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Abstract: Research studies on conservative genetics of endangered plants are very important to
establish the management plans for the conservation of biodiversity. Rosewood is an evergreen tree
of the Amazon region and its essential oil has great acceptance in the medical and cosmetic industry.
The present study aimed to explore the genetic diversity and population structure of 90 rosewood
accessions collected from eight localities of Peruvian Amazon territory through DArTseq markers.
A total of 7485 informative markers resulted from genotyping by sequencing (GBS) analysis were
used for the molecular characterization of rosewood germplasm. Mean values of various calculated
diversity parameters like observed number of alleles (1.962), the effective number of alleles (1.669),
unbiased expected heterozygosity (0.411), and percent polymorphism (93.51%) over the entire
germplasm showed the existence of a good level of genetic variations. Our results showed that the
Mairiricay population was more diverse compared to the rest of the populations. Tamshiyacu-2
and Mairiricay-15 accessions were found genetically distinct accessions. The analysis of molecular
variance (AMOVA) reflected maximum variations (75%) are due to differences within populations.
The implemented clustering algorithms, i.e., STRUCTURE, neighbor-joining analysis and principal
coordinate analysis (PCoA) separated the studied germplasm on the basis of their geographical
locations. Diversity indices for STRUCTURE-based populations showed that subpopulation A is more
diverse population than the rest of the populations, for such reason, individuals belonging to this
subpopulation should be used for reintroduction or reinforcement plans of rosewood conservation.
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We envisage that molecular characterization of Peruvian rosewood germplasm with DArTseq markers
will provide a platform for the conservation, management and restoration of endangered rosewood
in upcoming years.

Keywords: Aniba rosaeodora; DArTseq; germplasm characterization; molecular markers; popula-
tion genetics

1. Introduction

The world’s flora and fauna are currently facing a huge loss of habitat which has
reulted in the depletion of a number of populations, some leading to extinction [1]. The
conservation of plant species has not received the required attention as compared to
animals [2]. According to the information shared by the first global analysis of extinction
risk in 2010, 25% of the world’s plant species are critically endangered [3].

Endangered species are known to have small or declining populations that experience
the effects of inbreeding and genetic erosion resulting in high extinction risks [4]. The
conservation genetic studies are considered vital for the preservation perspective of en-
dangered species [5]. Previous research efforts have confirmed that both anthropogenic
activities and climatic changes are becoming stronger than before, and are resulting in habi-
tat fragmentation and/or population decline for a good number of endangered species [6,7].
By realizing these threats, it is very important to investigate the adaptive potential, genetic
diversity and long-term conservation status of endangered plant species [8].

The Amazon region is considered one of the “richest reservoirs of biodiversity” and
“most-varied biological reservoir”, containing several million species of insects, plants,
birds [9]. Rosewood (Aniba rosaeodora Ducke) belongs to the family Lauraceae with diploid
chromosomes number 2n = 24. Rosewood forests are present in Peru, Brazil, Colombia,
Guyana, Venezuela and Suriname [10]. Indigenous peoples of the Amazon basin mostly
used the rosewood to make canoes and as fuel. Rosewood essential oil is very popular,
because it contains high contents of linalool. It is reported that 74.4–81.8% linalool content
is present in leaves and branches of rosewood, while trunk wood contains ~100% linalool
content [11]. From 1875 to 1975, extraction of essential oil was carried at the commercial
scale which resulted in the significant depletion of natural rosewood stands [12]. After
the depletion of rosewood natural stands, French Guiana prohibited the cutting of trees
which resulted in a significant decrease in the export of essential oil. Presently, Brazil is
the only producer and exporter of its essential oil [13]. Cutting of rosewood trees on large
scale resulted in the complete depletion of rosewood forests from various regions of the
Amazon. Currently, rosewood is included as an endangered species in the database of the
Convention on International Trade in Endangered Species of Wild Fauna and Flora [14].

The variations in climate, altitude, latitude, soils and typography together make Peru
home to a spectacular diversity of flora and fauna [15]. The north Marañon–Amazonas
river axis, along the rivers Tiger, Napo and Putumayo in Peru, contains the rosewood
stands [16]. Samuel Reggeroni, the owner of the Pucabarranca farm on the Napo River,
started the rosewood trade very first time in Peru in 1941 by sending rosewood essential oil
samples to Europe [16]. A rapid increase in rosewood essential oil trade was observed in
Peru and other parts of the world in the 1950s, which resulted in fragmentation of habitats
and deforestation resulting from the extraction of species of high timber value [14]. As a
result of the fragmentation of habitats and deforestation, rosewood is now a vulnerable
species in Peru [14]. To combat these issues, the Peruvian government has taken strong
actions and the export of rosewood wood and its essential oil has been banned since 1972.
Moreover, the establishment of rosewood plantations is suggested by the Peruvian Ministry
of Agriculture in order to conserve this valuable species [14,16].

