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Abstract: Green space is an important part of composite urban spatial systems. Therefore, reasonable
planning strategies based on scientifically sound predictions of temporal and spatial changes in green
space are critical for maintaining urban ecological environments, ensuring the health of residents,
and maintaining social stability. However, existing forecasting models discount the impacts of urban
social economy on green space. To address this gap, we constructed a system dynamics and cellular
automata (SD-CA) coupling model that integrated the socioeconomic system and generated multiple
scenarios. The results showed that at the current pace of socioeconomic development, Beijing’s
central district will experience an overall reduction in green space and a decline in its integrity and
diversity by 2035. If the population of this area reaches 9.29 million by 2035 and the GDP maintains
an average growth rate of 6.1%, the areas of various land types will exhibit little change by 2035,
and green space will be optimized to a certain extent. However, if the study area’s population
decreases to 8.59 million by 2035 and the average GDP growth rate drops to 4.9%, the fragmentation,
connectivity, and diversity index of green space will all increase significantly by 2035, and green
space will be clearly optimized. We propose scientifically grounded strategies for maximizing the
ecological functions and economic benefits of green space through optimized green space patterns,
considered from a policy-oriented perspective of promoting socioeconomic development.

Keywords: urban green space; system dynamics model; cellular automata model; coupling develop-
ment; Beijing’s central district

1. Introduction

Healthy and well-managed urban green spaces contribute significantly to the quality
of life of urban residents [1–4]. However, rapid socioeconomic development and ongoing
urban expansion are resulting in the continuous occupation of urban green space and a
consequent decrease in green space, which in turn increases the heat island effect and air
pollution [5–8]. Thus, there is an urgent need to optimize patterns of urban green space
and promote coordinated socioeconomic and urban green space development to meet
social needs and promote environmental sustainability [9,10]. The relationship between
the area of urban green space and socioeconomic development has attracted considerable
scholarly attention [11]. Such studies were initiated in the 1980s and mainly focused on
urban growth and ecological security [12,13]. Research on green space in landscape archi-
tecture and related disciplines focused on the evolution of spatial patterns [14], landscape
patterns [15,16], service functions [17], and planning practices [18]. Current research on this
topic has mainly focused on the social, economic, and ecological benefits of green space.
Studies conducted on its social benefits have shown that it promotes human activities and
communication and significantly improves people’s happiness levels [19]. The economic
benefits of urban green space relate to its critical role in enhancing the environment and
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environmental conveniences, thus expanding the real estate market and contributing sig-
nificantly to sustainable economic development [20]. Studies have also highlighted the
ecological benefits of green spaces, which can help to purify polluted air [21,22], reduce
the urban heat island effect [23,24], protect water resources from pollution [25], and main-
tain biodiversity [26–28]. Zhang et al. (2013) found that residential, demographic, and
socioeconomic factors significantly influence individuals’ preferences regarding leisure
and entertainment in urban parks [29]. In sum, a very close relationship exists between
urban green space and socioeconomic development [30].

From a methodological standpoint, a variety of approaches have been used to model
the spatial process [31], including potential models [12], the Markov Chain [32], and
spatial logistic regression [33]. Additionally, remotely sensed data with a medium spatial
resolution, such as Landsat Thematic Mapper images, have been used to explore spatial
patterns and changes in urban green space [34,35]. There is a growing body of literature on
applications of the cellular automata (CA) and system dynamics (SD) models in studies on
land-use changes [36–38]. The CA model, which is a dynamic model with powerful spatial
computing capabilities, can effectively simulate complex self-organization phenomena [39].
Cláudia et al. (2003) developed a CA model to explore the spatiotemporal characteristics
of land-use changes in medium-sized cities and towns in the western part of Sao Paulo
state in Brazil based on an analysis of changes in the economy and land-use patterns
of this region [40]. Li and Yeh (2000) extended the CA model by integrating it with
geographic information systems (GIS) to facilitate planners in designing urban forms that
could contribute to sustainable development [41]. However, this “bottom-up” model is not
suitable for assessing macro socioeconomic factors that affect regional land-use changes [42].
Some researchers have attempted to integrate the CA model with an economic model to
resolve this issue. Barredo et al. (2003) integrated land-use factors with the CA approach
to model future urban land-use scenarios, the results of the model have been tested using
the fractal dimension and comparison matrix methods [43]. Caruso et al. (2009) developed
a theoretical model of residential growth that emphasized the path-dependent nature of
urban sprawl patterns [44]. The model was based on a monocentric urban economic model
in which the CA approach was used to introduce endogenous neighborhood effects.

In addition, an SD model enables the expression of nonlinear causal loop relationships,
information feedback, and complex dynamic problems that change over time [45]. Li et al.
(2015) used an SD model to assess Beijing’s forest ecological security under different
scenarios, providing a basis for decision making aimed at the overall improvement of forest
conditions [46]. Wang et al. (2014) used an SD model in a quantitative evaluation of the
utilization efficiency of China’s existing marine functional zone [47]. Guo et al. (2001) and
Zhang (1997) contended that the SD model, as a “top-down” model, is unable to handle
spatial data and adequately describe the spatial process of land use [48,49].

