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Abstract: In industrial applications, bolt connections are simple and economical, contributing to
their popularity for use in wood packing boxes. However, they can easily fail when subjected to a
continuous vibrational load under usual working conditions such as transportation and hoisting.
Based on an ultrasonic technique, nondestructive evaluation can be used to quickly detect large-
scale structures, but the complex propagation properties in wood limit its application. To solve this
problem, a time-reversal method was adopted to predict the residual preload on bolted connections by
focusing on the signals collected by wood structures, which helps to assess the structures’ reliability.
In this study, the residual preload of bolted connections in wood structures was predicted using
the deep-learning method, LSTM, one-dimensional Resnet and Densenet, and tree classification
models. It was confirmed that the use of the time-reversal method for ultrasonic detection focused
on the signals transmitted in bolted connections of wood structures and deep-learning methods are a
feasible way to predict an ultrasonic transmission model.

Keywords: ultrasonic detection; time-reversal method; bolted connection of wood; deep-learning

1. Introduction

Wood is an organic, heterogeneous, and anisotropic material, the utility and applica-
bility of which are determined by its mechanical properties, such as the modulus of rupture
(MOR), modulus of elasticity (MOE), and tensile strength (TS) [1,2]. As a type of renewable
material, wood is widely used in industrial production [3]. As a packaging material, wood
plays an indispensable link between packaging and transportation. Bolted connections are
commonly adopted in wood packaging. However, due to being impacted by continuous
vibration during transportation, bolted connections within a packing box are easily lost,
leading to an unreliable overall structure. The strength of wood structure bolt connections
depends on both the properties of wood (defects, density, quality, etc.) and bolt (quality,
size, etc.). The more intuitive performance is that the residual preload on the bolt will
decrease or even disappear.

Thus, the reliability of the bolted connections in wood structures needs to be detected.
Ultrasonic and near infrared spectroscopy are widely used as nondestructive testing meth-
ods in agricultural and forestry products [4]. In particular, ultrasonic detection can evaluate
wood properties and detect defects [5–8]. During detection, the ultrasonic variation sent to
a tested structure is defined as a connection-losing parameter. Piezoelectric (PZT) sensors
are usually set to emit and receive ultrasonic signals. This method studies the ultrasonic
signals on touching surfaces according to linear phenomena (e.g., wave reflection and
scattering) and nonlinear phenomena (e.g., signal modulation and energy loss). Guided
waves and Lamb waves are the most practical ways to conduct ultrasonic excitation [9,10].
Domingos [11] built a microcontrol system to nondestructively detect wood ultrasoni-
cally. Ornelas [12] verified the feasibility of ultrasonic detection on the MOE of different
wood species.
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The noise existing in a detection system and the vibration absorption brought up by
the porosity of wood lead to signal dissipation during the process [13], resulting in a low
detection accuracy. To solve this problem, a time-reversal method can be used to optimize
the accuracy of signal collection. In this method, the collected signals are re-emitted to the
original excitation after being reversed in a time domain to rebuild the input signal at the
original excitation. The signal is focused during transmission [14].

In terms of the heterogeneity of wood, the ultrasonic transmission velocity in wood
varies [15]. Additionally, the roughness and defects [16] of wood affect the contact surfaces
of connections. Within the elastic limit of wood, the incremental preload in bolt connections
enlarges contact surfaces and strengthens the reliability of the structure, while outside
the elastic limit, the preload generates plastic transformation in wood [17–19] around the
bolt, which reduces contact surfaces and might dissipate the signal strength. Hence, a
linear correlation does not exist between the residual preload of bolts and the signal value
transmitted in wood (Sotomayor Castellanos [20] found that there is no linear relationship
between ultrasonic velocity and wood density). In order to predict the residual preload of
a bolt in connections of wood structures, nonlinear models need to be adopted.

With the development of technology, as a type of classification algorithm, deep learn-
ing has been shown to have good performance. The recurrent neural network (RNN) [21],
long short-term memory (LSTM) [22,23], and gated recurrent unit (GRU) [24] are commonly
used for one-dimensional signals such as time sequence signal [25] classification. In terms
of two-dimensional image identification, the deep convolutional network [26,27], resid-
ual network (Resnet) [28,29], Densenet [30,31] and their improved structures have been
widely used in image classification tasks. Ouahabi [32] used the deep-learning method
to perform real-time semantic segmentation of ultrasonic acoustic images. Senin [33]
employed the SAX-VSM method to cluster temporal signals. Hatami [34] used the deep
convolutional neural network to classify one-dimensional signals after converting them
into two-dimensional signals.