Germplasm characterization remains a fundamental and most important step in
germplasm resource management and conservation and provides an opportunity to in-
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vestigate the novel variations that can be helpful for the breeding perspective [17,18].
Assessment of genetic variation is considered a prerequisite to explore the genetic potential
and efficient utilization of germplasm, and provides an opportunity to develop conser-
vation approaches for the breeding of endangered species [19]. Investigation of genetic
diversity within and among populations of endangered species facilitates the management
and conservation of genetic resources, which could be an important milestone to minimize
the genetic drift, extinction of a species, and conservation of genetic resources through
germplasm collection [20]. The presence of high genetic diversity in a population can
increase the possibility to pick up the most favorable material for breeding perspectives.
Similarities or differences between individuals, populations or species are evaluated in
genetic diversity studies using morphological attributes, genealogical data and, molecular
characteristics [21]. Advancements in molecular marker technology have changed the fate
of plant breeding by exploring the novel variations [22]. Therefore, it is highly suggested
to screen the germplasm at allelic levels implementing molecular marker compared to
morphological and biochemical markers and could be effectively utilized for germplasm
conservation and improvement [23]. A good number of DNA markers have been de-
veloped reflecting various advantages and limitations [22]. However, Diversity Arrays
Technology (DArT) attracted the attention of scientists in a short time as a robust, low
cost, high throughput genome-wide method to investigate the polymorphism compared to
hybridization and PCR-based markers [24]. Diversity array technology (DArT) markers
have been developed under the platform of genotyping by sequencing (GBS) [25]. DArT
analyzes hundreds of thousands of polymorphic markers generated by genomic rearrange-
ments and provide the genome-wide genetic profile of the organism under study with no
prior DNA sequence information [26].

To the best of our knowledge, sequence-based markers, i.e., DArTseq markers, are
not used for the characterization of Peruvian rosewood germplasm. Therefore, it is very
important to screen the rosewood germplasm with sequence-based markers for the com-
prehensive conclusion of conservation genetics, germplasm collection, characterization
and breeding strategies. Previous studies used PCR-based molecular markers to explore
the genetic variation potential of rosewood germplasm from various parts of the world.
Previous studies explored the genetic diversity of Brazilian rosewood germplasm through
RAPD markers [27] and SSR markers [28]. Very recently, Guizado et al. [29] for the first time
reported the characterization of Peruvian rosewood germplasm with molecular markers
(ISSR markers) and confirmed the existence of a good level of genetic diversity in their
germplasm. Genotyping by Sequencing (GBS) resulted in SNP and DArTseq markers
have been found robust, high throughput and more informative compared to PCR-based
markers [30,31]. As is obvious from the above-provided evidence, previous studies did
not utilize whole-genome covering sequenced-based markers and the number of markers
used in their study was very low. Therefore, the present investigation aimed to explore
the in-depth genetic diversity and population structure of Peruvian rosewood germplasm
using DArTseq markers.

2. Materials and Methods
2.1. Experimental Materials and Genomic DNA Extraction

During this study, a total of 90 Peruvian rosewood accessions collected from eight
localities were used as plant material (Table 1, Figure 1). These eight localities are present
in the regions of Loreto and Ucayali, in the Peruvian Amazon which is considered the
main habitats of rosewood in Peru. Among these eight, three localities are in the vicinity
of Iquitos city, two of them accessible by road, and one on the margin of the Amazonas
River. One population collected from Allpahuayo is close to the Allpahuayo–Mishana
National Reserve. Populations from localities Zungarococha, Mayriricay, Nanay, Tamshiy-
acu and Santa Marta are located within private estates, while populations collected from
Huajoya and Maria de Huajoya, are present within native community lands. The Zungaro-
cocha, Allpahuayo and Mairirircay plantations resulted from botanical seeds of natural
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trees identified from the Tamshiyacu area. The purpose of zungarococha plantation was
teaching, since it is a part of the Agronomy Faculty of the National University of the
Peruvian Amazon. With regard to the Allpahuayo plantation, its purpose was to evaluate
the development of this species in sandy soils and subsequently, essential oil analyses
are performed. This plantation is conserved by the Peruvian Amazon Research Institute.
Finally, the Mairiricay plantation was carried out by PEDICP (Binational Special Project
for the Integral Development of the Putumayo River Basin) as part of an implementation
project. To conserve rosewood populations, a pilot plantation project was started 25 years
ago in the perimeter zone of the Allpahuayo National, Reserve by The Instituto de Inves-
tigaciones de la Amazonía Peruana (IIAP). Zungarococha, Allpahuayo and Mairirircay
populations are plantations from material originating from Tamshiyacu. These rosewood
plantations are now 25, 20 and 15 years old, respectively.

