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Abstract: The structure and composition of southwestern dry mixed-conifer forests have changed sig-
nificantly, decreasing forest resiliency to uncharacteristic disturbances which also threaten ecosystem
services. Restoration of these forests can be informed by historical conditions; however, managers and
researchers still lack a full understanding of how environmental factors influence forest conditions.
We investigated historical and contemporary variability in dry mixed-conifer forests in northern
Arizona and identified important environmental drivers. We utilized forest sample plots and den-
drochronological reconstruction modelling to describe forest conditions in 1879 and 2014, respectively.
We used correlogram analysis to compare spatial autocorrelation of average diameter, basal area
and tree density, and structural equation modeling to partition the causal pathways between forest
structure, forest composition, and a suite of environmental factors reflecting climate, topography,
and soil. Historical (1879) reconstructed forests had significantly fewer trees, lower basal area, and
higher average diameter than contemporarily (2014). Composition has shifted from ponderosa
pine dominance towards a more mixed-species composition. Historically, forest structure did not
exhibit strong spatial autocorrelation, but contemporary tree density and diameter were strongly
autocorrelated. Environmental factors described little variation in historical forest conditions but are
more important for contemporary conditions. Managers can utilize this increased understanding of
variation to tailor silvicultural prescriptions to environmental templates.

Keywords: forest restoration; historical structural conditions; structural equation modelling; correlo-
gram analysis; fire exclusion

1. Introduction

Mixed-conifer forests cover approximately 1 M hectares in the southwestern United
States [1] and provide critical ecosystem services such as wildlife habitat [2], watershed
protection [3], carbon sequestration, and nutrient cycling [4,5]. However, 20th-century land-
use practices, specifically unregulated logging, grazing, and active fire suppression, have
disrupted natural fire regimes [6–8]. This has decreased these forests’ resilience [9,10]—the
“ability of an ecosystem to regain structural and functional attributes that have suffered
harm from stress or disturbance” [11]. Disrupting the historical disturbance regimes of
frequent, low-severity fires has altered the structure and composition of these forests
[12–14] and has decreased their resilience to disturbances such as severe wildfire, insects,
disease, and climate change [9,10]. Restoring forest structure and composition can increase
ecological resilience, and many restoration prescriptions are guided by historical reference
conditions [11].

Reliance on historical reference conditions assumes that these characteristics can
provide context for managing contemporary ecosystems, and species conservation can be
accomplished by approximating the range of environmental conditions present prior to
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ecological degradation [15]. While there has been criticism that historical conditions will
become irrelevant under future climatic conditions [16], restoring a more characteristic
composition and structure would increase ecosystem resiliency [3,9] and allow these
ecosystems to resist type conversion due to wildfire and climate warming [9,10,17].

In mixed-conifer forests of the American southwest, species composition varies along
a temperature–moisture gradient. At one end of the spectrum, ‘warm-dry’ mixed-conifer is
dominated by ponderosa pine (Pinus ponderosa) and can include other fire-tolerant/shade-
intolerant species such as Gambel oak (Quercus gambelii), Douglas-fir (Pseudotsuga menziesii)
and southwestern white pine (Pinus strobiformis). ‘Cool-moist’ mixed-conifer generally lacks
ponderosa pine and has a greater composition of fire-intolerant/shade-tolerant species such
as quaking aspen (Populus tremuloides), Engelmann spruce (Picea engelmannii), and white fir
(Abies concolor) [18]. In the warm-dry type, species composition has shifted towards more
shade-tolerant species over the last 100+ years since fire exclusion; ponderosa pine has
decreased in dominance and the proportion of southwestern white pine and white fir have
increased [12–14,19].

Forest density in warm-dry forests has also changed from pre-fire exclusion conditions.
Historically, these forests had densities ranging from 51.6 to 245.6 trees ha−1 and basal areas
of 7.9 to 28.5 m2 ha−1 [9]; however, contemporary forest conditions across the southwest
are much denser [12,14,19–23]. These overly dense forests are at an increased risk of
burning at high severity in an increasing number of large, uncharacteristic fires across
the southwest [24,25]. This contemporary fire regime differs from the natural historical
fire regime of frequent, low- to mixed-severity fires [9]. Mean fire return intervals ranged
from 2 to 8.5 years on the Mogollon Rim in northern Arizona [13] and to 31.6 years in New
Mexico [26] and 32 years in southwestern Colorado [12].

While previous studies have described the natural range of variability, managers still
lack full understanding of the relationships that drove historical forest structure. Topogra-
phy, climate, and soil factors are known to influence forest condition. Topographic models
and measures of solar radiation have been used to understand variation in forest structure
and composition [27,28]. Climate has strong interactions with fire frequency [12,26,29], and
precipitation and climatic water availability drive variation in tree establishment [30–32] and
density [23,33]. Soil properties, especially parent material, also influence forest structure and
composition [23,34–36].

Additionally, a more complete understanding of spatial heterogeneity in dry mixed-
conifer forests is needed. Variability in forests is spatially structured and hierarchically
organized [9,23,37]. Fine-scale (<4 ha) spatial patterns typically describe the arrangement
of individual trees within a stand and are nested within mid-scale (4–400 ha) patterns,
which describe the variation among stands within a landscape. Mid-scale patterns are
further nested within landscape-scale (400+ ha) structure. A review of spatial analyses
in fire-frequent forests found that most spatial analyses of reference conditions have
focused on fine-scale tree patterns of clusters of trees, single trees, and openings that
manifest at scales from 0.4 to 4 ha [9]. However, such patterns might be difficult for forest
managers to implement in stand-level treatments [37]. Landscape restoration projects
that solely focus on fine-scale patterns risk creating landscapes that are heterogeneous at
fine scales, but homogeneous over mid- to landscape scales [38]. The lack of mid-scale
heterogeneity analyses in southwestern dry mixed-conifer forest limits managers from
designing appropriate restoration projects.

Our study addressed these knowledge gaps by investigating drivers of historical vari-
ability in dry mixed-conifer forests on the Mogollon Rim in northern Arizona. Specifically,
we focused on answering the following research questions: (1) What were the historical
structural conditions in these ecosystems? (2) How did structural conditions vary spatially,
and has spatial variation changed since fire exclusion? and (3) What were the drivers of
variability in these forests, and how have drivers changed in relative importance since
fire exclusion? Answers to these questions can help silviculturists design restoration treat-
ments that have appropriate levels of spatial and structural variability and better reflect
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environmental templates. By analyzing forest variability of historical and contemporary
time periods, we can further explore how fire exclusion has impacted these forests.

2. Materials and Methods
2.1. Study Design

The Mogollon Rim is an escarpment stretching approximately 320 km from northern
Arizona to eastern Arizona and forms the boundary between the Colorado Plateau to the
north and the Southern Basin and Range Province to the south [39]. Our study area on the
Mogollon Rim ranges from 2223 to 2399 m in elevation, has a mean annual temperature
of 9.3 ◦C and a mean annual precipitation of 89 cm (Table A1). The forests fall into the
warm/dry classification of mixed-conifer forest [18], with a major component of ponderosa
pine, and a mixture of southwestern white pine, Douglas-fir, white fir, Gambel oak, and
quaking aspen. Additional tree species found on the Mogollon Rim include New Mexico
locust (Robinia neomexicana) and bigtooth maple (Acer grandidentatum) [19]. Low-severity
fires burned frequently on the Mogollon Rim with a mean fire interval of 2 to 8.5 years until
1879 [13]. The forests on the Mogollon Rim are currently the target of restoration efforts to
increase ecological resilience [40] and protect important municipal water supplies [41].