In this study, a neural network model based on LSTM was designed by using long- and
short-term memory networks, and the deep convolutional neural networks WideResnet
and Densenet were extended to one-dimensional usage. The signals obtained with the
time-reversal method and the signals collected directly were studied using the algorithm.
Classification models, including XGBoost and LightGBM, were applied in this method
to predict the reliability of bolted connections on wood structures. In addition, tests
were carried out to verify the effectiveness of the deep convolutional network and time-
reversal methods.

2. Materials and Methods
2.1. Experimental System Setup

The experimental system (Figure 1) was made up of a power amplifier, a data acqui-
sition card (NI USB-6366), and a computer. Each tested sample contained two pieces of
faultless beech wood with dimensions of 200 mm in length, 100 mm in width, and 10 mm
in height and was fastened by an M10 bolt with dimensions of 1.5 mm in screw pitch
and 40 mm in length. The bolt met the ASTM A194/A194M standard. The density of the
beech was 0.70 g/cm3, the moisture content was 10.2%. Two PZTs (piezoelectric ceramic
transducers) were placed on the top face and bottom face of each wood piece. LabVIEW
programming was used to control the data acquisition card to transmit the excitation signal
and collect the signal through the PZTs.
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Figure 1. Experimental system.

2.2. Time-Reversal Method

As shown in Figure 2, for the time-reversal method, PZT1 was set as a signal actuator
to input excitation signals I(ω), and as a signal receiver, PZT2 obtained the response from
the structure. This signal can be expressed as shown in Equation (1):

Vp2(r, ω) = I(ω)KP1(ω)KP2(ω)G(r, ω) (1)

where KP1(ω) and KP2(ω) are electromechanical coupling factors of PZT1 and PZT2, and
G(r, ω) is the frequency response transfer function of the wood structure. The obtained
signals were time reversed. Because the signals were conjugated in the time and frequency
domains, the reversal signal can be described as shown in Equation (2):

V∗
P2(r, ω) = I∗(ω)K∗

P1(ω)K∗
P2(ω)G∗(r, ω) (2)

After being time reversed, the guide-wave signal V∗
P2 (r, ω) was re-excited by PZT2.

Based on the principle of reciprocity of sound wave propagation, for the structure where
the sensor and actuator were determined, reciprocity also exists between the sensor and
actuator, but the frequency response transfer functions are the same. At this moment,
VP1 (r, ω) received by PZT1 can be expressed by the following equation:

VP1(r, ω) = KP1(ω)KP2(ω)V∗
P2(r, ω)G(r, ω) = I∗(ω)KP1(ω)KP2(ω)K∗

P1(ω)K∗
P2(ω)G(r, ω)G∗(r, ω)

= I∗(ω)K∗
P12(ω)KP12(ω)G(r, ω)G∗(r, ω)

(3)

where KP12(ω) is the product of KP12 (ω) and KP2(ω), K∗
P12(ω)KP12(ω)G(r, ω)G∗(r, ω) is a

complex conjugate product, so it is a real, even, and positive function. Only the amplitudes
of reversal signals and excitation signals vary when the excitation frequency ω is kept
constant. The looseness of bolted connections can be judged according to the difference
between the reversal focusing signal and the excitation signal.
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Figure 2. Experimental sample and method sketch.

2.3. Symbolic Aggregate Approximation (SAX) Model

The SAX method transfers a time sequence of random length into a character string.
Its core task is to express the character string as a piecewise aggregate approximation (PAA)
to describe high-dimensional data columns in low dimensions. Then, the results expressed
with PAA are signified as a discrete character string. Due to its high efficiency and easy
computation, the SAX method performs well in the classification, clustering, and pattern
discovery of time sequences.

The procedure involving the transfer of a time sequence covers the following steps:
(1) an original time sequence is normalized and transferred to PAA data, meaning that
subdata are separated according to the length of n into M (amount) subsequences of the
same length; (2) the average number of sampling points in each subsequence is calculated,
and all the averages constitute a set with a size of α; (3) the interval splitting points are
found with a Gaussian distribution, and then, the averages expressed in PAA are mapped
to relative letters to achieve data dimensionality reduction; and (4) the dimensionality
reduced data are classified using the vector space model (VSM) algorithm.