To isolate plant DNA, healthy and non-damaged leaves from all the rosewood ac-
cessions were separately collected and packaged into ice. All samples were then trans-
ported and preserved at −20 ◦C until DNA extraction in the laboratory of “Special-
ized Unit of Biotechnology of the Research Center of Natural Resources of the Ama-
zon”. Genomic DNA from all samples was extracted following the protocol proposed
by Castro et al. [32] and a specific protocol suggested by Diversity Arrays Technology
(available at https://www.diversityarrays.com/orderinstructions/plant-dna-extraction-
protocol-for-dart/ (accessed on 13 October 2020)). Genomic DNA quantification was per-
formed with agarose gel (0.80%) and confirmed by spectrophotometry using Nanodrop
2000c (Thermo Scientific, Waltham, MA, USA). The DNA concentration of all rosewood
samples was adjusted to a 50 ng·µL−1 for the purpose of genotyping by sequencing (GBS)
analysis. The samples were prepared and sent to the Diversity Array Technology Pty, Ltd.,
Bruce, Australia, for DArTseq analyses of GBS (www.diversityarrays.com (accessed on
13 October 2020)).

2.2. Genotyping by Sequencing for DArTseq Markers

DArTseq technology is a genome complexity reduction method based on a next-
generation sequencing platform [33]. DArTseq assisted the selection of genomic fractions
corresponding to active genes predominantly [34]. DNA samples were processed via
Digestion/ligation reactions following the method of Kilian et al. [35]. A total of 30 PCR
cycles were performed to amplify mixed fragments (PstI–MseI). More description about
DArTseq markers analysis can be found in earlier studies [34–36].

2.3. Statistical Analysis
2.3.1. DArTseq Markers Analysis

DArTsoft v.7.4.7 (DArT P/L, Canberra, Australia) was implemented to analyze all the
images of DArTseq platform. Scoring of DArTseq markers was performed in a binary fash-
ion, where 1 represents presence and 0 represents absence in the genomic representation of
the restriction fragment of each sample [34–36]. Parameters like polymorphism information
content (PIC), call rate, and reproducibility were considered during the screening of the
markers. All those DArTseq markers were ignored having PIC value, reproducibility and
call rate lower than 0.10, 100% and 0.80% to avoid false inferences.

https://www.diversityarrays.com/orderinstructions/plant-dna-extraction-protocol-for-dart/
https://www.diversityarrays.com/orderinstructions/plant-dna-extraction-protocol-for-dart/
www.diversityarrays.com
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Table 1. Passport data of 90 rosewood accessions collected from eight geographical localities of Peruvian Amazon.

Sr. No Genotype Name Region Province District Village Latitude Longitude Altitude

1 Nanay-1 Loreto Alto Nanay Santa maria del Nanay Quebrada Curaca 9,551,691 638,610 152
2 Nanay-2 Loreto Alto Nanay Santa maria del Nanay Santa maria del nanay 9,569,683 644,419 106
3 Nanay-3 Loreto Alto Nanay Santa maria del Nanay Santa maria del nanay 9,569,689 644,389 109
4 Nanay-4 Loreto Alto Nanay Santa maria del Nanay Santa maria del nanay 9,569,727 644,387 106
5 Nanay-5 Loreto Alto Nanay Santa maria del Nanay Santa maria del nanay 9,569,721 644,391 99
6 Alpahuayo-1 Loreto Maynas San Juan Bautista Alpahuayo 9,561,154 675,470 158
7 Alpahuayo-2 Loreto Maynas San Juan Bautista Alpahuayo 9,561,182 675,477 148
8 Alpahuayo-3 Loreto Maynas San Juan Bautista Alpahuayo 9,561,208 675,492 144
9 Alpahuayo-4 Loreto Maynas San Juan Bautista Alpahuayo 9,561,236 675,505 148