In general, research on the relationship between urban green space and socioeconomic
development has advanced considerably. However, given that this field is still evolving,
some gaps remain. First, studies on the ecological conservation of green space often take
a single ecological element as the object of analysis, ignoring the internal influence of
urban socioeconomic development on the distribution of green spaces. Second, there
is a lack of comprehensive research on the rational layout of urban green spaces and
scenario simulations of green space development under different speeds of socioeconomic
development. A third critical gap is the lack of practical application of the findings of
studies based on the SD-CA model on the coupled development of urban green space and
socioeconomic systems. Against this background, we explored the change pattern and
dynamic evolution of green space and its driving mechanism influenced by socioeconomic
factors within a case study of Beijing’s central district. Accordingly, we used a SD–CA
model to simulate several scenarios of urban green space patterns in this area under
different speeds of socioeconomic development in 1992, 2000, 2008, and 2016. Our aim
was to formulate strategies for optimizing green space patterns from a policy-oriented
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perspective of socioeconomic development and to provide a scientific basis for maximizing
the ecological functions and economic benefits of green space.

2. Study Area and Data Sources
2.1. Study Area

According to the Beijing City Master Plan (2004–2020), the total area of Beijing’s
central district, which constitutes the study area, is 1088 km2. This area comprises Xicheng,
Dongcheng, Chaoyang, and Shijingshan Districts in their entirety; most of Fengtai and
Haidian Districts; Jiugong Town in Daxing District; and parts of the towns of Huilongguan
and Dongxiaokou in Changping District and of Sanjiadian in Mentougou District (Figure 1).
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Figure 1. Location of Beijing’s Central District.

Beijing’s Central District located in a continental climatic zone characterized by a
temperate, semi-humid, and semi-arid monsoon climate. The four main seasons in this area
are relatively distinct, exhibiting the following climatic characteristics: strong winds and
low humidity in spring, concentrated rainfall during hot summers, and cool weather and
light sunshine in autumn. The average annual temperature was 11.9 ◦C, with the lowest
average monthly temperature of −4.3 ◦C recorded in January. The highest temperature
was 25.9 ◦C. The average annual relative humidity in most parts of Beijing’s central district
area is 57%, with relatively high humidity in the suburbs, ranging between 58% and 59%.
During 1992–2016, Beijing’s green spaces decreased by 285.9 km2. Among these spaces,
cultivated land evidenced a dramatic reduction by 246.8 km2 over this 24-year period. The
extensive shrinkage of cultivated land is a central component of changes in green space
that have occurred in Beijing’s central district during the study period. Woodland areas
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initially decreased and then increased, while grassland areas showed a steady increase.
Although changes in grassland areas were relatively less than those of woodland and
cultivated land, they were a key aspect of changes in green space in the central district.
The increased area of grassland was attributed mainly to the construction of urban parks
and golf courses, with construction and cultivated land being the primary contributors
of transfer in. Dynamic changes in wetlands and water bodies in the central district were
relatively insignificant, with these areas evidencing a total reduction by 23.4 km2 [50].

Within Beijing, the pace of economic development has been most rapid in the city
center during the past 20 years. According to the socioeconomic data obtained for each
district in Beijing’s central district in 2015, Chaoyang and Haidian Districts each have
more than two million residents. Chaoyang and Haidian Districts have the highest gross
region output values at over US$70.11 billion. The proportion of primary industry in the
central district is almost zero. Only Chaoyang, Haidian, and Fengtai Districts have primary
industry output values amounting to approximately US$15.46 million. The overall amount
of secondary industry in Haidian and Chaoyang Districts is relatively high, exceeding that
of Shijingshan District. However, tertiary industry currently predominates in most parts of
the central district area, with Chaoyang and Haidian Districts accounting for the highest
proportions of this type of industry, the values of which exceed US$61.83 billion.

2.2. Data Sources

Taking Beijing’s central district as the research object, we obtained remote sensing
image data from the geospatial data cloud platform for the years 1992, 2000, 2008, and 2016.
We procured digital images with a spatial resolution of 30 m from the Landsat 8 OLI_TIRS
satellite data. To facilitate their interpretation, we preprocessed the remote sensing images
by applying radiation calibration, atmospheric correction, and cloud removal using the
ENVIMET software. Consequently, we obtained land-use data for the study area. We
obtained data on the total population, greening investments, and the GDP from the Beijing
Municipal Administrative Division Yearbook as well as other national repositories of
economic statistics for the relevant years.

3. Construction of the SD–CA Coupling Model
3.1. The Principles Underlying the Construction of a SD–CA Coupling Model

In this study, we performed coupling modeling using an SD model and a CA model
(Figure 2). A differential equation was used in the SD model to conduct a top-down
simulation for predicting the area of green space and determining the total area control
of the simulated green space. The CA model was used to conduct bottom-up simulation
and to predict the area of green space based on discrete dynamics. This model was derived
from the area allocation results of coupled SD models.

We posited the following assumptions to avoid uncertain factors, thereby improving
the SD–CA model’s operability. First, we assumed that socioeconomic, natural, and
planning factors were the main factors driving green space evolution, with the SD model
reflecting the influences of socioeconomic factors and the CA model reflecting the influences
of natural and planning factors. Second, we assumed that the internal space covered within
the scope of the research was a closed system. In other words, we did not consider
exchanges occurring beyond the study area.