2.4. Deep-Learning Model

Deep-learning models use convolution to extract image features while reducing the
complexity of data (Figure 3). Of these, ResNet and Densenet have been proven to be
effective structures in the field of image processing. ResNet introduces the residual module
to learn the expected and fitted residuals of the model and solve its degradation problem.
Based on ResNet, the WideResNet model was introduced to increase the number of chan-
nels in the feature map in ResNet to optimize the effect of learning. DensNet introduced
the dense block to ensure that the input on each layer came from the output of the last
layer. This operation reduces the gradient explosion and strengthens the transmission of
features. Moreover, the features are used more effectively, and parameters are decreased to
some degree.

The deep-learning models, WideResnet40_2 [35] and Densenet121, were used to
assess one-dimensional signals. To perform this processing, firstly, the original, traditional
two-dimensional image input was changed to a one-dimensional signal input, then the
convolution kernel was changed from a two-dimensional convolution kernel to a one-
dimensional convolution kernel. The network structure is shown in Figure 4.
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Figure 3. Structure of deep convolutional networks: (a) Resnet cell structure and (b) Densenet
cell structure.

Figure 4. Structures of Resnet40 and Densenet121.
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2.5. LSTM Model

At present, the RNN (recurrent neural network) is widely used in time-domain signal
processing. The LSTM model is a special recurrent neural network, as compared to the
RNN, which only has one delivery status, ht. The LSTM has two statuses, ct and ht. ft is the
forget gate calculated with the input xt and the last delivery status ht−1, which determines
the last status ct−1 that needs to be forgotten (Equation (4)).

ft = σ
(

W f [ht−1, xt] + b f

)
(4)

Then, ct is calculated to remember the gate to determine the information recorded on
the cell status (Equation (5)).

it = σ(Wi[ht−1, xt] + bi) C̃t = tan h(WC[ht−1, xt] + bC

)
(5)

After that, the cell status is renewed.

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

Finally, the output can be obtained based on the above processing (Equation (7)).

ot = σ(Wo[ht−1, xt] + bo)ht = ot ∗ tan h(Ct). (7)

3. Results
Emission Signal Selection

In order to reduce the dispersion degree of ultrasonic signals in the propagation
process of wood connections, a single-frequency signal was chosen as the excitation signal.
Thus, the five-period, single-frequency signal modulated by the Hanning window function
was selected as the excitation signal, and this can be expressed as follows (Equation (8)):

x(t) =
1
2

[
1 − cos

(
2π fct

n

)]
sin(2π fct) (8)

when the emission signal amplitude value was 5 V, the time domain signal was as shown
in Figure 5.

Figure 5. Emission signal.
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The sample was tested under different preloads. Each preload condition was tested
around 60 times to ensure the reliability and sufficiency of the data. After removing invalid
data, 457 directly collected signals data were obtained (Table 1).

Table 1. Directly collected data distribution.

Preload (N × m) Experimental Amount

0 56
2 58
3 53
4 53
5 57
6 63
7 58
8 59

Similarly, based on the directly collected data, 466 signals data were obtained with the
time-reversal method after removing invalid data (Table 2).

Table 2. Data distribution with the time-reversal method.

Preload (N × m) Experimental Amount

0 58
2 58
3 57
4 55
5 57
6 63
7 58
8 60

Since wood has the physical property of vibration absorption, and because the emis-
sion and collection signals of the data acquisition card only ranged from −10 to 10 V,
the directly collected useful signals were smaller than the background noise (Figure 6a).
Therefore, the collected signals were filtered to reduce the amount of irrelevant interference,
as shown in Figure 6c. The filtered results for the randomly selected experimental signals
under each different preload are shown in Figure 6d.
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The directly measured signals and the time-reversal signals were divided into a
training set and a test set at a ratio of 2:1. The classification label was the torque applied on
the bolt. The data distribution is shown in Table 3.

Table 3. Data set distribution.