10 Alpahuayo-5 Loreto Maynas San Juan Bautista Alpahuayo 9,561,247 675,500 142
11 Alpahuayo-6 Loreto Maynas San Juan Bautista Alpahuayo 9,561,262 675,512 141
12 Alpahuayo-7 Loreto Maynas San Juan Bautista Alpahuayo 9,561,300 675,527 138
13 Zungarococha-1 Loreto Maynas San Juan Bautista Zungarococha 9,576,628 681,106 113
14 Zungarococha-2 Loreto Maynas San Juan Bautista Zungarococha 9,576,631 681,105 115
15 Zungarococha-3 Loreto Maynas San Juan Bautista Zungarococha 9,576,625 681,115 116
16 Zungarococha-4 Loreto Maynas San Juan Bautista Zungarococha 9,576,650 681,100 114
17 Tamshiyacu-1 Loreto Maynas Fernando Lores Tamshiyacu 9,559,735 706,059 112
18 Tamshiyacu-2 Loreto Maynas Fernando Lores Tamshiyacu 9559,801 706,144 110
19 Tamshiyacu-3 Loreto Maynas Fernando Lores Tamshiyacu 9,559,783 706,148 120
20 Tamshiyacu-4 Loreto Maynas Fernando Lores Tamshiyacu 9,559,741 706,087 123
21 Tamshiyacu-5 Loreto Maynas Fernando Lores Tamshiyacu 9,559,669 706,071 111
22 Tamshiyacu-6 Loreto Maynas Fernando Lores Tamshiyacu 9,560,651 705,900 125
23 Tamshiyacu-7 Loreto Maynas Fernando Lores Tamshiyacu 9,560,660 705,877 105
24 Tamshiyacu-8 Loreto Maynas Fernando Lores Tamshiyacu 9,560,676 705,862 116
25 Tamshiyacu-9 Loreto Maynas Fernando Lores Tamshiyacu 9,560,681 705,840 121
26 Tamshiyacu-10 Loreto Maynas Fernando Lores Tamshiyacu 9,559,356 706,026 119
27 Tamshiyacu-11 Loreto Maynas Fernando Lores Tamshiyacu 9,559,220 706,283 129
28 Tamshiyacu-12 Loreto Maynas Fernando Lores Tamshiyacu 9,559,223 706,274 112
29 Tamshiyacu-13 Loreto Maynas Fernando Lores Tamshiyacu 9,559,205 706,296 115
30 Tamshiyacu-14 Loreto Maynas Fernando Lores Tamshiyacu 9,559,076 706,243 108
31 Tamshiyacu-15 Loreto Maynas Fernando Lores Tamshiyacu 9,559,096 706,281 119
32 Tamshiyacu-16 Loreto Maynas Fernando Lores Tamshiyacu 9,559,092 706,266 115
33 Tamshiyacu-17 Loreto Maynas Fernando Lores Tamshiyacu 9,559,076 706,269 110
34 Mairiricay-1 Loreto Putumayo Putumayo Mairiricay 9,726,985 760,695 136
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Table 1. Cont.

Sr. No Genotype Name Region Province District Village Latitude Longitude Altitude

35 Mairiricay-2 Loreto Putumayo Putumayo Mairiricay 9,726,991 760,701 132
36 Mairiricay-3 Loreto Putumayo Putumayo Mairiricay 9,726,988 760,714 134
37 Mairiricay-4 Loreto Putumayo Putumayo Mairiricay 9,727,009 760,707 132
38 Mairiricay-5 Loreto Putumayo Putumayo Mairiricay 9,727,008 760,702 131
39 Mairiricay-6 Loreto Putumayo Putumayo Mairiricay 9,726,999 760,690 130
40 Mairiricay-7 Loreto Putumayo Putumayo Mairiricay 9,726,978 760,714 125
41 Mairiricay-8 Loreto Putumayo Putumayo Mairiricay 9,726,981 760,726 126
42 Mairiricay-9 Loreto Putumayo Putumayo Mairiricay 9,726,972 760,715 125
43 Mairiricay-10 Loreto Putumayo Putumayo Mairiricay 9,726,971 760,716 127
44 Mairiricay-11 Loreto Putumayo Putumayo Mairiricay 9,726,971 760,713 123
45 Mairiricay-12 Loreto Putumayo Putumayo Mairiricay 9,726,982 760,719 128
46 Mairiricay-13 Loreto Putumayo Putumayo Mairiricay 9,727,003 760,729 124
47 Mairiricay-14 Loreto Putumayo Putumayo Mairiricay 9,726,994 760,726 126
48 Mairiricay-15 Loreto Putumayo Putumayo Mairiricay 9,727,007 760,725 124
49 Santamarta-1 Ucayali Atalaya Masisea Santa Marta 8,980,940 604,385 171
50 Santamarta-2 Ucayali Atalaya Masisea Santa Marta 8,980,933 604,388 169
51 Santamarta-3 Ucayali Atalaya Masisea Santa Marta 8,980,925 604,386 170
52 Santamarta-4 Ucayali Atalaya Masisea Santa Marta 8,980,934 604,388 169
53 Santamarta-5 Ucayali Atalaya Masisea Santa Marta 8,980,923 604,387 172
54 Santamarta-6 Ucayali Atalaya Masisea Santa Marta 8,980,943 604,348 171
55 Santamarta-7 Ucayali Atalaya Masisea Santa Marta 8,981,608 604,180 171
56 Santamarta-8 Ucayali Atalaya Masisea Santa Marta 8,981,590 604,184 171
57 Santamarta-9 Ucayali Atalaya Masisea Santa Marta 8,981,587 604,200 173
58 Santamarta-10 Ucayali Atalaya Masisea Santa Marta 8,981,586 604,182 171
59 Santamarta-11 Ucayali Atalaya Masisea Santa Marta 8,981,588 604,231 174
60 Santamarta-12 Ucayali Atalaya Masisea Santa Marta 8,981,574 604,258 176
61 Santamarta-13 Ucayali Atalaya Masisea Santa Marta 8,981,667 604,622 174
62 Santamarta-14 Ucayali Atalaya Masisea Santa Marta 8,981,668 604,623 174
63 Santamarta-15 Ucayali Atalaya Masisea Santa Marta 8,981,674 604,632 175
64 Santamarta-16 Ucayali Atalaya Masisea Santa Marta 8,981,978 604,874 177
65 Santamarta-17 Ucayali Atalaya Masisea Santa Marta 8,981,965 604,878 175
66 Santamarta-18 Ucayali Atalaya Masisea Santa Marta 8,981,959 604,892 175
67 Santamarta-19 Ucayali Atalaya Masisea Santa Marta 8,981,528 604,688 172
68 Santamarta-20 Ucayali Atalaya Masisea Santa Marta 8,980,586 604,483 164
69 Mariadehuajoya-1 Loreto Maynas Napo Maria de Huajoya 9,838,429 536,797 120



