeless areas mentioned in Section 4.3 above were not adequately sampled
in the management units or FIA plots, we delineated treeless polygons in them (verified
with satellite imagery) and established a grid of 7493 points. All data points were assigned
“absent” for all tree species.

Appendix A.5. Total Sample

There were 854,842 points available for training the models, including 840,069 from
spatial vegetation datasets (Table A1), 7280 FIA plots, and 7493 from the supplemental
desert grid.
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Table A1. Number of grid points sampling spatial vegetation data in each management unit,
totaling 840,069.

Management Unit Number of Points

Grand Mesa NF 25,372

Gunnison NF 122,873

Uncompahgre NF 75,031

Manti-La Sal NF 167

Pike NF 48,305

Rio Grande NF 147,376

San Isabel NF 67,581

San Juan NF and Tres Rios BLM 252,779

White River NF 71,656

Mesa Verde National Park 5728

Southern Ute Indian Tribe 23,201
NF, National Forest. BLM, Bureau of Land Management.

Appendix B. Influence of Heatload as a Predictor of Species Occurrence in
Reference Period

As explained in the manuscript, instead of using two vectors to represent effects of
slope and aspect, as done previously, we convert aspect and slope to heatload (which also
incorporates latitude). This variable was the second or third most important descriptor of
the climatic niche of all 14 species. To demonstrate heatload’s influence on predicting a
suitable niche, we developed for four species (PIAR, PIEN, POTR5, and PIPO, see Table 1)
niche models that did not include heatload as a predictor, using only the 11 climate variables
of the bioclimate model (Table 2). Despite the high importance of heatload in the bioclimate
models (Table 2), out-of-bag errors of models without heatload were only slightly higher
than those of Table 5; for PIAR, 0.4%; PIEN 0.8%; POTR5 1.0%, and PIPO 0.3%.

Nonetheless, Figures A3–A6 illustrate the influence of heatload in fine-tuning topo-
graphic effects on the distributions of these four species. In each figure, pixels colored
red can be considered those removed when heatload is added to a climatically driven
model. The pixels colored blue are those added. For PIAR, a species of the forests at
the highest elevations (Table 2), addition of heatload tends to add suitability on warm
southern and southwestern aspects and remove it on cool northerly aspects (Figure A3).
For PIEN, another subalpine species but with a broader altitudinal distribution, heatload
tends to add suitability on cool northerly aspects and remove it on warm southern and
southwestern aspects; the effect is most notable for sites near the valley floor or low on
the slope (Figure A4). For POTR5 (Figure A5), a species with a broad distribution through
the montane and subalpine forests, heatload adds suitability on warm exposures and
subtracts suitability on cool exposures near upper timberline, but these effects are reversed
lower on the slope and in the valleys. For PIPO (Figure A6), a species of the montane
forests, heatload removes suitability in broad swaths on warm sites near the lower limits of
distribution while adding suitability on cool sites; but at the upper limits of distribution,
the effects are reversed, as heatload adds suitability on the warm exposures but reduces it
on the northerly aspects.
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Figure A3. Reference period predicted niche of Pinus aristata from two random forests classification trees illustrating the
effects of heatload as a predictor. Gold, niche predicted by both models; red, predicted by 11 climate variables; blue,
predicted by the climate variables plus heatload. Scale bar in each panel is 2 km.
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Figure A4. Reference period predicted niche of Picea engelmannii from two random forests classification trees illustrating
the effects of heatload as a predictor. Gold, niche predicted by both models; red, predicted by 11 climate variables; blue,
predicted by the climate variables plus heatload. Scale bar in each panel is 2 km.
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Figure A5. Reference period predicted niche of Populus tremuloides from two random forests classification trees illustrating 
the effects of heatload as a predictor. Gold, niche predicted by both models; red, predicted by 11 climate variables; blue, 
predicted by the climate variables plus heatload. Scale bar in each panel is 2 km. 

Figure A5. Reference period predicted niche of Populus tremuloides from two random forests classification trees illustrating
the effects of heatload as a predictor. Gold, niche predicted by both models; red, predicted by 11 climate variables; blue,
predicted by the climate variables plus heatload. Scale bar in each panel is 2 km.
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Figure A6. Reference period predicted niche of Pinus ponderosa from two random forests classification trees illustrating 
the effects of heatload as a predictor. Gold, niche predicted by both models; red, predicted by 11 climate variables; blue, 
predicted by the climate variables plus heatload. Scale bar in each panel is 2 km. 
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