This study utilized existing pre-treatment data collected from the long-term ecological
assessment and restoration network (LEARN) which was established in 2014 by the Eco-
logical Restoration Institute, in coordination with the U.S. Forest Service Mogollon Rim
Ranger District of the Coconino National Forest (see Figure 1). The surveyed area covers
approximately 250 ha, broken into six blocks where each block consisted of three ~16 ha
treatment units with 15 0.04-ha circular, fixed-radius plots arranged on a 60-m grid within
each unit for a total of 270 plots across the study area. Crews completed data collection
in 2014, following methods described in detail in Roccaforte et al. [42]. Surveys recorded
species, diameter at breast height (DBH: 1.37 m above the ground), diameter at stump
height (DSH: 40 cm above the ground), total height, height to the base of the live crown,
two crown radii measurements (long and short side) and condition (live tree, snag, log, cut
stump, etc.) of all trees taller than breast height and all dead trees that may have predated
Euro–American settlement (ca. 1879). Crews collected tree cores on all pre-settlement trees,
trees larger than 40 cm DBH, and 10% of all trees smaller than 40 cm DBH.
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2.2. Determining Historical Variability

To determine the historical variability at our site in the dry mixed-conifer forests of
the Mogollon Rim, we reconstructed historical forest structure and composition using
field plot data and dendroecological reconstruction techniques. These techniques were
developed and discussed in detail most recently by Rodman et al. [19] to incorporate
additional species. This reconstruction model estimated the diameter of each tree during a
set reconstruction year. We used 1879 for the reconstruction year, as a nearby by study [13]
reported this to be the date of fire regime disruption. Historical tree diameters were based
on dendrochronological data (i.e., cross-dated increment cores collected from trees on field
plots—see above) when available, and species-specific “back-growth” regression equa-
tions when dendrochronological data was not available. These “back-growth” equations
estimated the historical diameter using species-specific growth and bark thickness [43]
equations. Historical diameters for dead trees were estimated by using current diameter
and decomposition equations based on snag/log condition classes to determine death
date [44], and then input into the “back-growth” equations to estimate the diameter during
the reconstruction year. Cut stumps were assigned death dates of either 1965 or 1981,
corresponding with observed releases in tree growth [45] and harvesting operations on
the Mogollon Rim [19]. While this method of reconstructing forest structure may fail to
detect some small trees that died and decomposed prior to the contemporary surveys,
comparisons to historical surveys indicate that 91 to 94% of pre-settlement trees can be
identified by contemporary surveys in areas lacking recent disturbance [46,47].

We used the results of the reconstruction model to summarize average diameter (DBH;
cm), tree density (trees ha−1), and basal area (m2 ha−1) for each field plot. We quantified
composition by calculating the ecological importance value (EIV; Equation (1)) of each
species in each plot, as described by Curtis and McIntosh [48]. EIV describes the importance
of a given species by accounting for its relative density (abundance) as well as relative
basal area (dominance), of the species. This index ranges from 0 to 2 and is calculated using
the following equation:

EIVspp =
nspp

ntotal
+

BAspp

BAtotal
(1)

where EIVspp is the species-specific ecological importance value; nspp and BAspp are the
species-specific tree density and basal area, respectively; and ntotal and BAtotal are the total
tree density and basal area, respectively. We summarized these measures of forest structure
and composition across all study plots to determine the historical variability, as well as the
contemporary conditions at our Mogollon Rim site.

2.3. Measuring Spatial Variability

We evaluated spatial variability across the study area by quantifying spatial autocor-
relation. We used the ‘spdep’ package in R [49,50] to calculate Moran’s I [51,52]. We chose
to use Moran’s I to evaluate spatial variability because this metric is useful for describ-
ing patterns of continuous phenomena, estimating the size of patches, and is commonly
used in research (e.g., [14]). Significant values of Moran’s I indicate positive and nega-
tive correlations between the attributes of interest for geographically compared plots [53].
We calculated Moran’s I for average diameter, tree density, and basal area and then com-
pared the empirical values at specified distances (lags) to simulations of expected values
given no significant autocorrelation to evaluate significance.

When calculated globally (i.e., across the entire study area) Moran’s I describes the
spatial autocorrelation of a variable—that is, whether the variable is distributed indepen-
dently across a landscape or is dependent upon the value of its neighbors. When calculated
locally, Moran’s I can also be plotted over increasing lag distances to create a correlogram,
describing the lag distance at which observations are highly correlated or exhibit spatial
autocorrelation. We calculated a local Moran’s I over 17 lags, where each lag generally
represents the 60 m distance between survey plots. Comparing the correlograms of the
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historical and contemporary data, we visually evaluated whether spatial variability had
changed since the exclusion of natural frequent fire regimes.

The arrangement of the experimental blocks at the study site posed a challenge to
using Moran’s I in our analysis. Ideally, we could evaluate a complete range of distances
up to the maximum distance between any two points in the study area. However, there
are significant gaps between some blocks. Blocks 2 through 5 are contiguous but Blocks
1 and 6 are disjunct from the others (see Figure 1). In Blocks 1 and 6, Moran’s I cannot
be calculated across distances larger than the maximum distance within the block, so we
limited our analysis to 1000 m, approximately the distance across one block. While this
hinders our ability to make inferences about landscape spatial patterns, we were still able
to evaluate variability across mid-scales.

2.4. Identifying Drivers of Variability

We used structural equation modeling (SEM) techniques in Amos software [54] to
identify the important relationships between environmental factors and forest structure
and composition that drove variation at the study site. SEM is an analytical framework
useful for investigating complex ecological systems because it can model multivariate rela-
tionships, explicitly partition direct and indirect causal relationships, include unmeasured
concepts as latent or composite variables, and provide a test of causal inferences [55,56].
SEM has been successfully used in southwestern forests to understand ponderosa pine
regeneration [32] relationships between environmental conditions, fire history, and un-
derstory species richness and abundance [57,58] and to explore the drivers of plat-animal
interactions [59]. We chose to use SEM in our analysis to evaluate the relative importance
of abstract environmental factors, and to explicitly incorporate the relationship between
structure and composition as an indirect causal relationship.

To evaluate the relationships between environmental factors, forest composition, and
forest structure, prior to and following fire regime disruption, we built two independent
models using reconstructed and contemporary field plot conditions. These two models
followed the same model building techniques, and started from the same a priori model,
but used separate historical and contemporary datasets. While we could have tried multi-
group modeling, which would focus on determining which pathways differ most between
time periods [60], we were more interested in precise estimates of the effects of the drivers
of variability, optimized for each time period.

Our conceptual model describes our hypothesis that environmental factors directly
influence forest structure and composition, and indirectly influence forest structure through
composition (see Figure 2). Measured variables were grouped into three broad environmen-
tal factors: topography, climate, and soils. The measured variables of each environmental
factor were all correlated to each other (not shown in Figure 2 for simplicity). Each factor
could have been represented by many measures, so we compiled a large pool of poten-
tial explanatory variables to select from (see Table A1 for a complete, detailed list of
explanatory variables).
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Figure 2. Conceptual model used at the beginning of structural equation modeling. This model
represents our initial hypothesis that topography, climate, and soil directly drive variation in structure
and composition, and indirectly drive variation in structure through composition. Dashed boxes
represent conceptual groupings of variables, solid boxes represent measured variables, hexagons
represent composites of multiple measured variables, and arrows indicate causal relationships in
the data. Variables are described in Methods: Identifying drivers of variability and details for all
variables are provided in Table A1. Correlation between all environmental variables was included in
the model, but for simplicity were not shown in the diagram.

We used composite variables extensively as predictors of forest properties. Compos-
ites are an interpretational tool that can be used to compile the influences of multiple
conceptually-linked variables into one composite effect. Topographic variables were based
on a high-resolution (1 m × 1 m), LiDAR-derived digital elevation model (DEM), and were
calculated at 10 m resolution in ArcMap 10 software [61] and in R (version 3.6.1) statistical
software using the ‘raster’ [62] and ‘SpatialEco’ [63] packages. In the conceptual model
we selected from Beer’s aspect (or northeastness) [64], the heat load index (HLI) [65], and
the solar radiation index (SRI; calculated for the years 1879 and 2014) [66] to represent
‘aspect’ as a composite variable; we selected from elevation, topographic slope position
(TPI), and hierarchical slope position (HSP) to represent ‘position’ as a composite variable;
and we selected from slope, roughness, and the topographic ruggedness index (TRI) [67]
to represent ‘texture’ as a composite variable (Figure 2).