Forests 2021, 12, 197 7 of 17

Table 1. Cont.

Sr. No Genotype Name Region Province District Village Latitude Longitude Altitude

70 Mariadehuajoya-2 Loreto Maynas Napo Maria de Huajoya 9,835,376 537,866 125
71 Mariadehuajoya-3 Loreto Maynas Napo Maria de Huajoya 9,833,880 535,209 116
72 Mariadehuajoya-4 Loreto Maynas Napo Maria de Huajoya 9,835,834 531,637 121
73 Mariadehuajoya-5 Loreto Maynas Napo Maria de Huajoya 9,838,277 528,614 118
74 Mariadehuajoya-6 Loreto Maynas Napo Maria de Huajoya 9,841,544 530,843 118
75 Mariadehuajoya-7 Loreto Maynas Napo Maria de Huajoya 9,839,223 533,377 123
76 Mariadehuajoya-8 Loreto Maynas Napo Maria de Huajoya 9,838,429 535,515 140
77 Mariadehuajoya-9 Loreto Maynas Napo Maria de Huajoya 9,841,788 535,393 135

78 Mariadehuajoya-
10 Loreto Maynas Napo Maria de Huajoya 9,840,811 537,164 129

79 Huajoya-1 Loreto Maynas Napo Huajoya 9,852,750 540,889 146
80 Huajoya-2 Loreto Maynas Napo Huajoya 9,851,987 543,454 152
81 Huajoya-3 Loreto Maynas Napo Huajoya 9,852,140 545,255 134
82 Huajoya-4 Loreto Maynas Napo Huajoya 9,854,918 544,828 142
83 Huajoya-5 Loreto Maynas Napo Huajoya 9,855,834 543,179 127
84 Huajoya-6 Loreto Maynas Napo Huajoya 9,855,010 539,087 131
85 Huajoya-7 Loreto Maynas Napo Huajoya 9,854,949 537,744 135
86 Huajoya-8 Loreto Maynas Napo Huajoya 9,856,109 539,912 145
87 Huajoya-9 Loreto Maynas Napo Huajoya 9,855,651 543,576 155
88 Huajoya-10 Loreto Maynas Napo Huajoya 9,854,430 544,858 149
89 Huajoya-11 Loreto Maynas Napo Huajoya 9,852,873 547,362 138
90 Huajoya-12 Loreto Maynas Napo Huajoya 9,851,040 546,660 151
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Figure 1. Collection points of eight location of Peruvian rosewood germplasm.

2.3.2. Genetic Diversity Analyses

A total of 11,332 DArTseq markers were obtained by DArTseq profiling of 90 rose-
wood accessions. A total of 7485 high-quality markers were retained for further analysis by
filtering the total dataset accounting markers with less than 5% missing data, PIC value
of 0.10 to 0.50, call rate 0.80 to 1 and 100% reproducibility. Various diversity indices like
the observed number of alleles (Na), the effective number of alleles (Ne), and unbiased
expected heterozygosity (uHe) for eight localities were investigated through GenAlEx 6.5
software [37]. Genetic distance is a measurement of genetic divergence between either
species or populations within a species [38]. To investigate genetically distinct acces-
sions from Peruvian rosewood germplasm, Jaccard’s coefficient of genetic dissimilarity
was calculated using a vegan package of R statistical software [39]. GenAlEx v6.5 soft-
ware [37] was also used for the investigation of principal coordinate analysis (PCoA) and
analysis of molecular variance (AMOVA). The STRUCTURE software (version 2.3.4) was
utilized to construct the population structure of the 90 rosewood accessions [40]. A total
of 1–10 groups (K) were set with ten independent runs for each K (50,000 burn-ins and
500,000 Markov Chain Monte Carlo generations) with no prior information on the origin
of individuals. The proposed methodology of Evanno et al. [41] was implemented for
the investigation of the most probable number of subpopulations (∆K). Later, structure
evaluated results were processed with STRUCTURE HARVESTER v.0.9.94 to investigate
the most favorable K value [42]. The pophelper and R package was used to visualize the
most favorable ∆K [43]. To explore the diversity among STRUCTURE-based populations,
various diversity indices were investigated through GenAlEx 6.5 software [37] and Jac-
card’s coefficients of genetic dissimilarity were also calculated using a vegan package of R
statistical software (39). The coefficient of differentiation (Fst) is a measure of population
differentiation due to genetic structure. The Fst is directly related to the variations in
allele frequency among populations and, conversely, to the degree of resemblance among
individuals within populations [44]. The coefficient of differentiation (Fst) was evaluated
from structure software and gene flow among structure-based populations was calculated
according to Fst–methodology described by Slatkin [45] and Slatkin and Barton [46]. To
explore the relationship among 90 rosewood accessions, the Jaccard coefficient of genetic
dissimilarity was used to investigate neighbor-joining analysis through an ape package of
R statistical software [39].
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3. Results
DArTseq Profiling by GBS