3.2. Construction of the SD Model for Conducting a Composite Simulation of Socioeconomic and
Green Space Development

In this study, we predicted the green space area within Beijing’s central district, con-
sidered as a case study. The SD model incorporated macro socioeconomic factors, notably
the demand for green space and the utilization of construction land [51]. It simultane-
ously considered green space and land that could be supplied through future transfers,
thereby establishing feedback relationships among various factors within the system to
achieve a balance in the supply and demand of land between the area of green space
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and the socioeconomic system. Thus, the SD model mainly focused on the simulation
and prediction of the amount of green space driven by macro socioeconomic factors to
elicit macro policy inputs for the optimization of the area of green space in the study
area. Micro factors were not considered in this study. The three main components of the
SD model were a causal feedback chart used to describe the causal relationship between
variables, a flow chart with symbols for expressing complex concepts in the model, and
differential equations comprising the bulk of the model and connecting state variables and
velocity. Most of the previous studies have applied the DYNAMO equation for operation.
We obtained a portrayal of the overall system, including the economic and green space
subsystems that changed continuously over time, by performing a simulation using the
Vensim PLE software.
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3.2.1. Construction of a Causal Feedback Chart for Simulating Green Space

The SD model constructed for this study mainly simulated the impacts of socioeco-
nomic factors on the area of green space in the study area. Its results were used to analyze
the interaction mechanism between the socioeconomic and green space subsystems. This
composite system comprised several interactive feedback loops. The system’s overall
functions were constituted through interactions among these loops [52], ultimately leading
to the formation of a closed green space composite system structure frame chart comprising
socioeconomic and green space subsystems (Figure 3). The model’s simulation covered
a period extending from 1992 to 2050. The empirical and simulation verification stages
extended from 1992 to 2016, and the forecast stage extended from 2016 to 2050. The base
year was 2016, and the simulation step was one year.
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The green space subsystem, which is a foundational component for ensuring the
ecological security of Beijing’s central district, comprised three parts: (1) four types of green
space, namely cultivated land, woodland, grassland, and wetland; (2) construction land
related to green space; and (3) other types of land, such as unused land. The green space
subsystem not only provides recreational resources for the socioeconomic subsystem but
it also provides ecological services for the urban ecosystem. Therefore, this subsystem is
a core component of the composite system. There are two types of factors that influence
the area of green space. The first type comprises internal factors contributing to processes
of growth and decline that lead to the expansion and reduction of the area of green space,
mainly as a result of the conversion of cultivated land into woodland or grassland. The
second type comprises external, mainly anthropogenic factors, notably the implementation
of socioeconomic policies and urban construction. Certain green spaces are occupied for
anthropogenic purposes relating to production and residence, leading to a reduction in
the area of green space. However, increased construction of urban parks and afforesta-
tion activities results in significant expansion of woodland and grassland areas, thereby
increasing the overall area of green space.

The socioeconomic subsystem could influence and regulate the binding force of green
space through an increase in the population (the number of permanent residents), socioeco-
nomic development (the GDP), and investments in construction and supply. At the same
time, the development of the green space subsystem is restricted by the occupation of areas
of green space. Thus, a complex dialectical relationship exists between the socioeconomic
subsystem and the green space subsystem with two key effects. First, economic growth
leads to increased investments in greening and improved living standards for people
that strengthen the demand for and prioritization of green space. Consequently, areas of
woodland and grassland may increase. Second, GDP growth leads to improvements in
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public infrastructure and social facilities in cities, thereby attracting an influx of people,
resulting in a dramatic increase in the pressure exerted on the ecosystems of green spaces.

We used Vensim PLE software to establish a structure flow chart of the quantita-
tive simulation of green spaces in Beijing’s central district performed with an SD model
(Figure 3) [53]. The initial values of the main state variables in the model were derived
from statistical data for the period 1992–2016. The values of some of the key constants
and table functions were determined with reference to the development goals for Beijing’s
socioeconomic development formulated in the 12th and 13th Five-Year Plans [54,55].

3.2.2. Construction of the Equation Used for Simulating the Area of Green Space

The data simulation and prediction of the SD model was mainly determined by
the equation and system operation. Three types of parameters were applied: a constant
parameter whose value did not change significantly over time, a table function that solved
the nonlinear simulation in the equation, and an initial value derived from statistical data.
The equations were mainly used to express the mathematical relationship between an
indicator and its associated indicators in the model. We applied a combination of methods
to determine the equation coefficients for a scientific green space composite system. First,
we statistically determined the equation coefficients of a single dependent variable based
on system data obtained for the period 1992–2016. The equation forms were expressed
as linear regression, logarithmic, and exponential models. R2 was generally greater than
0.6, indicating that the equation form for the explanatory variable was reasonable. The
formulas of these main indicators that meet the requirements of R2 are the preliminary
formulas of the model. However, statistics can only guarantee the statistical relationship
between a single independent variable and the dependent variable. Usually, an indicator is
not only affected by a related factor, but the change of each indicator will affect another
related indicator. Therefore, when adjusting other indicators, the simulated values of
indicators that have met the requirements are also changing, and some of the predicted
values of indicators no longer meet the requirements of inspection accuracy. At this time,
we need to adjust the model. Therefore, it was necessary to adjust the parameters manually
through system debugging to ensure that the results of the simulation of the main variables
of the system met the accuracy requirements. When the accuracy of the main variables
all meet the requirements, the parameters and coefficients in the model together form the
final formula.

3.2.3. The Model Precision Test for Simulating the Area of Green Space

To ensure the reliability and scientificity of the green space composite system model,
its validity had to be tested prior to the simulation. The error rate was calculated, and the
validity of the model was judged through the performance of structure, unit, and Historical
data tests [56]. After conducting all of these tests, we found that the historical data as well
as the simulation results met the error requirement within a 10% margin, indicating that
the model was valid (Table 1).

3.2.4. Scenario Design

We applied scenario analysis to optimize the area and spatial forms of green space.
The results of this analysis reflected the uncertainty of urban development and considered
existing and future urban development policies as a basis for predicting the future devel-
opment of the city via models [57]. We applied an SD model to simulate the green space
composite system under scenarios entailing different speeds of economic development
by changing the model’s parameters according to the historical data. We first selected
indicators that were more sensitive to the system and had a greater impact on it and then
established three scenarios (Table 2) to enable the development of an optimization plan for
Beijing’s green space.
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Table 1. Error Testing of the Green Space Composite System.