Training Set Test Set

Directly collected signals 306 151
Time-reversal signals 312 154

Usually, in practical applications, only the reliability of a connection structure needs
to be considered, so the use of binary classification in the algorithm is feasible. A torque of
5 N × m was set as the judging boundary for connection looseness. The collected signals
were classified with the LSTM, WideResnet40_2, Densenet121, XGBoost, and LightGBM
models. With a grid search, the hyper-parameters of XGBoost were set as follows: learning
rate = 0.01, number of trees = 2000, depth = 9, and gamma = 0.1. The hyper-parameters of
LightGBM were set as follows: learning rate = 0.01, maximum number of tree leaves = 600,
and number of boosted trees = 121. The test results are presented in Table 4.

Table 4. Test results obtained using multiple models.

Classification Models
Binary Classification Octonary Classification

Original
Signals

Time-Reversal
Signals

Original
Signals

Time-Reversal
Signals

LSTM 92.0% 97.0% 78.0% 83.0%
WideResnet40_2 93.0% 95.0% 58.3% 80.0%

Densenet121 92.0% 97.0% 53.0% 75.0%
XGBoost 92.7% 93.5% 54.9% 77.3%
lightGBM 92.7% 96.1% 58.9% 81.2%
SAX-VSM 92.7% 88.3% 50.0% 71.4%

The objective function of the WideResnet40_2, Densenet121, and LSTM models was
set to cross-entropy loss, and the optimizer was set as SWA based on SGD. The signals
measured by time reversal were input into the neural network with a learning rate of 0.001.
During the training process, the loss function value changed as the epoch of iterations
increased, as shown in Figure 8.

Figure 8. Cont.
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Figure 8. Loss of time-reversal signal classification during neural network training: (a) WideResnet40_2 octonary classifica-
tion, (b) WideResnet40_2 binary classification, (c) Densenet121 octonary classification, (d) Densenet121 binary classification,
(e) LSTM octonary classification, and (f) LSTM binary classification.

The signals measured directly were also input into the neural network with the same
hyper-parameters. The loss function value changed as the number of iterations increased
during the training process, as shown in Figure 9.

Figure 9. Cont.
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Figure 9. Loss of directly collected signal classification during neural network training: (a) WideResnet40_2 octonary
classification, (b) WideResnet40_2 binary classification, (c) Densenet121 octonary classification, (d) Densenet121 binary
classification, (e) LSTM octonary classification, and (f) LSTM binary classification.

4. Discussion

In this study, the signal transmission in bolted connections of the wood structure
was classified with the recurrent neural network LSTM, one-dimensional WideResnet40_2,
one-dimensional Densenet121, XGBOOST tree classification model, LightGBM, and the
SAX-VSM algorithm. Among these methods, the recurrent neural network LSTM per-
formed the best. The signal classification accuracy under eight preload conditions was 83%,
and the judging accuracy of connection looseness reached 97%. Additionally, the WideRes-
net40_2 and LightGBM models had good effects on classification, demonstrating that
deep-learning models and tree-classification models perform well with one-dimensional
data. WideResnet40_2 extracted 1024 eigenvalues from 1 × 1000 time sequence signals,
and these eigenvalues were obtained through a series of residual blocks by nonlinear
dimensionality reduction. Although the data volume obtained was greater than the data
volume input directly, the extracted features did not have time correlations, and some of
the eigenvalues would eventually have a weight of 0 in the full connection layer. The result
of the SAX-VSM model was not ideal, possibly because the mean dimension reduction
might have eliminated the useful information in the collected ultrasonic signals.

The prediction accuracy of the signals collected with the time-reversal method was
generally higher than that of the signals collected directly. Therefore, it was obvious that
the time-reversal method did play a signal strengthening effect and improved the signal
resolution to a certain extent.

The deep-learning model usually led to computing cost problems. Significant amounts
of resources and time are required to build deep-learning classification models with many
parameters, which considerably slows down classification. By contrast, the tree classifi-
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cation model was relatively small, making the classification speed faster. However, the
accuracy might have been lower than that of the deep-learning model.

Using the method proposed in this paper, the residual preload of the bolt can be
detected by using the ultrasonic signal of PZT through the established network model,
so as to realize the on-line monitoring of the reliability of the bolt connection of wood
structures. In future work, this method will continue to be used to predict the reliability
of bolted connection structures of different tree species plates under different working
environments, and it can even be used to establish regression models to predict some
mechanical properties of wood plates.
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