Climate factors included seven different climate variables: precipitation, mean temper-
ature, minimum and maximum temperatures, mean dewpoint temperature, and maximum
and minimum vapor pressure deficits. These data were acquired from the Parameter-
elevation Regressions on Independent Slopes Model (PRISM) [68] for each month in 30
year periods from 1895 to 1924 (historical climate) and 1981 to 2010 (contemporary climate).
PRISM data were used in ecological analyses where weather data have not been collected



Forests 2021, 12, 622 7 of 29

on site. We spatially downscaled climate variables from their native 800 m × 800 m resolu-
tion to the plot level resolution (60 m × 60 m) using gradient and inverse distance-squared
weighting methods as described by Rodman et al. [23]. The downscaled climate variables
were summarized as annual averages and seasonal (e.g., summer = 1 June–31 August)
averages for the 30-year periods and assigned to each corresponding plot. In the conceptual
model we selected from precipitation, dewpoint temperature, minimum and maximum
vapor pressure deficit variables into a ‘water availability’ composite variable; and selected
from mean, minimum and maximum temperature variables into a ‘temperature’ composite
variable (Figure 2).

Soil parent material is known to influence forest conditions [23,35]; however, parent
material does not vary substantially across the study area. Data from the Natural Resources
Conservation Service’s Soil Survey Geographic database (SSURGO) indicated that the
entire study area was Kaibab Limestone residuum [69]. In lieu of parent material, we used
soil characteristics that do vary across the study area and are still important drivers of forest
conditions [32,59]. Soil variables were calculated from the SoilGrids 100 m dataset [70].
Soil variables included six soil properties—percent organic C, total N, bulk density, pH,
percent sand, and percent clay—at seven standard soil depths—0, 5, 15, 30, 60, 100, and 200
cm. We selected from all these variables to represent a ‘soil’ composite variable (Figure 2).

We used average diameter and tree density from the historical reconstruction and
the contemporary survey as indicators of forest structure in the SEMs. To represent forest
composition in the SEMs, we used distance-based ordination techniques to reduce the
complexity of the community data so that they would be easier to use in variable selection
and structural equation modeling. We used the ‘vegan’ package [71] in R for this anal-
ysis. We transformed and standardized plot-level species count data before calculating
Bray–Curtis distance to describe the differences between plot overstory communities. We
then used nonmetric multi-dimensional scaling (NMDS) to calculate an independent three-
axis solution for both the historical and contemporary community data and to calculate
species scores within ordination space. Each three-axis solution was rotated to place the
maximum variation along the first axis, which we then used to summarize the commu-
nity composition of each plot (see Appendix B for a more complete description of this
approach). Transformed average diameter, transformed density and the first axis scores
from the community NMDS, make up the response variables for both our historical and
contemporary models.

With more than 100 potential explanatory variables to include in each model, but
desiring to keep the models parsimonious, we selected explanatory variables from each
category to build each composite variable based on correlation with the response variables.
We selected variables with the strongest correlations (i.e., greater than 0.1 or less than −0.1),
making sure not to select redundant variables (e.g., the same soil characteristic at multiple
depths, or the same climate variable at multiple seasons).

Using these criteria, we identified eleven measures of topography, climate, and soil
to include in both the historical and contemporary models. For the topography factor,
we selected hierarchical slope position to represent position, the solar radiation index to
represent aspect, and the topographic ruggedness index to represent texture. We selected
percent organic C at 30 cm, pH at 0 cm, and percent clay at 30 cm to represent the composite
soil factor. For the composite climate factor, we selected winter minimum vapor pressure
deficit and spring precipitation to represent water, and fall mean temperature, and winter
maximum and minimum temperatures to represent temperature. For the contemporary
model, we identified nine measures of topography, climate, and soil to include in the model.
For topography, the same factors (HSP, SRI, and TRI) were selected. We selected pH at 0
cm, and percent clay at 30 cm to represent the soil factor. For climate, we selected spring
precipitation and summer mean dewpoint temperature to represent water, and winter
minimum and maximum temperatures to represent temperature.

After variables were selected, we verified the linearity of relationships before making
necessary modifications to the model. To simplify the model where possible, we replaced
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all of the topography composite variables (aspect, position, and texture), which had only
one explanatory variable, with direct effects. We found multicollinearity between the
explanatory variables of ‘temperature’ and ‘water’ which may have caused path coefficient
inflation in the model. This issue was resolved by combining these two factors into a single
‘climate’ composite. While our approach of correlating all environmental variables was
conservative, this saturated the model, and model fit statistics could not be calculated
with any spare degrees of freedom. To evaluate model fit we removed the least significant
correlation from the model, and calculated three model fit statistics (chi-squared goodness-
of-fit, Chi2; an adjusted goodness-of-fit index (AGFI); and root mean square error of
approximation, RMSEA) over one degree of freedom. Because there were no significant
correlations in the paths removed, the final models behaved essentially the same as a
saturated model. While saturated models are traditionally not used as the final SEM,
this was appropriate in our analysis because our objective was to evaluate the relative
importance of the environmental factors rather than test a novel theory of hypothesized
relationships in the ecosystem.

3. Results
3.1. Historical and Contemporary Conditions

Historical forest conditions prior to fire regime disruption (1879) differed significantly
from contemporary conditions in 2014 (Figure 3). Mean tree diameter across the study sites
averaged 27.5 (95% CI: 13.3–57.0) cm historically and varied widely across sample plots.
Contemporary average tree diameter was significantly lower (p < 0.0001) than historical
conditions and averaged 20.1 (7.4–39.0) cm.

In 1879, basal area averaged 12.6 (2.0–79.4) m2 ha−1 (see Figures 3 and 4). Historical basal
area was highly variable but significantly lower than contemporary basal area (p < 0.0001).
Contemporary basal area averaged 30.8 (12.0–58.3) m2 ha−1 (see Figures 3 and 4). Historical
forests had an average density of 165 (48–352) trees ha−1. Comparisons with contemporary
forest were found to be significantly denser (p < 0.0001), with an average density of 657 (188–
2302) trees ha−1.
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parisons between the two time periods indicate a decrease in average tree diameter, an increase in
basal area, and a drastic increase in density from historical to contemporary periods.

Historically, forest overstory composition was typical of dry mixed-conifer in the
southwest (Figure 5). Ponderosa pine accounted for approximately half of total EIV
(0.934/2.0; see Equation (1)), with minor components of white fir (EIV: 0.368), Douglas-fir
(EIV: 0.302), and Gambel oak (EIV: 0.214). Contemporary composition is also characteristic
of dry mixed conifer, though ponderosa pine was found to have decreased in importance
(EIV: 0.622) and there has been a shift towards more mesic species. For example, white fir
now accounts for approximately one-third of total EIV (0.620/2.0), Douglas-fir increased to
0.370 EIV, and southwestern white pine increased from 0.018 in 1979 to 0.102 EIV in 2014.
There were also changes in the relative dominance of sprouting deciduous trees: Gambel
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oak (0.214 to 0.106) and aspen (0.118 to 0.008) decreased; bigtooth maple and New Mexico
locust increased (0.042 to 0.146; and 0.004 to 0.024, respectively).
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Figure 5. Historical and contemporary forest community composition. Squares are color coded by
species, and each square represents 1 percent of total ecological importance values for the given
time period across all plots combined. Species are identified by four letter codes: ABCO (white fir;
Abies concolor), ACGR (bigtooth maple; Acer grandidentatum), PIPO (ponderosa pine; Pinus ponderosa),
PIST (southwestern white pine; Pinus strobiformis), POTR (quaking aspen; Populus tremuloides), PSME
(Douglas-fir; Pseudotsuga menziesii), QUGA (Gambel oak; Quercus gambelii), and RONE (New Mexico
locust; Robinia neomexicana). Comparison between the two panels shows a decrease in fire adapted
species from 1879 to 2014.
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3.2. Spatial Variability

Overall, we found little indication of spatial autocorrelation in historical forest structure,
suggesting homogeneity of conditions. This homogeneity can be seen in the maps of historical
forest structure (e.g., Figure 4). Historically, average diameter had low Moran’s I and fell
within the envelope of no significant spatial autocorrelation at all distances (Figure 6a). Basal
area was significantly autocorrelated at distances of 90 and 210 m but at all other distances
was within the envelope of no significant spatial autocorrelation (Figure 6b). Interestingly,
density was significantly negatively autocorrelated at 810 m, but was otherwise not significantly
autocorrelated at all other lags. (Figure 6c).