Time(Year) GSA (ha) CLA (ha) CL (ha) WDA (ha) WDWA (ha) ULA (ha)

1992
ALV 1837 32,254 54,539 16,419 3865 16
SIV 1825.57 25,531.4 59,132.9 11,846.3 3589.65 14.4498
ER 0.0062 0.2084 0.0842 0.2785 0.0712 0.0968

2000
ALV 1919 21,171 70,499 12,402 2929 10
SIV 1912.44 20,112.4 66,971.8 12,410.2 2899.83 11.7846
ER 0.0034 0.05 0.0500 0.0006 0.0099 0.1784

2008
ALV 2094 10,452 80,492 14,561 1322 8
SIV 2104.68 10,613.6 80,131.2 13,582.8 1454.86 7.31038
ER 0.0051 0.0154 0.0044 0.0671 0.1005 0.0862

2016
ALV 2248 6251 84,811 14,176 1438 5
SIV 2232.58 5490.92 87,141.7 14,247 1124.88 4.92684
ER 0.0068 0.1215 0.0274 0.0050 0.2177 0.0146

Notes: GSA = grassland area, GLA = cultivated area, CL = construction land, WDA = woodland area, WDWA = wetland and water area,
ULA = unused land area, ALV = actual values, SIV = simulated values of the composite system of green space based on the SD model,
ER = error rates.

Table 2. Different Scenarios of the Green Space Composite System Developed for Beijing’s Central District.

Situation Name Scenario Description Involving Indicators Description

Scenario 0 Socioeconomic development keeps the status. Socioeconomic development keeps the status.

Scenario 1 Appropriately reduce the speed of economic
development, and control population growth.

The population will decrease to 9.29 million by
2035, with an average GDP growth rate of 6.1%.

Scenario 2
Based on Scenario 1, continue to reduce the speed of
economic development, and further control
population growth.

Population will be reduced to 8.59 million by
2035, with an average GDP growth rate of 4.9%.

Scenario 0 was a control scenario in which the current socioeconomic development
trend was maintained and used for comparison purposes in the design scenario. Scenario 1
entailed moderate socioeconomic development and population control. The population of
Beijing’s central district would rise to 9.29 million in the 19th step and an average GDP
would be at growth rate of 6.1% in this scenario. In Scenario 2, the pace of economic
growth would continue to decline, and the population would be further reduced. The
population of Beijing’s central district would reduce to 8.59 million during the 19th step
and the average GDP growth rate would reduce to 4.9%.

3.3. The CA Model Used to Simulate Green Space in Beijing’s Central District

Because natural conditions could limit and affect the evolution of green space, we first
deployed the powerful space simulation capabilities of the CA model, referring to existing
research and the actual development of green space in Beijing’s central district. Our aim
was to determine the possibility of converting land into green space, considering conversion
suitability, influence of neighborhoods, and green space inheritance. The CA model has
been widely used to simulate these variables, with each specific indicator obtained on the
basis of a transformation rule and a thorough review of studies and data on land-use status
in Beijing’s central district [58–60]. Considering the total forecasted results of the SD model
in the scenario simulation, we simulated and predicted the spatial distribution of green
space in Beijing’s central district under different economic development trends (Figure 4).

(1) Cell Definition

The process of defining land cells entailed rasterizing the remote sensing data in
ArcGIS, which had an accuracy of 30 m, with each cell unit having an area of 30 m × 30 m.

(2) Calculation of the Probability of Cell Conversion
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The probability of land cell conversion was determined by factors influencing the
suitability of land conversion, the influence of neighborhoods, and land inheritance. Ex-
isting studies have generally incorporated planning-related factors into calculations of
probability. Those factors comprise different variables with varying rates of contribution
to land conversion. Therefore, it was necessary to determine the weight of each variable
which could then be inserted through a reasonable mathematical formula to calculate the
probability of each cell being converted to another cell type.

(3) Determination of Conversion Rules

The conversion of land cells depended on the conversion rules. Generally, cells with a
higher probability of land conversion had a higher probability of conversion. The number
of cell conversions was determined by the total amount simulated in the SD model. Given
this constraint on the quantity of cells, we selected the cell to be converted according to
the probability of its conversion. Upon completion of each simulation, we repeated the
calculation for the probability of cell conversion to guide the next cell conversion.

(4) Validity Check

In the CA model, the weight setting for factors relating to the suitability of land
conversion, neighborhood influence, land inheritance, and policy planning determined the
probability of land cell conversion in the CA model and affected the results of the spatial
simulation of land. Therefore, it was necessary to revise the simulated spatial data on the
basis of historical land interpretation data and to use the Kappa coefficient as the accuracy
standard for verifying the simulation results [61].
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3.3.1. Simulation of the Probability of Land Conversion into Green Space

The CA model was used to determine the probability of land conversion into green
space based on the suitability of the conversion, neighborhood influence, land inheritance,
and the impacts of policy and planning (Table 3). In this study, we defined the probability
that the land cell at position (x, y) would be converted into K-type land during period t as



Forests 2021, 12, 202 10 of 21

tPK,x,y. The suitability of K-type land for conversion was defined as tSK,x,y, the impact of the
neighborhood on the conversion of a land cell into K-type land was defined as tNK,x,y, the
inheritance of the land itself was defined as tIK,x,y, and the impact of planning factors on
the conversion was defined as v. Thus, the probability of the land cell being transformed
into K-type land was expressed as:

Pt
K,x,y =

(
St

K,x,y, Nt
K,x,y, It

K,x,y, v
)

.