The distribution of the PIC values of the filtered dataset of 7485 markers is provided
in Figure 2. The mean, maximum, and minimum PIC values of 0.322, 0.50, and 0.10
were revealed for the whole rosewood germplasm panel. Similarly mean, maximum, and
minimum call rate values of 0.928%, 1.00%, and 0.80% were observed through the rosewood
germplasm panel of 90 accessions (Figure 2).
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During this study, various diversity indices like the observed number of alleles (1.962),
the effective number of alleles (1.669), unbiased expected heterozygosity (0.411), and
polymorphism (93.51%) showed the presence of a great level of genetic variation in the
rosewood germplasm panel of 90 accessions (Table 2). Among the studied eight popu-
lations, the Mairiricay population reflected higher values for various diversity indices
(Table 2) like the observed number of alleles (2.00), an effective number of alleles (1.71),
unbiased expected heterozygosity (0.426), polymorphism (100%) and Jaccard’s coefficient
of genetic dissimilarity (0.585). Among eight populations, Zungarococha was found least
diverse by reflecting minimum values for calculated diversity indices (Table 2). Mean Jac-
card’s coefficient of genetic dissimilarity among 90 rosewood accessions was 0.421, while
highest Jaccard’s coefficient of genetic dissimilarity (0.828) was present between rosewood
accessions Tamshiyacu-2 and Mairiricay-15 respectively. Minimum Jaccard’s coefficient of
genetic dissimilarity was (0.261) present between rosewood accessions Zungarococha-1
and Zungarococha-4. The results of AMOVA reflected the presence of greater variations
within populations (75%) compared to among the populations (25%) (Table 3). The genetic
structure of the rosewood germplasm was separated into three populations as proposed
by ∆K peak at K = 3 (Figure S1). STRUCTURE software divided studied germplasm into
three main subpopulations on the basis of their collection points (Figure 3). A total of 37,
20 and 22 accessions were clustered in subpopulations A, B and C respectively, on the
basis of membership coefficients of either 75% or more than 75% within the same structure
population group. A total of 11 rosewood accessions revealed membership coefficients less
than 75% and were considered as unclassified subpopulations. Diversity indices among
STRUCTURE evaluated subpopulations revealed the existence of higher gene flow (1.557)
and mean Jaccard’s coefficient of genetic dissimilarity (0.465) for subpopulation A, while
subpopulation B revealed the highest level of coefficient of differentiation (Fst) (0.501) and
minimum values for various diversity indices (Table 4). The neighbor-joining analysis
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divided the whole studied germplasm into three populations on the basis of their collec-
tion points (Figure 4). The PCoA clearly supported the clustering of STRUCTURE and
neighbor-joining-based clustering and separated the Santamarta population from the rest
of the populations (Figure 5).

Table 2. Diversity indices for Peruvian rosewood populations on the basis of geographical localities.

Population Na Ne uHe %P GD

Alpahuayo 1.980 1.659 0.410 98.68% 0.501
Huajoya 1.999 1.694 0.418 99.96% 0.482

Mairiricay 2.00 1.71 0.426 100% 0.585
Mariadehuajoya 1.997 1.678 0.413 99.83% 0.405

Nanay 1.902 1.632 0.403 93.59% 0.312
Santamarta 2.00 1.698 0.415 68.18% 0.316
Tamshiyacu 2.00 1.691 0.414 99.99% 0.336

Zungarococha 1.819 1.590 0.387 87.88% 0.434
Overall 1.962 1.669 0.411 93.51% 0.421

Na: observed number of alleles, Ne: number of effective alleles, uHe: unbiased expected heterozygosity, %P:
percent polymorphism, GD: Jaccard coefficient of genetic dissimilarity.

Table 3. Analysis of molecular variance for among and within populations of the studied rosewood
accessions.

Source Df SS MS Est. Var. %

Among Population 7 38,364.847 5480.692 393.893 25%
Within Population 82 98,123.975 1196.634 1196.634 75%

Total 89 136,488.822 - 1590.527 100%
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Table 4. Genetic diversity indices for the STRUCTURE-based populations of Peruvian rose-
wood germplasm.