Figure 6. Correlograms of historical and contemporary forest structure. Each panel displays the
spatial autocorrelation (as measured by Moran’s I) for historical and contemporary conditions (differ-
entiated by color). Points connected by solid lines indicate the Moran’s I at a given lag distance, and
the dotted lines indicate the upper and lower limits of no significant spatial autocorrelation using 95%
confidence envelopes. Points that are above the threshold are significantly spatially autocorrelated,
points that are below the threshold are significantly negatively autocorrelated. Historically, measures
of forest structure were generally not autocorrelated. Contemporarily, average diameter and density
are both significantly autocorrelated.

Unlike historical conditions, some contemporary conditions exhibited significant
spatial autocorrelation. Average diameter was highly autocorrelated over distances of
0 to 360 m and significantly autocorrelated at distances up to 1000 m (Figure 6a). Tree
density was significantly autocorrelated in contemporary forests at distances up to 360 m
and showed slight autocorrelation again at approximately 600 m, but was otherwise
insignificant (Figure 6c). Unlike average diameter and density, contemporary basal area
remained largely uncorrelated, only showing slight autocorrelation at distances of 210 and
570 m (Figure 6b).

3.3. Drivers of Variability

In both the historical and contemporary datasets, environmental variables exhibited
stronger correlations with composition as compared to structure or composition and historical
correlation coefficients were generally lower than contemporary values (Figure 7). Additionally,
the relationships between average diameter and most environmental variables switched signs,
changing from weakly positive to moderately negative, or weakly negative to moderately
positive between historical and contemporary time periods (Figure 7).
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Figure 7. Pearson correlation coefficients between selected predictors and forest structure responses
for the subset of environmental variables, and measures of forest structure and composition included
in the historical and contemporary models. Strength and direction of the correlation are indicated by
color and reported by the correlation coefficient.

The Chi2, RMSEA, and AGFI evaluations of model fit suggest that the historical SEM
adequately fit our data (see Table 1). In these tests the p-value indicates the probability
of good fit; commonly, p > 0.05 is considered adequate, though this is only convention.
The AGFI has no p-value; commonly, an AGFI > 0.95 is interpreted to represent a good-
fitting model, but again, this is only convention. The historical model has good descriptive
power for composition (r2 = 0.483) but has low descriptive power for average diameter (r2

= 0.088) and basal area (r2 = 0.101).

Table 1. Summary of structural equation model (SEM) performance. Measures of model fit (Chi2) p-value, root mean
square error of approximation (RMSEA), and an adjusted goodness-of-fit index (AGFI) are reported, as are measures of the
predictive power of the models (r2 for average diameter, density, and composition). Model fit statistics are calculated over
one degree of freedom for both historical and contemporary models.

Model Fit Response Variable r2

Model Chi2 (p-Value)
RMSEA

(p-Value) AGFI Density Average
Diameter Composition

Historical 0.58 (0.447) <0.001 (0.581) 0.968 0.088 0.101 0.483
Contemporary 0.42 (0.515) <0.001 (0.638) 0.980 0.296 0.317 0.632

Topography and climate factors had relatively high importance in driving historical
forest structure and composition, while soil factors had a lower impact on forest conditions
(see Figure 8). The climate–composition relationship had the highest single path coefficient
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in the historical model (total absolute value of the path coefficient: 0.66), while topography
has a higher overall impact on historical composition than climate, from the cumulative
effect of aspect, position, and texture (0.73). Climate was a significant driver of historical
density (0.28) and diameter (0.37) but was of approximately equal importance with topog-
raphy for these structural variables (0.24 and 0.32, respectively). Aspect and texture were
not significant drivers of tree density or diameter. Soil had an impact on historical density
(0.35) and diameter (0.38) that was similar to that of climate and topography. Soil had a
relatively small, though still significant, impact in driving historical forest composition
(0.39). Composition did not significantly drive variation in historical tree density but did
have an impact on average tree diameter. While statistically significant, this path coefficient
(−0.23) was the smallest driver of historical average diameter. See Appendix A Table A3
for full details of the resulting model path components.
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Figure 8. Historical structural equation model. The relative importance of each environmental
factor (topography, climate, and soil) can be interpreted by the width of the pathways leading to
structure and composition, which have been scaled to indicate the magnitude of the path coefficient.
Paths with negative coefficients are marked with diagonal hatch marks. Only paths with coefficients
significantly different from 0 are included in the diagram. Coefficients are also reported on the paths,
and letters on the path correspond to entries in Table A3: Historic and contemporary model pathway
details. Topography and climate have the greatest influence on forest composition, and climate and
soil have the greatest influence on forest structure.

For our contemporary model, Chi2, RMSEA, and AGFI results also suggest that the
contemporary model converged at a solution with good fit (Table 1). The model had
good descriptive power for density (r2 = 0.296) and diameter (r2 = 0.317), and even better
description of forest composition (r2 = 0.632). In the contemporary model (Figure 9),
climate factors had the strongest relative importance for composition, while topography
had the highest relative importance for forest structure. The pathway from climate to
composition had the strongest total absolute value of a path coefficient in the model (0.79)
while pathways that lead from climate to density (0.21) and average diameter (0.21) had
relatively low importance. Topography had the strongest influence on contemporary forest
density (−0.36) and average diameter (0.32). Like the historical model, neither aspect
nor texture were significant drivers of contemporary forest structure. The cumulative
effects of position and aspect on composition (−0.59) was a relatively important pathway.
However, texture was not an important driver of contemporary composition. Soil had
a relatively weak importance to both contemporary forest density (0.20) and diameter
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(0.26); this differs from the historical model, where soil was a relatively equal driver of
forest structure. The pathway from soil to composition (0.35) was the weakest driver of
contemporary composition. The relationship between contemporary forest composition
and structure differed from the one suggested by the historical model. Contemporarily,
composition was a significant driver of forest density (0.26), but not forest diameter. See
Appendix A Table A3 for full details of the resulting model path components.
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Figure 9. Contemporary structural equation model. The relative importance of each environmental
factor (topography, climate, and soil) can be interpreted by the width of the pathways leading to
structure and composition, which have been scaled to indicate the magnitude of the path coefficient.
Paths with negative coefficients are marked with diagonal stripes. Only paths with coefficients
significantly different from 0 are included in the diagram. Coefficients are also reported on the paths,
and letters on the path correspond to entries in Table A3: Historic and contemporary model pathway
details. Topography and climate have the greatest influence on forest composition, and climate and
soil had the greatest influence on forest structure.

4. Discussion
4.1. Historical Range of Variability

Our results suggest that the abrupt disruption to the historical frequent fire regime
drastically altered the forests on the Mogollon Rim, as has been reported in dry mixed-
conifer forests across the southwest (e.g., [12,19–23]). Reconstructed plots showed low
density, with large and variable tree sizes and low, yet variable, basal area. The historical
variability we found was similar to the ranges reported by both Reynolds et al. [9] and
Wassermann et al. [72] for dry mixed-conifer forests in the southwest. Additionally, the
average basal area and tree density we found were slightly higher than those reconstructed
elsewhere on the Mogollon Rim [14,19] and in the San Juan mountains of southwestern
Colorado [12]. Historical dry mixed-conifer forest at the Grand Canyon were reported to
be denser than those we found in our study [20,39] and those reported by Williams and
Baker [73] for the Mogollon Rim. When compared to mixed-conifer reference conditions
outside the southwest, our results are similar to those found on the Front Range of northern
Colorado and southern Wyoming [74,75], and considerably less dense than the results
reported from some parts of the Sierra Nevada in California [76]. Historical conditions
from other parts of the Sierra Nevada [33,77,78] and mountains in Oregon [79–81] had
higher basal area and lower tree density than in our study area, suggesting that those
forests had fewer and larger trees than those found on the Mogollon Rim.
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Contemporary forest conditions diverged significantly from historical in all three
measures of forest structure. Average diameter was significantly lower in contemporary
conditions, reflecting the legacy of harvesting larger trees for timber and the influx of
many small trees due to fire exclusion originating in the mid-1900s [14]. Basal area and
tree density increased significantly. These changes are consistent with other studies in dry
mixed-conifer forests across the southwest; Fulé et al. [20], Heinlein et al. [22], Rodman
et al. [19,23], and Strahan et al. [14] all recorded large increases in tree density and basal
area in dry mixed-conifer forests over a similar time frame.