Table 3. Mode of Variable Acquisition in the CA Model of Green Space Simulations in Beijing’s Central District.

Classification Variable Method of Obtaining Range of Raw Data Values

Land
conversion
suitability

Distance from road GIS measures distance and
normalizes according to formula 0–1

Distance from city center (Tiananmen) GIS measures distance and
normalizes according to formula 0–1

Slope
DEM data and construction land

are standardized according to
formulas, others see text description

0–1

Land grade for agricultural land
suitability (cultivated land protection)

Land and Environmental Protection
Agency of Beijing Municipal
Planning Commission, 1988

Neighborhood
influence

Units of cultivated land in the
neighborhood 5 × 5 neighborhood unit 0–24, Need to be standardized

Units of woodland in the neighborhood 5 × 5 neighborhood unit 0–24, Need to be standardized
Number of grassland units in the

neighborhood 5 × 5 neighborhood unit 0–24, Need to be standardized

Number of wetland and waters units in
the neighborhood 5 × 5 neighborhood unit 0–24, Need to be standardized

Number of units for construction land
in the neighborhood 5 × 5 neighborhood unit 0–24, Need to be standardized

Number of units in unused
neighborhood 5 × 5 neighborhood unit 0–24, Need to be standardized

Land
inheritance Land use status type Land use status map and results of

dynamic simulation 0.65, 0.9, 0.8, 0.7, 1, 0.65

Policy planning
factors The location of the land cellular 0.3, 0.1

Note: Raw data values for neighborhood influence ranged from 0 to 24. Given that this range differed from those for other indicators, it
was standardized to 0–1.

The specific calculation was as follows:

Pt
K,x,y =

((
1 + St

K,x,y

)
×
(

1 + Nt
K,x,y

)
+ It

K,x,y + vt
)

The suitability of land conversion was assessed in terms of the distances between the
land and the road and the city center, the suitability of the land conversion in relation to
the slope, and the land grade assigned to agricultural land in terms of its protection status.
The following formula was used for the calculation:

St
K,x,y =

m

∑
1

Wi, K, x, y × Si, K, x, y,

where Si, K, x, y denotes the standardized value of the land suitability factor and Wi, K, x, y
denotes the weight of the suitability factor.
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Given differences in the distances between different types of land and the road and
the city center, we applied the following formula to determine the suitability of K-type land
from location (x, y) to the nearest road and the city center, r, at a certain time point:

At
r, K, x, y =

1
1 + (Dr/ar, K)

where Dr denotes the distance between the location of a land cell (x, y) and the nearest
trafficable road. Because each land cell had different requirements relating to road accessi-
bility, the correction coefficient for the accessibility of a trafficable road from a construction
land unit was set to 100, and correlations for wetland and water bodies and cultivated land
units were set at 50 and 10, respectively.

The suitability of different land types in relation to their slope also differed. In general,
the suitability of land for cultivation had a value of 0 when the slope exceeded 25 degrees,
and a value of 1 when the slope was below 25 degrees. Slope had no effect on woodland,
wetland and water bodies, unused land, and grassland. The impact of slope on construction
land was standardized using the following formula:

U(x) =


1 , slope ≤ 5

−0.1 ∗ slope + 1.5, 5 < slope ≤ 15
0 , slope > 15

The Land and Environmental Protection Agency of the Beijing Municipal Planning
Commission has explicitly advocated the protection of agricultural land in Beijing. There-
fore, the probability of land conversion was determined on the basis of land grades assigned
by the Land and Environmental Protection Department according to the suitability of agri-
cultural land for cultivation.

The influence of neighborhoods (tNk,x,y) was determined based on the surrounding
land types. We considered 5 × 5 neighborhood units and standardized the tNk,x,y values
according to the number of K-type land units in a neighborhood.

Green space, construction land, and unused land all had varying degrees of stability
relating to their inheritance status (tIk,x,y). In the CA model, the stability of the land was
set as a constant value to express the land unit’s inherited status. A lower value corre-
sponded to lower inheritance, and a greater possibility of its transfer. Fifteen experts from
government agencies and universities offering urban planning and environmental science
as majors were surveyed. We set the inheritance values of cultivated land, woodland,
grassland, wetland and water bodies, construction land, and unused land at 0.60, 0.75, 0.40,
0.75, 1.00, and 0.00, respectively, according to the scores assigned by the experts.

The probability of land conversion into constructed land and woodland in the south-
eastern part of the central district increased by 0.3 and 0.1, respectively. This calculation
was based on a consideration of linkages existing between land-use planning and the
planning and construction of key green spaces relating to the construction of the new city
of Tongzhou in Beijing.

3.3.2. Conversion Rules for Green Space Simulation

We performed space allocation simulations of Beijing’s green space, construction
land, and unused land based on the various land area requirements determined using the
SD model.

Rule 1: The CA model was used to simulate spatial conversions between green space
and construction and unused land. The following conversions were considered based on
the current status of land use in the central district area and a literature review.

Cultivated land could be either protected—and was therefore not transferable—or
transferred. Cultivated land that was transferable could be converted into construction
land (for urban expansion and construction), woodland (plain afforestation or conversion
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of cropland into forests and parks), grassland (park and golf course construction), and
wetland and water bodies (park construction and the restoration of water systems).

Woodland could be protected—and therefore not transferable—or transferred. Wood-
land that was not protected could be converted into construction land (for urban expansion
and construction), grassland (for park and golf course construction), or wetland and water
bodies (for park construction and the restoration of water systems).