Population Ne GD Fst Nm

Population A 1.703 0.465 0.243 1.557
Population B 1.68 0.407 0.501 0.498
Population C 1.702 0.441 0.425 0.676

Ne: Number of effective alleles, GD: Jaccard coefficient of genetic dissimilarity, Fst: coefficient of differentiation,
Nm: Gene flow.
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4. Discussion

Rosewood is an endangered plant of the Amazon region, famous for its essential oil.
However, there is a scarcity of information about the characterization of Peruvian rosewood
germplasm using GBS-derived DArTseq markers. Therefore, an effort was made through
this study to explore the genetic diversity and population structure of Peruvian rose-
wood germplasm through DArTseq markers. The molecular characterization of Peruvian
rosewood germplasm with DArTseq markers explored genetic variations in the studied
germplasm (Table 2). Diversity indices calculated in this study showed the existence of
genetic variations in the Peruvian rosewood germplasm. As rosewood is now a vulnerable
species in Peru [14], strategies should be developed for the conservation of this economi-
cally important plant. Previous studies by Angrizani et al. [28] and Santos et al. [47] did not
calculate various diversity indices like the observed number of alleles, and the number of
effective alleles. However, the mean and range of polymorphism (%) in Peruvian amazon
rosewood populations was found higher than reported by Santos et al. [47] in Brazilian
rosewood populations. The possible reasons for the existence of higher values for various
diversity indices in this study might be due to either higher efficiency of DArTseq marker
system in exploring the genetic diversity or the experimental materials are of diverse
nature. Moreover, we used thousands of markers for genetic diversity analysis compared
to gel-based markers which are in hundreds and cannot provide deep information.

Among the studied eight rosewood populations, the Mairiricay population was found
most diverse by reflecting higher values for calculated parameters, while the Zunagaro-
cocha population was found least diverse population (Table 2). Therefore, accessions
from the Mairiricay population can be suggested for future rosewood germplasm con-
servation and breeding activities. Genetic distance is a degree of genomic differences
between species or populations and it is calculated by some numerical method [38–48].
Very recent studies confirmed genetic distance as a valuable criterion for the selection of
parents that can be used in breeding activities [49,50]. Germplasm resources proposing the
highest level of genetic distance must be properly conserved and utilize in future breeding
programs for their improvement [29]. During this study, the maximum Jaccard coefficient
of genetic dissimilarity was present between Tamshiyacu-2 and Mairiricay-15. Therefore,
these accessions might be suggested for rosewood conservation and utilization in future
breeding strategies.

The analysis of molecular variance (AMOVA) is performed to investigate the level
of genetic differentiation among studied populations. The AMOVA results revealed that
higher genetic variations in rosewood germplasm were due to differences within the popu-
lations and these results were found in line with previous reports [29–45]. Santos et al. [46]
used RAPD markers for the characterization of central Brazilian Amazon germplasm and
found higher genetic variations (76.6%) within populations than among (23.4%) popula-
tions. Very recently, Guizado et al. [29] characterized the Peruvian rosewood using ISSR
markers and found higher variations within populations (98.1%) than among (1.9%) pop-
ulations. A previous study concluded that long-term natural selection and geographical
isolation allowed the local population to conserve a specific genotype, thereby increasing
the genetic variations between populations [51].