We found a shift in forest composition away from dry mixed-conifer, towards a more
wet mixed-conifer composition. For example, ponderosa pine has decreased in importance
(EIV), while white fir has increased greatly. Southwestern white pine and Douglas-fir have
also showed modest increases in EIV. This trend has been previously reported for forests of
the Mogollon Rim [13,19] and in other mixed-conifer forests in the Southwest [14,20,22,26].
Our results parallel those of other studies concluding that frequent fires kept mesic, fire-
intolerant species in check, but when released from fire they established and survived in
areas where they were previously excluded [9,13].

4.2. Changes to Spatial Patterns

Changes to forest structure and composition were accompanied by changes to the
spatial pattern to forest conditions, as indicated by our correlogram analysis. Prior to
fire regime disruption, the forests on the Mogollon Rim exhibited little significant spatial
autocorrelation across scales up to 1000 m (~314 ha). Similarly, Strahan et al. [14] found
no significant autocorrelation at similar resolutions, and at distances up to 2500 m in
mixed-conifer forests near our site. Both random and aggregated fine-scale patterns
have been found on the Mogollon Rim [19,23], as well as outside the southwest [76,82].
Random arrangement of forest structural conditions suggests multi-scalar-level structural
heterogeneity that has been theorized [9,37], but not well documented.

In our study, contemporary average diameter and tree density were strongly auto-
correlated at distances up to 360 m, suggesting that these forests were composed of large
homogeneous patches, approximately 40 ha in size. This distance likely reflects the scale
of variation for environmental patterns related to geomorphic features (e.g., ridges and
valleys) on the study landscape. Autocorrelation at distances up to 1000 m indicated low
variation between patches. Interestingly, basal area showed no autocorrelation despite
both average diameter and tree density being autocorrelated. Disruption to the natural
frequent fire regime, which maintained historical forest patterns, is the likely explanation
for this change. Strahan et al. [14] described a similar shift in the mid-scale variability of
community traits, and reported significant spatial autocorrelation up to 250 m. Managers
seeking to restore historical spatial patterns should break up large and homogeneous
stands into smaller, variable patches, and restoration prescriptions should aim to generate
random structural variation within landscape patches. Silvicultural treatments such as
group selection or variable density thinning may achieve these goals.

4.3. Drivers of Variability

Our model of historical drivers of variability had poor explanatory power for de-
scribing variation in forest structure, and moderate power for composition. This weak
relationship between environment and forest structure was also seen in low bivariate
correlations between average diameter, density and almost all environmental predictors.
Low variation in historical density may have been due to the natural fire regime of fre-
quent, surface fires. Indeed, fire may have been the main driver of historical variability
and diminished importance of environmental factors in determining tree size and stand
basal area. However, we were unable to include site-specific measures of fire in our model,
and the relative importance of fire versus environmental factors in determining historical
structure and composition needs further research.
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In our model, climate and topography were the main drivers of historical variation in
forest structure and composition. Path coefficients indicated that warm and dry winters,
high spring precipitation, and warm fall temperatures correlated with low ponderosa pine
dominance. Microsites with higher water availability had higher tree densities, and sites
with cold, dry winters were associated with larger trees. Winter temperatures influence
snowpack duration into the spring and may in turn determine forest density [33]. Spring
precipitation is important for ponderosa pine seedling establishment in some forests [31],
while fall temperatures may influence fuel moisture and wildfire behavior. Over longer
periods, climate can affect fuel availability and timing of widespread fire years in mixed-
conifer forests [12,26,29].

Topography was an important driver in our model of historical variation. Slope
position was consistently important, reflecting the effects of microsite variability on forest
conditions [27,83]. Aspect also drove variation. Sites with more solar radiation dry faster,
and drought-tolerant species such as ponderosa pine and Gambel oak are better able to
occupy these sites. Drying could also affect the availability of fuels for combustion and
in turn affect fire frequency. Interestingly, Rodman et al. [23] did not find topographic
factors to be important in determining historical forest structure at sites near ours, nor did
Abella and Covington [34] at other sites in northern Arizona. The systematic sample grid
in our study area may have captured a wider range of topographic conditions and greater
variation in structure and composition than these previous studies.

To evaluate how the relative importance of drivers of variability may have changed, we
compared historical and contemporary models. A major difference between the two models
was that they describe forests with and without fire. In addition, other disturbances were
present during the contemporary period including livestock grazing and selective logging.
We were not able to include these processes in our contemporary model. In addition,
we did not have measures of natural disturbances such as insect or disease outbreaks,
droughts, or wildfires in either model. Such mortality factors would contribute to variation
in forest density and composition. Without plot-level measures of these disturbances, we
assumed they affected all plots equally, and were confounded with other changes that
occurred between 1879 and 2014, such as fire regime disruption and climate change.

Soil was a relatively unimportant driver of variability in both historical and contem-
porary models. However, Rodman et al. [23], Abella and Denton [35], Kimsey et al. [36],
and Laughlin et al. [58] demonstrated that soil parent material drove significant variation
in forest structure and composition at northern Arizona sites. The limited variation in soil
parent material across our study site likely explains our findings.

Interestingly, environmental factors exhibited a stronger influence on contemporary
forest conditions than on historical structure and composition, possibly due to anthro-
pogenic exclusion of frequent fire. The contemporary model had stronger explanatory
power than the historical model, which reflected stronger correlations between contem-
porary environmental variables and forest measures. Climate was distinctly the most
important driver of forest composition on the contemporary landscape, and indicated that
sites with high spring precipitation, cold winter low temperatures, and dry summers were
associated with low ponderosa pine dominance. Forest composition may have histori-
cally been constrained by species adaptedness to fire, but in the absence of fire climate
asserted greater control of forest composition. Similar responses to fire exclusion have
been described in other studies [9,13,14,19,20]. We found that climate increased in relative
importance contemporarily, and different components of climate became important. Simi-
larly, Mueller et al. [84] described a strengthening fire-climate relationship, and others have
reported changes in the timing of widespread fire years relative to periods of drought or
above average precipitation since fire regime disruption [85,86].

Topography was less important to contemporary forest composition than in the
historical period, perhaps because microsite–fuel relationships [83] were less important.
Topography was the strongest driver of both tree density and diameter, but this relationship
changed dramatically since fire exclusion. While lower slopes and valleys historically had
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lower density and larger trees, contemporarily they were dominated by high densities of
smaller trees. Historical logging targeted large, commercially valuable trees, which may
have been concentrated on lower, more productive microsites. While density has increased
significantly across the entire study area, Rodman et al. [23] and Stephens et al. [33] both
found that density increases were greatest on mesic sites such as valleys and lower slopes.
The increase in density on the Mogollon Rim sites was also related to compositional changes.
Composition is now a significant driver of forest density, and intermediate conifers and
sprouting species that would have previously been kept in low densities by frequent fire
have increased on lower sites.

5. Conclusions

Overall, our study showed historically variable, heterogeneous, and open dry mixed-
conifer forests on the Mogollon Rim prior to anthropogenic fire exclusion, with ponderosa
pine dominating stands on ridgetops, and more mixed composition persisting in drainages.
These changes parallel those seen in dry mixed-conifer forests across the southwest and
demonstrate the need for extensive restoration efforts to reduce forest density and increase
diversity of structural conditions. Overly dense forests are at a heightened risk of large,
severe wildfire, which could cause type change and reduce provision of ecosystem services.
Managers restoring dry mixed-conifer forests on the Mogollon Rim can use historical
conditions as guides for silvicultural prescriptions, while restoration of dry mixed-conifer
elsewhere in the southwest may be better served by the more general HRV described in
reviews (e.g., [9]).

Based on our findings, we hypothesize that fire was a major driver of historical
forest variation, and in the absence of fire, environmental factors assumed greater control
of variation. This supposition points to the reintroduction of fire as a restoration tool.
Reintroduction of fire would help reduce the density of small diameter, fire-intolerant trees
and restore historical forest composition. Small-diameter trees have higher fire-related
mortality than large trees, and persistence of fire-intolerant species would have been
limited [87]. Low severity fire, even multiple burns at low severity, do not always result in
forest density that approximates historical conditions, and it may be desirable to allow some
fire to burn at moderate severity on the Mogollon Rim [88,89]. However, recent research
suggests that this can also lead to mortality of larger trees [90]. Some loss of large trees
may be acceptable in dry mixed-conifer forests when these species are undesirable from a
restoration perspective; however, further research and applied management experiments
are needed to better understand how mixed-severity fire can be used to achieve multiple
restoration objectives.