Grassland could be converted into grassland, construction land (for urban expansion
and construction), woodland (for park construction), or wetland and water bodies (for
park construction and the restoration of water systems).

Wetland and water bodies could be converted into wetland and water bodies, con-
struction land (for urban expansion and construction), or woodland (park construction).

Construction land could be converted into construction land, woodland (park con-
struction), grassland (park and golf course construction), or wetland and water bodies
(park construction and the restoration of water bodies).

Unused land could be converted into unused land, construction land, woodland (park
construction) and grassland (park and golf course construction).

Rule 2: The total amount of land determined in the SD model simulation would be
allocated in the following order: construction land, cultivated land, woodland, grassland,
wetland and water bodies, and unused land. After allocating the total amount of land of
the first type, allocation of the second type of land would be carried out. Moreover, after
completing the conversion of one type of land, it would not be converted again during the
simulation period.

Rule 3: A land cell at (x, y) location was defined as tPK,x,y relating to land selection
according to the probability of its conversion into K-type land in period t. Cell units
with a higher probability of being converted into K-type land than other land types in
Beijing’s central district would be selected first. These cell units would be selected in
descending order of the probability of their conversion until the total demand for K-type
land was satisfied.

3.3.3. Verification and Revision of Green Space Simulations

The weight setting of the influence of neighborhood size and inheritance based on
different factors would affect calculations of the probability of converting different green
spaces and hence the simulation results. Therefore, it was essential to revise the spatial
model using relevant data. We conducted simulations based on land interpretation data
for Beijing’s central district in 1992 and 2000 and revised the simulated data for 2008 and
2016. The Kappa coefficients for the simulation results in 2008 and 2016 were 0.7813 and
0.8076, respectively, which met accuracy requirements.

4. Results and Analysis
4.1. Composite SD Model Simulation Results for Socioeconomic and Green Space Development

After conducting modeling using the Vemsim PLE software, we performed the sim-
ulation using interpreted remote sensing data for the period 1992–2016. Maintaining the
current socioeconomic development status, we simulated land-use data for 2017–2050 at
one-year intervals, considering 2016 as the base year. The simulation and prediction results
are shown in Table 4.

The results shown in Table 4 indicate that if socioeconomic development in Beijing’s
central district continues at its current pace, the current change trend for green space and
constructed land would also continue over the next 30 years. Notably, the area of cultivated
land would decrease significantly before 2030. Moreover, under the pressure of economic
development and population growth, cultivated land would basically disappear by 2036.
From the overall perspective of land conversion, most of the converted cultivated land
would be occupied by construction land, leading to a continuous increase in the area of
construction land that would peak at 90,801.42 ha by 2036. The areas of woodland and
grassland would increase slightly, with the area of woodland increasing from 14,337.74 ha
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to 15, 342.79 ha, and the area of grassland increasing from 2199.071 ha to 2785.597 ha in
2050. However, wetland would completely disappear by 2037, while unused land would
disappear by 2027. In sum, if the current socioeconomic development trend in Beijing’s
central district continues, the land development trend would entail conversion of the
remaining areas of cultivated land into construction land for urban expansion and the
steady expansion of areas of woodland and grassland.

Table 4. Results of the Simulation of Green Space in Beijing’s Central District.

Time
(Year) GSA (ha) CLA (ha) CL (ha) WDA (ha) WDWA (ha) ULA (ha)

2016 2199.071 6730.502 84,411.91 14,337.74 1247.463 3.313752
2027 2426.956 939.582 90,272.44 14,973.07 317.9496 0
2030 2698.368 189.582 90,713.94 15,255.53 72.58259 0
2036 2785.402 0 90,801.42 15,342.59 0.582586 0
2037 2785.597 0 90,801.61 15,342.79 0 0
2050 2785.597 0 90,801.61 15,342.79 0 0

Note: GSA = grassland area, GLA = cultivated area, CL = construction land, WDA = woodland area,
WDWA = wetland and water area, and ULA = unused land area.

4.2. Results of the CA Model Simulation of Green Space

Applying the interpreted remote sensing data for Beijing’s central district in 2016 as
the benchmark data, we simulated and predicted future year-end areas of green space,
construction land, and unused land in Beijing’s central district according to the current
socioeconomic development trend. This scenario was deemed Scenario 0 in which the
specific area was determined by the simulation value. The simulation and prediction
results are shown in Figure 5.
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If the current socioeconomic development trend continues, extensive tracts of culti-
vated land along the border of Chaoyang District, in the southern part of the central district
(where cultivated land is fragmented), and in the western suburbs of Xishan Piedmont
would be transformed into construction land. Woodland would increase to some extent in
the western suburbs and at the northeastern boundaries of the area adjacent to the main
road. Most of the water bodies in the central district would be used to meet construction
needs. Overall, green space would continue to be transformed into built-up land as a result
of urban construction, especially in Beijing’s central district.

