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Abstract: In this paper, Berkovich depth-sensing indentation has been used to study the effects of the
temperature-dependent quasi-static mechanical properties and creep deformation of heat-treated
wood at temperatures from 20 ◦C to 180 ◦C. The characteristics of the load–depth curve, creep
strain rate, creep compliance, and creep stress exponent of heat-treated wood are evaluated. The
results showed that high temperature heat treatment improved the hardness of wood cell walls and
reduced the creep rate of wood cell walls. This is mainly due to the improvement of the crystallinity
of the cellulose, and the recondensation and crosslinking reaction of the lignocellulose structure.
The Burgers model is well fitted to study the creep behavior of heat-treated wood cell walls under
different temperatures.

Keywords: heat-treated wood; nanoindentation; temperature-dependent; creep behavior

1. Introduction

As a kind of complex natural polymer material, wood exhibits obvious viscoelastic
properties, such as creep and stress relaxation [1–3]. The viscoelasticity of wood is very
sensitive to changes in service temperature, moisture content and wood species [4–6].
Wood heat treatment can effectively improve the defects of cracking, warping deformation
and easy decay of wood material [7,8]. Therefore, heat-treated wood with elegant color
and dimensional stability is widely used for furniture, flooring, cladding and outdoor
utilities [9], while the mechanical properties of the heat-treated wood are critical for its
modification and application [10]. Most previous studies were focused on the changes of
micromechanical properties of cell walls with different heat treatments that use nanoinden-
tation [11,12]. Nanoindentation is widely used to characterize the quasi-static mechanical
properties of metals and polymers at the micro scale [13–15]. The quasi-static mechanical
properties of samples are measured by the stress–strain curves under constant load [15].
Nanoindentation is also applicable to the study of plastic deformation and dislocations of
materials [16–18]. The creep of materials such as polymers and soft metals has been studied
using data collected during the pressing process [19,20]. Nanoindentation is also applied
to characterize the viscoelastic properties of biological tissue structure by extending the
load-holding time [21]. In previous studies, the creep model has provided an interesting
explanation for the rheological behavior of chemical-modified materials [22–24]. Creep is
an important form of viscoelastic behavior of wood, which includes stress relaxation and
dynamic viscoelasticity [25]. As a complex organic polymer, wood exhibits viscoelastic
behavior due to the movement of molecular chain segments, flow within molecules, slip
between molecules, crystallization and molecular orientation [26,27].

There is no published study on the micro-mechanical creep deformation of heat-
treated wood under different service temperatures. This study of the viscoelasticity of
heat-treated wood provides the fundamental theoretical basis for heat treatment. The
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purpose of this paper is to test the hypothesis that heat treatment can reduce the creep ratio
of wood at high temperatures and to provide a theoretical basis for the use of heat-treated
wood as wood flooring. The temperature-dependent creep characteristics of heat-treated
wood subjected to sustained constant stress were measured.

2. Materials and Methods
2.1. Materials

Larch (Larix gmelinii (Rupr.) Kuzen) is a rapid planting species in artificial forests,
which is widely distributed in Northern and eastern China due to its excellent adaptability.
The dimensions of the sample are 10 mm, 8 mm and 8 mm (axial, radial and tangential),
respectively. The bottom and top of the samples are parallel and perpendicular to the axial
section of wood cell wall. Samples were precisely prepared from the same growth ring and
the late wood location of the growth ring was marked. The samples were placed in an oven
for 48 h conventional drying at 103 ◦C. All samples were then placed in moisture-proof
plastic bags for high temperature heat treatment.

2.2. Heat Treatment

After a conventional drying process, the wood specimens were treated by 1′ ′ tube
furnance (Thermo Scientific, Asheville, NC, USA) at 180 ± 1 ◦C and 210 ± 1 ◦C for 6 h.
Nitrogen was used as the shielding and heat conduction gas for heat treatment and the
gas flow rate was 20 mL/min. All specimens were then deposited in an oven at 103 ◦C to
await nanoindentation testing. The specific parameters of the heat treatment process were
consistent with previous studies [28]. H0 refers to the oven-dry sample, and H1 and H2
are the heat-treated samples at 180 ◦C and 210 ◦C.

Quasi-static nanoindentation:
The wood samples were fixed onto a sample holder. The samples were well prepared

into a pyramid shape. Then, the tips of samples were smoothed using an ultramicrotome
equipped with glass and diamond knifes. Preparation of the samples followed the steps
represented by Meng [5].

A TriboIndenter (Hysitron Inc., Minneapolis, MN, USA), integrated with a Berkovich
diamond tip and operated in open-loop control mode, was applied to measure the wood
S2 layer cell wall laminae.

On the basis of nanoindentation, the micro-mechanical properties (hardness and
elastic modulus) were obtained from the load–displacement curves:

Hardness:
H =

Pmax

A
(1)

Pmax is the peak load force and A is acquired by the projected contact area.
The sample’s reduced elastic modulus (Er) was obtained as follows:

Er =
dP
dh
× 1

2
×
√

π√
A

(2)

where dP/dh (stiffness) is the slope of the line of the unloading process.
The thermal stage is used to achieve a temperature control stage for different service

temperatures by means of the nanoindentation test. The three-segment load ramp of
the indentation experiment was performed, including: load time for 5 s, load-holding
process for 30 s and unloading process for 5 s, as seen in Figure 1. The peak load force
of nanoindentation was 400 µN for all tests. An indentation depth of 150~200 nm was
achieved on the wood cell wall, as seen in Figure 2. Figure 2a shows the morphology of the
cell wall under scanning electron microscope, and Figure 2b–d show the SPM scanning
images before and after indentation to verify the validity of the indentation data. The
samples were indentation tested at 20 ◦C, 60 ◦C, 100 ◦C, 140 ◦C and 180 ◦C for wood
specimens. The nanoindentations were performed under ambient relative humidity, which
was 45 ± 2% during the experimental procedure.
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Figure 1. The load force–displacement curve of nanoindentation and the schematic diagram of the
nanoindentation system [28].