Contemporary forest conditions are driven by environmental factors, especially those
related to climate, but these relationships are stronger and different from those of the past.
Historical climate relationships may not serve as an effective guide under novel climate
situations, so managers seeking to increase ecological resilience to climate change are
advised to use adaptive silvicultural approaches, such as implementing a wide variety of
treatments and opportunistically making use of microsite variation. Topographic position
may serve as a useful guide for restoring historical forest composition, indicating that forest
managers should encourage pine-dominated stands on ridgetops and upper slopes, while
allowing a more mixed composition of conifers and shade-tolerant hardwoods in valley
bottoms and lower slopes. The topographically complex Mogollon Rim has a diversity of
microsites that could serve as refugia for mesic mixed-conifer species as climate change
intensifies over the coming decades. The increased understanding of historical ranges,
patterns, and environmental drivers of variability presented in our study will be useful for
maintaining dry mixed-conifer forests across the Southwest.
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Appendix A

Table A1. Summary of all environmental variables considered for inclusion in models. Variables are organized by environmental factor, and subgroup if applicable. Summary statistics
(mean, minimum, maximum, and standard deviation, brief description, units, and data source) are provided for each variable. Historical and contemporary climate variables are
listed separately.

Factor Variable Mean Min Max SD Description Units Source

Climate:
Temperature Annual tmax 15.18 14.58 15.92 0.32 Annual average of daily maximum temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Annual tmax 15.55 14.95 16.31 0.33 Annual average of daily maximum temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Spring tmax 13.91 13.28 14.65 0.33 Spring average of daily maximum temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Spring tmax 14.44 13.80 15.22 0.34 Spring average of daily maximum temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Summer tmax 24.67 23.98 25.48 0.36 Summer average of daily maximum temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Summer tmax 25.44 24.75 26.27 0.36 Summer average of daily maximum temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Fall tmax 15.97 15.43 16.69 0.31 Fall average of daily maximum temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Fall tmax 16.27 15.72 17.01 0.31 Fall average of daily maximum temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Winter tmax 6.17 5.63 6.86 0.31 Winter average of daily maximum temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Winter tmax 6.07 5.54 6.76 0.30 Winter average of daily maximum temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Annual tmean 8.96 8.85 9.05 0.03 Annual average of daily average temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Annual tmean 9.31 9.20 9.40 0.04 Annual average of daily average temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Spring tmean 7.35 7.23 7.50 0.05 Spring average of daily average temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Spring tmean 7.84 7.73 8.00 0.05 Spring average of daily average temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Summer tmean 18.06 17.94 18.14 0.04 Summer average of daily average temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Summer tmean 18.53 18.40 18.63 0.05 Summer average of daily average temperature (1981 to 2010) degrees Celsius PRISM
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Table A1. Cont.

Factor Variable Mean Min Max SD Description Units Source

Climate:
Temperature Fall tmean 9.82 9.68 9.91 0.06 Fall average of daily average temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Fall tmean 10.16 9.99 10.29 0.08 Fall average of daily average temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Winter tmean 0.60 0.45 0.76 0.05 Winter average of daily average temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Winter tmean 0.71 0.63 0.84 0.04 Winter average of daily average temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Annual tmin 2.77 1.96 3.25 0.32 Annual average of daily minimum temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Annual tmin 3.07 2.25 3.61 0.33 Annual average of daily minimum temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Spring tmin 0.79 0.11 1.21 0.26 Spring average of daily minimum temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Spring tmin 1.24 0.57 1.68 0.26 Spring average of daily minimum temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Summer tmin 11.45 10.61 12.05 0.35 Summer average of daily minimum temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Summer tmin 11.62 10.79 12.26 0.36 Summer average of daily minimum temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Fall tmin 3.67 2.67 4.29 0.40 Fall average of daily minimum temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Fall tmin 4.04 3.00 4.76 0.44 Fall average of daily minimum temperature (1981 to 2010) degrees Celsius PRISM

Climate:
Temperature Winter tmin −4.98 −5.70 −4.69 0.26 Winter average of daily minimum temperature (1895 to 1924) degrees Celsius PRISM

Climate:
Temperature Winter tmin −4.64 −5.34 −4.25 0.27 Winter average of daily minimum temperature (1981 to 2010) degrees Celsius PRISM

Climate: Water Annual ppt 921 760 975 71 Annual total precipitation (1895 to 1924) millimeters PRISM
Climate: Water Annual ppt 887 752 932 59 Annual total precipitation (1981 to 2010) millimeters PRISM
Climate: Water Spring ppt 169 131 187 17 Spring total precipitation (1895 to 1924) millimeters PRISM
Climate: Water Spring ppt 169 136 184 15 Spring total precipitation (1981 to 2010) millimeters PRISM
Climate: Water Summer ppt 267 203 286 29 Summer total precipitation (1895 to 1924) millimeters PRISM
Climate: Water Summer ppt 242 182 259 27 Summer total precipitation (1981 to 2010) millimeters PRISM
Climate: Water Fall ppt 195 179 200 7 Fall total precipitation (1895 to 1924) millimeters PRISM
Climate: Water Fall ppt 190 177 194 5 Fall total precipitation (1981 to 2010) millimeters PRISM
Climate: Water Winter ppt 289 246 316 19 Winter total precipitation (1895 to 1924) millimeters PRISM
Climate: Water Winter ppt 286 255 306 14 Winter total precipitation (1981 to 2010) millimeters PRISM
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Table A1. Cont.

Factor Variable Mean Min Max SD Description Units Source

Climate: Water Annual tdmean −3.95 −4.02 −3.88 0.03 Annual average of daily dewpoint temperature (1895 to 1924) degrees Celsius PRISM
Climate: Water Annual tdmean −2.29 −2.38 −2.21 0.04 Annual average of daily dewpoint temperature (1981 to 2010) degrees Celsius PRISM
Climate: Water Spring tdmean −7.40 −7.48 −7.32 0.04 Spring average of daily dewpoint temperature (1895 to 1924) degrees Celsius PRISM
Climate: Water Spring tdmean −5.45 −5.54 −5.30 0.06 Spring average of daily dewpoint temperature (1981 to 2010) degrees Celsius PRISM
Climate: Water Summer tdmean 3.02 2.86 3.16 0.07 Summer average of daily dewpoint temperature (1895 to 1924) degrees Celsius PRISM
Climate: Water Summer tdmean 4.41 4.28 4.53 0.07 Summer average of daily dewpoint temperature (1981 to 2010) degrees Celsius PRISM
Climate: Water Fall tdmean −2.59 −2.67 −2.50 0.04 Fall average of daily dewpoint temperature (1895 to 1924) degrees Celsius PRISM
Climate: Water Fall tdmean −0.78 −0.89 −0.65 0.05 Fall average of daily dewpoint temperature (1981 to 2010) degrees Celsius PRISM
Climate: Water Winter tdmean −8.82 −8.89 −8.75 0.02 Winter average of daily dewpoint temperature (1895 to 1924) degrees Celsius PRISM
Climate: Water Winter tdmean −7.36 −7.41 −7.26 0.03 Winter average of daily dewpoint temperature (1981 to 2010) degrees Celsius PRISM

Climate: Water Annual vpdmax 14.65 13.94 15.51 0.37 Annual average of daily maximum vapor pressure deficit (1895
to 1924) hectopascals PRISM

Climate: Water Annual vpdmax 14.94 14.19 15.75 0.35 Annual average of daily maximum vapor pressure deficit (1981
to 2010) hectopascals PRISM

Climate: Water Spring vpdmax 13.51 12.87 14.24 0.32 Spring average of daily maximum vapor pressure deficit (1895 to
1924) hectopascals PRISM