STRUCTURE, neighbor-joining analysis, and PCoA were used as clustering algorithms
to elucidate the population structure of Peruvian rosewood germplasm. STRUCTURE algo-
rithms were given more preference among these clustering algorithms as they showed more
robustness in previous research works [52,53]. STRUCTURE software separated the whole
germplasm into three main subpopulations (A, B, C) on the basis of their geographical
localities (Figure 3). Accessions belonging to Mairiricay, Mariacdehuajoya, Huajoya, and
Nanay localities were clustered together by making subpopulation A. It is clearly under-
standable from Figure 1 that Mariacdehuajoya, Huajoya, and Mairiricay are close to each
other. Therefore, these populations clustered within the same subpopulation of structure
analysis. There was a possibility of frequent gene flow among these populations which re-
sulted in genetic similarity and their grouping under the same population. To support this
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hypothesis, various diversity indices were calculated among STRUCTURE-based subpopu-
lation (Table 4). Results confirmed the existence of higher genetic diversity, genetic distance
and gene flow in subpopulation A. A total of five accessions from the Nanay location
were used as plant material. However, only two accessions (Nanay-4, Nanay-5) showed
a membership coefficient of more than 75% and grouped in subpopulations A. Nanay
population is located away from Mariacdehuajoya and Huajoya populations. However,
the Nanay population clustered with these populations in STRUCTURE-based clustering.
Mariacdehuajoya and Huajoya populations belong to the Napo basin which is next to the
Nanay basin which contains the Nanay population. There is a great possibility of gene
flow between Napo basin and Nanay basin that allows the clustering of Nanay population
with Mariacdehuajoya and Huajoya population in structure analysis. Subpopulation B was
found to be homogeneous as it clustered all accessions (a total of 20 accessions) belonging
to the Santamarta location. The Santamarta population showed low gene flow and a higher
coefficient of differentiation (Fst) than the rest of the populations (Table 4), which is possibly
due to the greater geographical distance and isolation of this stand from the other localities.
Santos et al. [47] observed the presence of higher gene flow among Brazilian rosewood
populations close to each other and concluded that gene flow will decrease with the in-
crease in geographic distance. Subpopulation C clustered a total of 22 rosewood accessions
from Tamshiyacu, Alpahuayo, and Zungarococha localities. Clustering of Zunagarococha,
Allpahuayo, and Tamshiyacu was expected because Zunagarococha and Allpahuayo were
planted from material originating from the wild population of Tamshiyacu. It was interest-
ing that a total of 11 rosewood accessions (three from Nanay and eight from Tamshiyacu
populations) did not show genetic similarity with the above three populations. All of
these accessions were considered unclassified accessions as they revealed membership
coefficients Q < 75%. Grouping of rosewood accession in this study was also supported by
our very recent study in which Peruvian rosewood germplasm was characterized with an
ISSR marker [29]. The neighbor-joining analysis also supported the clustering of STRUC-
TURE software and grouped the whole germplasm into three populations on the basis of
their collection points (Figure 5). Similar to STRUCTURE clustering, accessions from the
Santamarta population were grouped together and confirmed their genetic dissimilarity to
the rest of the populations. In a similar way to STRUCTURE clustering, populations from
Mariacdehuajoya, Huajoya and Nanay localities were present very close to each other in
PCoA-based clustering (Figure 5). Similarly, accessions from the Santamarta population
were clustered together and made their separate population as observed in STRUCTURE
and neighbor-joining analysis.

Conservation Implications

Research activities about the genetic diversity of endangered plants are very important
because they provide a deep insight into their potential to combat environmental changes.
The management of species diversity is regarded as one of the key aspects of current species
genetic diversity investigation and conservation strategies [17,54,55]. However, limited
information is documented about the conservation genetics and population structure
assessment of endangered species. Previous studies recommended that research activities
related to in vitro propagation and seed viability can be very effective for the conservation
of endangered species [56,57]. Therefore, studies should be conducted related to seed
viability and in vitro propagation of rosewood for the conservation perspectives. Moreover,
efforts should be made to place rosewood in botanical gardens as well.

The findings of this study showed a relatively high genetic diversity and low coeffi-
cient of differentiation (Fst) in population A of STRUCTURE clustering and explored its
potential for conservation implications, and breeding activities to improve the genetic basis
of rosewood. During this study, the AMOVA results confirmed that maximum variations
in Peruvian rosewood germplasm are present within populations. Therefore, populations
having high genetic diversity should be used for both ex situ and in situ germplasm col-
lection and conservation aspects. Moreover, individuals from this population should be
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used in reintroduction or reinforcement plans of rosewood. Results of this study also
showed that population A reflected higher genetic diversity and may still maintain a relic
of the ancient genetic structure as revealed by high genetic diversity and low genetic
differentiation values. The greater level of genetic diversity and gene flow in population A
revealed that overexploitation and habitat fragmentation have not yet seriously affected
the within-population diversity. Therefore, it is suggested that a restoration plan should be
implemented utilizing population A. By considering the importance of threat to rosewood
in Peruvian Amazon territory, The Instituto de Investigaciones de la Amazonía Peruana
(IIAP) has started a pilot plantation project 25 years ago in the perimeter zone of the
Allpahuayo National, Reserve. It is also suggested that a nursery or seed bank should be
developed on an urgent basis by collecting the seeds from different geographic locations
of the world where rosewood habitats are present. In the end, it is recommended that a
combination of both in situ and ex situ conservation approaches would be the best strategy
to conserve the valuable genetic resources of rosewood.

5. Conclusions

This study provided deep insight into the genetic diversity and population struc-
ture of Peruvian rosewood. The Mairiricay population was found most diverse among
eight localities. The results of AMOVA showed the presence of higher genetic diversity
within populations. Tamshiyacu-2 and Mairiricay-15 accessions were found genetically
distinct and can be suggested as candidate parents for future rosewood breeding activi-
ties. The implemented clustering algorithms, i.e., model-based structure, neighbor-joining
analysis and principal coordinate analysis (PCoA) successfully separated the rosewood
accessions based on their geographical locations. Genetic diversity indices revealed sub-
population A of the STRUCTURE algorithm as a genetically most diverse population and
confirmed that overexploitation and habitat fragmentation have not yet seriously affected
the within-population diversity in this population. Combining in situ and ex situ conser-
vation approaches would be the best strategy to conserve the valuable genetic resources
of rosewood. We are confident that the information provided here will be very helpful to
the scientific community interested in rosewood management, conservation, and breeding
activities.
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