4.3. Prediction and Optimization of Green Space under Different Scenarios

We used an SD model to simulate and predict areas of land under three scenarios.
We also used a CA model to allocate areas of green space under different speeds of
economic development, enabling us to predict areas of green space in 2035 (Figures 6 and 7).
Moreover, we compared the landscape pattern of green spaces in Beijing’s central district
under three scenarios at the end of the simulation period. We did so by calculating the
patch areas, percentages of patch areas, average patch area, number of patches, patch
densities, the maximum patch index, the edge density, the landscape shape index, the
connectivity index, and Shannon diversity index of green space (Table 5).
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The results showed evident differences in the predicted green spaces in Beijing’s
central district under different scenarios in 2035. Specifically, in Scenario 0 in which the
current socioeconomic development trend continued, the shape of the green space in
Beijing’s central district, considered in terms of the landscape pattern index, would become
less complex and diverse by 2035. The area of green space would be dramatically reduced
as a result of its conversion for urban construction, and the amount and percentage of
patch areas would be considerably lower compared with those in other scenarios. Of all
the scenarios, Scenario 0 was associated with the lowest Shannon diversity index value,
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indicating that the integrity and diversity of green spaces was also threatened by urban
construction.
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Table 5. Predicted Landscape Metrics Relating to Green Spaces in Beijing’s Central District in 2035.
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In Scenario 1, appropriate slowing down of economic development to a moderate pace
combined with the control of population growth would result in slight changes in the areas
of the various types of land by 2035 as a result of the interplay of ecological conservation of
green spaces and economic development. From a spatial perspective, cultivated land in the
southeastern part of the central district would fragment and disappear. Taking into account
the construction of the new city of Tongzhou, woodland areas in the southeastern part of
the central district would increase slightly in this scenario. The extent of the decrease in
the area of cultivated land would be less compared with the decrease of this land under
Scenario 0. Moreover, the patch density, landscape shape index, and edge density values of
green space would be higher compared with those for Scenario 0 mainly because of the
fragmentation of cultivated land in the southeastern part of the central district.

In Scenario 2 in which the pace of economic development would continue to slow
down and population growth would be further controlled relative to Scenario 1, the
goal of ecological conservation could be achieved through natural restoration as well as
efforts to protect and take care of green spaces. By 2035, the most apparent change in
the various land types would be a decrease in the area of construction land, while areas
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of woodland, grassland, and wetland and water bodies could increase. In Scenario 2,
the percentage of patches of green space could increase significantly with corresponding
decreases in the densities and edge densities of these patches, indicating a distinct decrease
in the fragmentation of green spaces. Further, the connectivity and diversity indexes of
green spaces would clearly improve, indicating significant optimization of green spaces in
Beijing’s central district according to an ideal pattern. In sum, economic development and
ecological conservation would be effectively combined and balanced from a longer-term
perspective. Thus, the maintenance of the quantity and quality of urban green spaces
requires attention, with prioritization of the overall, long-term, and dynamic development
of green spaces. Moreover, ecological conservation, restoration, and construction must be
conducted simultaneously, while balancing ecological and economic benefits.

5. Discussion
5.1. Result Analysis

Combining the SD and CA models, we developed a new model for predicting green
space that incorporated and integrated socioeconomic factors. The model was simultane-
ously used to conduct a spatial analysis of the prediction results, enabling the simulation
of green space planning scenarios and the determination of reasonable green space and
socioeconomic development indicators. Unlike the models applied in previous studies
for evaluating water, energy, and food security [62–64], this spatiotemporal simulation
model can provide direct inputs and guidelines for planning. Our analysis of historical
data for the period 1992–2016 revealed that green space development would be restricted
if the current pace of Beijing’s socioeconomic development is maintained. This finding is
consistent with the results of ecological and socioeconomic forecasting trends reported in
earlier studies [50,65]. The relationship between socioeconomic development and green
space is evidently complicated. On the one hand, socioeconomic development will lead
to increased green investments and promote green space development, including the
construction of urban parks. On the other hand, increasing areas of green space will be
occupied as a result of socioeconomic development. Therefore, under the current sce-
nario of socioeconomic development, green space development will be inhibited [66–68].
Accordingly, we designed two other scenarios based on existing policies.

In scenario 2, which was the first of these two simulated scenarios, a reduction in the
population to 8.59 million by 2035, with an average GDP growth rate of 4.9% was associated
with a substantial increase in the proportion of Beijing’s green space up to 40%. This
ratio is optimal and leads to comprehensive benefits derived from green space, including
ecological safety and recreational facilities. However, a considerable gap exists between this
ideal scenario and the current situation relating to Beijing’s socioeconomic development
because planning entails not only questions of quantity but also those relating to space. The
problem of rationally identifying new green spaces in the current cultural context is a
challenging one. Our simulation, generated through the CA model, indicated that by 2035,
the population would decrease to 9.29 million, with an average GDP growth rate of 6.1%
relative to scenario 0, potentially leading to the occupation of a large amount of the historical
space in scenario 1 by green space. From the perspective of socioeconomic requirements,
it would be relatively easy to increase the proportion of green space appropriately at this
time. At the same time, the results of the CA model showed that most of the newly added
green spaces would be relatively reasonable.

5.2. A Comparative Analysis of the Development of Green Space in International Metropolises

Beijing, London, Paris, and New York are typical international metropolises that have
all faced thorny urban issues in the course of their development. However, all of these
international cities adopted timely and effective response strategies that offer insights for
Beijing. For example, New York City embarked on the “PlaNYC: A Greener, Greater New
York” initiative to address climate change and preserve biodiversity. Detailed planning
strategies for land, water, and transportation management were formulated, with the aim of
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developing New York into a “greener and better” international metropolis. Consequently,
positive results were achieved relating to urban ecological issues such as biodiversity
conservation. The initiative also entailed a specific focus on green open spaces that were
considered separately within a special land project in which linear connections among
urban green spaces were emphasized.

To control smog in London, a large circular green space was constructed around the
city, and the urban transportation system was organically integrated with green open
spaces through a greenway system and green wedge to create a complete urban ecological
network. The linear “green chain” was constructed to create an efficient urban ventilation
system. The wind flow from the Thames blowing in from the eastern part of the city cleared
air pollutants, while the wind from the west brought fresh air into the city, effectively
reducing its smog.