Climate: Water Spring vpdmax 13.73 13.11 14.40 0.29 Spring average of daily maximum vapor pressure deficit (1981 to
2010) hectopascals PRISM

Climate: Water Summer vpdmax 24.22 23.03 25.61 0.61 Summer average of daily maximum vapor pressure deficit (1895
to 1924) hectopascals PRISM

Climate: Water Summer vpdmax 25.03 23.56 26.49 0.66 Summer average of daily maximum vapor pressure deficit (1981
to 2010) hectopascals PRISM

Climate: Water Fall vpdmax 14.35 13.72 15.21 0.35 Fall average of daily maximum vapor pressure deficit (1895 to
1924) hectopascals PRISM

Climate: Water Fall vpdmax 14.38 13.73 15.16 0.32 Fall average of daily maximum vapor pressure deficit (1981 to
2010) hectopascals PRISM

Climate: Water Winter vpdmax 6.53 6.15 6.99 0.20 Winter average of daily maximum vapor pressure deficit (1895 to
1924) hectopascals PRISM

Climate: Water Winter vpdmax 6.61 6.36 6.93 0.13 Winter average of daily maximum vapor pressure deficit (1981 to
2010) hectopascals PRISM

Climate: Water Annual vpdmin 3.26 2.84 3.56 0.18 Annual average of daily minimum vapor pressure deficit (1895
to 1924) hectopascals PRISM

Climate: Water Annual vpdmin 3.09 2.92 3.27 0.09 Annual average of daily minimum vapor pressure deficit (1981
to 2010) hectopascals PRISM

Climate: Water Spring vpdmin 3.10 2.78 3.32 0.13 Spring average of daily minimum vapor pressure deficit (1895 to
1924) hectopascals PRISM

Climate: Water Spring vpdmin 3.15 2.97 3.30 0.07 Spring average of daily minimum vapor pressure deficit (1981 to
2010) hectopascals PRISM
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Table A1. Cont.

Factor Variable Mean Min Max SD Description Units Source

Climate: Water Summer vpdmin 5.30 4.61 5.84 0.31 Summer average of daily minimum vapor pressure deficit (1895
to 1924) hectopascals PRISM

Climate: Water Summer vpdmin 5.13 4.88 5.46 0.15 Summer average of daily minimum vapor pressure deficit (1981
to 2010) hectopascals PRISM

Climate: Water Fall vpdmin 3.16 2.66 3.53 0.22 Fall average of daily minimum vapor pressure deficit (1895 to
1924) hectopascals PRISM

Climate: Water Fall vpdmin 2.86 2.64 3.11 0.12 Fall average of daily minimum vapor pressure deficit (1981 to
2010) hectopascals PRISM

Climate: Water Winter vpdmin 1.48 1.30 1.55 0.06 Winter average of daily minimum vapor pressure deficit (1895 to
1924) hectopascals PRISM

Climate: Water Winter vpdmin 1.20 1.15 1.23 0.02 Winter average of daily minimum vapor pressure deficit (1981 to
2010) hectopascals PRISM

Soil BD 0 cm 666 527 948 67 Bulk density of the fine earth fraction (<2 mm) at 0 cm soil depth grams per cubic
centimeter

Soil
Grids

Soil BD 5 cm 891 766 1002 51 Bulk density of the fine earth fraction (<2 mm) at 5 cm soil depth grams per cubic
centimeter

Soil
Grids

Soil BD 15 cm 1131 1023 1212 36 Bulk density of the fine earth fraction (<2 mm) at 15 cm soil depth grams per cubic
centimeter

Soil
Grids

Soil BD 30 cm 1228 1162 1287 25 Bulk density of the fine earth fraction (<2 mm) at 30 cm soil depth grams per cubic
centimeter

Soil
Grids

Soil BD 60 cm 1336 1219 1418 44 Bulk density of the fine earth fraction (<2 mm) at 60 cm soil depth grams per cubic
centimeter

Soil
Grids

Soil BD 100 cm 1447 1364 1504 25 Bulk density of the fine earth fraction (<2 mm) at 100 cm soil
depth

grams per cubic
centimeter

Soil
Grids

Soil BD 200 cm 1439 1362 1507 30 Bulk density of the fine earth fraction (<2 mm) at 200 cm soil
depth

grams per cubic
centimeter

Soil
Grids

Soil Clay 0 cm 16 11 21 2 Percent clay at 0 cm soil depth percent by weight Soil
Grids

Soil Clay 5 cm 16 11 21 2 Percent clay at 5 cm soil depth percent by weight Soil
Grids

Soil Clay 15 cm 17 13 21 2 Percent clay at 15 cm soil depth percent by weight Soil
Grids

Soil Clay 30 cm 24 16 37 5 Percent clay at 30 cm soil depth percent by weight Soil
Grids

Soil Clay 60 cm 36 24 50 6 Percent clay at 60 cm soil depth percent by weight Soil
Grids

Soil Clay 100 cm 37 25 49 6 Percent clay at 100 cm soil depth percent by weight Soil
Grids
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Table A1. Cont.

Factor Variable Mean Min Max SD Description Units Source

Soil Clay 200 cm 36 24 50 6 Percent clay at 200 cm soil depth percent by weight Soil
Grids

Soil N Total 0 cm 70 48 81 5 Total Nitrogen at 0 cm soil depth percent by weight Soil
Grids

Soil N Total 5 cm 37 29 43 3 Total Nitrogen at 5 cm soil depth percent by weight Soil
Grids

Soil N Total 15 cm 21 16 25 2 Total Nitrogen at 15 cm soil depth percent by weight Soil
Grids

Soil N Total 30 cm 13 8 18 2 Total Nitrogen at 30 cm soil depth percent by weight Soil
Grids

Soil N Total 60 cm 10 6 15 2 Total Nitrogen at 60 cm soil depth percent by weight Soil
Grids

Soil N Total 100 cm 9 4 14 2 Total Nitrogen at 100 cm soil depth percent by weight Soil
Grids

Soil N Total 200 cm 11 5 15 2 Total Nitrogen at 200 cm soil depth percent by weight Soil
Grids

Soil pH 0 cm 58.3 55.1 62.7 1.7 pH in 1:1 soil–water solution at 0 cm soil depth pH Soil
Grids

Soil pH 5 cm 56.8 53.7 61.0 1.6 pH in 1:1 soil–water solution at 5 cm soil depth pH Soil
Grids

Soil pH 15 cm 57.0 54.5 61.0 1.5 pH in 1:1 soil–water solution at 15 cm soil depth pH Soil
Grids

Soil pH 30 cm 57.0 55.0 60.3 1.3 pH in 1:1 soil–water solution at 30 cm soil depth pH Soil
Grids

Soil pH 60 cm 57.1 55.2 60.6 1.3 pH in 1:1 soil–water solution at 60 cm soil depth pH Soil
Grids

Soil pH 100 cm 57.2 55.1 61.6 1.5 pH in 1:1 soil–water solution at 100 cm soil depth pH Soil
Grids

Soil pH 200 cm 57.4 55.1 61.9 1.6 pH in 1:1 soil–water solution at 200 cm soil depth pH Soil
Grids

Soil Sand 0 cm 27 18 36 4 Percent sand at 0 cm soil depth percent by weight Soil
Grids

Soil Sand 5 cm 28 19 36 4 Percent sand at 5 cm soil depth percent by weight Soil
Grids

Soil Sand 15 cm 27 18 36 4 Percent sand at 15 cm soil depth percent by weight Soil
Grids

Soil Sand 30 cm 27 20 35 4 Percent sand at 30 cm soil depth percent by weight Soil
Grids
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Table A1. Cont.