We calculated the landscape pattern index values of the main green spaces in the three
international metropolises in 2016 and compared their patterns of green space with that
of Beijing’s central district in 2035 (Figure 8 and Table 6). Specifically, we analyzed the
characteristics of the green space distribution in these international metropolises from the
perspective of their green space patterns.
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Table 6. A Comparison of Green Space Patterns in Beijing’s Central District with Landscape Patterns
in Three International Metropolises in 2035.

PD COHESION SHDI

Beijing’s central district Scenario 0 6.9501 97.7469 0.4491
Beijing’s central district Scenario 1 7.0697 97.8603 0.4985
Beijing’s central district Scenario 2 5.2561 98.2567 0.5278

London built-up area 7.3694 99.3663 1.2014
Paris built-up area 6.6252 99.0174 1.4180

New York built-up area 7.7823 98.3931 1.0013
Note: PD = patch density, COHESION = connectivity index, and SHDI = Shannon diversity index.

Although the green space coverage of most cities was less than 60%, some landscape
pattern indexes, such as the fragmentation index, had a significant relationship with the
atmospheric dust retention effect of green spaces and the improvement of the atmospheric
environment. A comparison of the degree of fragmentation of green spaces in Beijing
under Scenario 2 and in London revealed that the patch density of the green space pattern
in Beijing would be less than that of London’s built-up area in 2035. This result indicates
that the degree of fragmentation of green spaces in Beijing would be slightly lower than
that of London’s built-up area. Considered only from the perspective of fragmentation
and the mitigation of air pollution, the mitigation capacity of the green space predicted
under Scenario 2 in Beijing’s central district would be slightly higher than that of London’s
built-up area. A comparison of the green space connectivity of Beijing and New York
revealed that the value of the connectivity index of Beijing’s green space pattern would be



Forests 2021, 12, 202 18 of 21

slightly smaller than that of New York’s built-up area in 2035. Considered only from the
perspective of green space connectivity and biodiversity, biodiversity protection within
green spaces in Beijing’s central district would be weaker than that in New York.

5.3. Policy Recommendations and Limitations of the Study

Because of the high density of built-up areas in Beijing’s central district, it would
not be possible to rely completely on the demolition of constructions on existing land to
increase the area of green space in Scenarios 1 or 2. In the old city, the development of
small and micro green spaces, making full use of unused waste land, and the renovation
of parking lots to increase green space could be considered as possible options. In the
vicinity of the Fourth Ring Road where urban construction is relatively complete, linear
green spaces could be fully availed of, for example, through the construction of green roads
and the linking of existing green spaces. In addition, the construction of the first green
barrier in Beijing should be thoroughly explored, and a search should be conducted for
more flexible spaces in this area for carrying out large-scale planning of green spaces.

This study also had some limitations. First of all, the integration of Beijing-Tianjin-
Hebei allows for their interlinked socioeconomic development. However, we did not
consider the development of linkages between Beijing’s central district and surrounding
areas, which is an important direction for future system optimization. Second, this study
was based on the prevailing land-use classification system and did not include a more
detailed classification of green space, which could have affected the accuracy of the results.
Last, spatially-oriented research is evidently an important direction for future research,
which should entail a comprehensive consideration of the impacts of cultural spaces and
functions on the conversion of green spaces and other types of land use.

6. Conclusions

In this study, we applied an SD model to simulate the area of green space in Beijing’s
central district during the period 2016–2050. The results of the simulation revealed that
if the current pace of socioeconomic development in the central district continued, the
current change trends for green space and construction land would also continue over the
next 30 years. The overall area of green space would continue to decrease, with the area
of cultivated land decreasing significantly before 2030 and basically disappearing in 2036.
The area of construction land would continue to increase, reaching its peak value by 2036.
Moreover, there would be a small increase in woodland and grassland areas. Wetland and
water bodies and unused land would continue to decrease, eventually disappearing in
2037 and 2027, respectively.

Moderate socioeconomic development and the control of population growth would
be required to achieve Scenario 1. In this scenario, when the population of Beijing’s central
district reached 9.29 million by the 19th step, and an average GDP growth rate of 6.1%
was maintained, the area of green space would be 20,454.07 ha. Under Scenario 2, the
pace of economic growth would continue to slow down, and the population would be
further reduced. By the 19th step, a reduction in the population of Beijing’s central district
to 8.59 million and a reduction in the average GDP growth rate to 4.9% would correspond
to an area of 40,678.02 ha occupied by green space.

Our CA model results also revealed evident differences in the green spaces of Bei-
jing’s central district in 2035 under different scenarios. In Scenario 0 in which the current
socioeconomic development trend continued, an extensive area of cultivated land would
be occupied by construction land by 2035, and most of the water bodies in the central
part of the central district would be drained to provide construction land. Moreover, the
shapes of the green spaces would also become more complex, and their diversity would
decline further. Economic development at a moderate pace and controlled population
growth in Scenario 1 would be associated with fragmentation and the disappearance of
cultivated land in the southeastern part of the central district. However, there would be a
slight increase in forested land in the southeastern part of the city. In a context of low-speed
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economic development and further population shrinkage in Scenario 2, the most obvious
change in the various land types would be a decrease in the area of construction land and
expanded areas of woodland, grassland, and wetland and water bodies by 2035. The frag-
mentation of green spaces would decrease significantly, with a corresponding significant
increase in green space connectivity and the diversity index. Thus, under Scenario 2, the
green spaces within Beijing’s central district would be significantly optimized.
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