Factor Variable Mean Min Max SD Description Units Source

Soil Sand 60 cm 28 20 37 4 Percent sand at 60 cm soil depth percent by weight Soil
Grids

Soil Sand 100 cm 31 22 40 4 Percent sand at 100 cm soil depth percent by weight Soil
Grids

Soil Sand 200 cm 32 23 40 4 Percent sand at 200 cm soil depth percent by weight Soil
Grids

Soil SOC 0 cm 294 186 338 23 Soil organic Carbon at 0 cm soil depth percent by weight Soil
Grids

Soil SOC 5 cm 72 44 96 14 Soil organic Carbon at 5 cm soil depth percent by weight Soil
Grids

Soil SOC 15 cm 28 18 37 6 Soil organic Carbon at 15 cm soil depth percent by weight Soil
Grids

Soil SOC 30 cm 17 8 25 4 Soil organic Carbon at 30 cm soil depth percent by weight Soil
Grids

Soil SOC 60 cm 10 5 14 2 Soil organic Carbon at 60 cm soil depth percent by weight Soil
Grids

Soil SOC 100 cm 8 4 13 2 Soil organic Carbon at 100 cm soil depth percent by weight Soil
Grids

Soil SOC 200 cm 9 3 16 3 Soil organic Carbon at 200 cm soil depth percent by weight Soil
Grids

Topography:
Aspect Beer’s Aspect 1.44 0.00 2.00 0.56 Cosine transformed aspect NA DEM

Topography:
Aspect

Heat Load Index
(HLI) 0.83 0.71 0.97 0.05 Slope-aspect transformation NA DEM

Topography:
Aspect

Solar Radiation
Index (SRI) 1,715,499 1,593,948 1,810,763 41,603 Amount of incoming solar insolation Watt hours per

square meter DEM

Topography:
Position Elevation 2332 2223 2399 41 Elevation above sea level meters DEM

Topography:
Position

Hierarchical Slope
Position (HSP) 3295 −10,371 14,386 5249 Multi-scalar measure of topographic exposure NA DEM

Topography:
Position

Topographic
Position Index

(TPI)
0.55 −11.53 9.75 3.61 Local measure of topographic exposure NA DEM

Topography:
Texture Roughness 17.1 1.4 31.2 5.8 Maximum elevational difference meters DEM

Topography:
Texture Slope 5.5 0.0 10.5 2.3 Steepness of terrain degrees DEM

Topography:
Texture

Terrain
Ruggedness Index

(TRI)
19.3 2.0 42.0 7.2 Average of elevational differences meters DEM
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Table A2. Summary of pathways in historic and contemporary models. Letters in the Diagram Key column correspond to
the letters on pathways in Figures 8 and 9. Values of NA indicate that this pathway is not included in these model diagrams.
Pathway: From and Pathway: To describe the directional relationship between model components that each pathway
represents. The Model column indicates whether the following values correspond to the pathway in the historical model or
the Contemporary model. The Coefficient column contains the path coefficient, which describes the relative magnitude
and direction of each pathway’s relationship. Values with * are statistically significant from 0 (p < 0.05). The Components
column contains the predictors used to calculate each pathway; if more than one predictor was used, the path coefficients
used to calculate the composite are given in parentheses.

Diagram Key Pathway
Model Coefficient Components

From To

a Position Density Historical 0.245 * HSP
Contemporary −0.358 * HSP

b Position Diameter
Historical −0.324 * HSP

Contemporary 0.321 * HSP

c Position Composition Historical −0.371 * HSP
Contemporary −0.405 * HSP

NA
Texture Density Historical −0.065 TRI

NA Contemporary −0.095 TRI

NA
Texture Diameter

Historical 0.053 TRI
NA Contemporary −0.020 TRI

c
Texture Composition Historical 0.126 * TRI

NA Contemporary 0.068 TRI

NA Aspect Density Historical 0.008 SRI
NA Contemporary 0.010 SRI

NA Aspect Diameter
Historical −0.124 SRI

NA Contemporary 0.072 SRI

c Aspect Composition Historical −0.233 * SRI
Contemporary −0.184 * SRI

d Climate Density Historical 0.276 *

Winter Tmin (−0.491); Winter
Tmax (0.657); Fall Tmean (0.473);

Spring Precip (3.546); Winter
VPDmin (−3.462)

Contemporary 0.212 *

Winter Tmin (−2.566); Winter
Tmax (−3.615); Spring Precip

(−1.742); Summer Tdmean
(−0.035)

e Climate Diameter
Historical 0.370 *

Winter Tmin (−2.052); Winter
Tmax (−0.228); Fall Tmean (0.27);

Spring Precip (0.773); Winter
VPDmin (1.821)

Contemporary 0.212 *
Winter Tmin (2.423); Winter Tmax

(3.568); Spring Precip (2.202);
Summer Tdmean (1.224)

f Climate Composition Historical 0.657 *

Winter Tmin (6.969); Winter Tmax
(1.124); Fall Tmean (−0.769);
Spring Precip (2.375); Winter

VPDmin (−6.687)

Contemporary 0.792 *
Winter Tmin (−0.855); Winter
Tmax (0.185); Spring Precip

(1.512); Summer Tdmean (−0.486)
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Table A2. Cont.

Diagram Key Pathway
Model Coefficient Components

From To

g Soil Density Historical 0.352 * Clay.30 cm (0.207); ph.0 cm
(−0.726); SOC.30 cm (0.437)

Contemporary 0.203 * ph.0 cm (−0.793); SOC.30 cm
(0.233)

h Soil Diameter
Historical 0.383 * Clay.30 cm (−0.482); pH.0 cm

(0.441); SOC.30 cm (−0.863)

Contemporary 0.259 * pH.0 cm (0.723); SOC.30 cm
(−0.309)

i Soil Composition Historical 0.389 * Clay.30 cm (0.26); pH.0 cm (0.924);
SOC.30 cm (0.116)

Contemporary 0.345 * pH.0 cm (0.661); SOC.30 cm
(−0.373)

j Composition Diameter
Historical −0.228 * Axis 1

NA Contemporary −0.058 Axis 1

NA Composition Density Historical 0.104 Axis 1
k Contemporary 0.255 * Axis 1

Appendix B

To represent forest composition in our models, we used distance-based ordination
techniques to reduce the complexity of the community data so that they would be easier to
use in variable selection and structural equation modeling. As noted in our methods, we
transformed plot-level species count data using Wisconsin double standardization before
calculating Bray–Curtis distance to describe the differences between plot overstory com-
munities. We then used nonmetric multi-dimensional scaling to calculate an independent
three-axis solution for both the historical and contemporary community data thus resulting
in a single species score within our ordination space. Finally, each three-axis solution was
rotated to place the maximum variation along the first axis, which was used to summarize
the community composition of each plot (Figure A1).

For our ordinations of historical and contemporary forest community data, our ap-
proach successfully described species composition in three axes, with final stresses of 0.11
and 0.12 (respectively). Each ordination was rotated to orient the most variation along the
first axis (Axis 1). Axis 1 explained approximately half of variation in overstory composi-
tion (r2 of 0.425 and 0.511 for historic and contemporary, respectively). In both ordinations,
Axis 1 was used to describe a continuum ranging from ponderosa pine dominated sites at
the far negative end, to sites dominated by relatively rare sprouting species (bigtooth maple
and New Mexico locust) at the positive end, and intermediate values capturing sites with
Douglas-fir, white fir, southwestern white pine, Gambel Oak, and aspen (Figure A1a,b).
In the historical ordination, Gambel oak and aspen were grouped at one end of Axis 2,
and Douglas-fir, white fir and southwestern white pine were grouped at the other end.
Gambel oak and Douglas-fir were grouped at one end of Axis 3, and southwestern white
pine, white fir, and aspen were grouped at the other end (Figure A1c). In the contemporary
ordination, there was less differentiation of species along Axis 2 or Axis 3. Gambel oak is
differentiated on Axis 2 (Figure A1b), and southwestern white pine is differentiated on
Axis 3 (Figure A1d), with all other species clustered together.
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Figure A1. Ordinations of historical and contemporary forest community data. Points represent
the composition of each site; the distance between points represents the similarity between the
composition of each site; points that are close together are similar; points that are far apart are
dissimilar. The three-axis ordination space is displayed as Axis 1 by Axis 2 (a,b), and Axis 1 by
Axis 3 (c,d). Four letter species codes indicate the species scores within the ordination space: ABCO
(white fir; Abies concolor), ACGR (bigtooth maple; Acer grandidentatum), PIPO (ponderosa pine;
Pinus ponderosa), PIST (southwestern white pine; Pinus strobiformis), POTR (quaking aspen; Populus
tremuloides), PSME (Douglas-fir; Pseudotsuga menziesii), QUGA (Gambel oak; Quercus gambelii), and
RONE (New Mexico locust; Robinia neomexicana).
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