2.3. Viscoelastic Properties-Creep Behavior Nanoindentation Test

The short-term viscoelastic behavior of heat-treated wood cell walls was investigated
under constant load. Nanoindentation equipped with a Berkovich tip was used to study
the effect of the temperature-dependent hardness, modulus and short-term mechanical
creep behavior from room temperature to 180 ◦C. For nanoindentation, the creep strain
rate was obtained through the following equations. The stress can be calculated as follows.

dε

dt
=

1
h

dh
dt

(3)

σ =
P
A

=
P

24.5h2 (4)

where dε/dt is the creep strain rate, h is the indent depth, t is the creep time, σ is the stress,
P is the constant peak loading force and A is the indent contact area. A is the projected
contact area given in our present work.
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Figure 2. The image of SEM/SPM image before and after nanoindentation and the samples before
and after heat treatment: (a) SEM image; (b) wood cell wall before indentation; (c) the marks of
indentation; (d) after indentation; (e) wood samples before and after heat treatment.

Based on the curves of indent depth versus time, the creep strain rate can be obtained.
The creep strain rates of samples are strongly dependent on the stress. The creep data of
wood cell wall can be obtained by nanoindentation test. The strain and creep compliance
of wood cell wall can be calculated as follows.

ε(t) = σ0 J(t) (5)

Since

ε(t) =
h(t)
hin

(6)

and
σ0 =

P0

A0
(7)



Forests 2021, 12, 968 5 of 14

Then, Equation (3) can be rewritten as

J(t) =
A0

P0hin
h(t) (8)

Before nanoindentations, the wood samples were held at the testing temperature for
10 min to attain thermal equilibrium. The thermal stage was also added to measure the
creep behavior of samples in different temperature conditions (ambient condition, 60 ◦C
100 ◦C, 140 ◦C and 180 ◦C). At least 10 measurements were repeated and the average value,
that could reduce the noise of the creep curves, was calculated.
Burgers model

The Burgers model was selected to simulate the experimental data and to investigate
the heat-treated and untreated wood at different temperatures, respectively. The schematic
image of the Burgers model is represented in Figure 3.
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By applying the Burgers model, the creep compliance can be rewritten as follows:

J(t) = J0 + J1t + J2[1− exp

(
− t

τB
0

)
] (9)

where J0 = 1/EB
e , J1 = 1/ηB

1 , J2 = 1/EB
d and τB

0 = ηB
2 /EB

d . EB
e and EB

d are the spring constants,
while ηB

1 and ηB
2 are the viscosity parameters of pure viscous damper shown in Figure 3.

3. Results and Discussion
3.1. Thermal Drift

The temperature of the hot stage was monitored by a thermocouple placed on the
sample surface to detect the real time surface temperature. Figure 4 shows the thermal
drift rate during the nanoindentation test. The thermal drift rate of each sample gradually
increases with the increase in the test temperature. After proper temperature balance is
attained, all the drift rates are controlled and kept at less than 1.2 nm/s. Therefore, the
thermal drift has little effect on the test results [29].

3.2. Temperature on Quasi-Static Mechanical Properties

Figure 5a,b show the reduced elastic modulus and hardness of the wood cell wall of
heat-treated and untreated wood at different temperatures, where the error line represents
the standard deviation of the samples. The elastic modulus and hardness of untreated
samples increased with the increase in ambient temperature from 20 ◦C to 100 ◦C. The
increasing trend is mainly caused by the reduction in the moisture content of the samples
during the temperature increase [28]. The reduction in moisture content of wood caused
the decrease in the mobility of cellulose molecular chains and chain segments, which
contributes to the increase in elastic modulus and hardness [18]. The moisture content of
the heat-treated wood is lower than that of the untreated wood, so the hardness and elastic
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modulus of the heat-treated wood are less affected by the ambient temperature (20 ◦C to
100 ◦C). The hardness and elastic modulus of H0 decreased noticeably with the service
temperature being raised above 140 ◦C, which included the softening process of wood
and the mild pyrolysis of wood components (especially the hemicellulose degradation) [7].
The gas environment of the sample in the nanoindentation test process caused the oxida-
tion reaction of the extract and the pyrolysis of the wood’s main components [8]. Large
deviation values of H0 hardness and elastic modulus at 140 ◦C and 180 ◦C also indicate
that wood cell walls undergo complex chemical reactions at this time. In other words,
the nanoindentation test at 180 ◦C can also be viewed as an air heat treatment, while the
hardness and elastic modulus of H1 and H2 samples showed small fluctuations, indicating
that the high temperature (140 ◦C~180 ◦C) environment has less effect on the heat-treated
samples. The heat-treated wood has better high temperature resistance, which is caused
by the decrease in the hemicellulose content, cellulose recondensation and cross-linking
reactions of the lignin structure [5].

Forests 2021, 12, x FOR PEER REVIEW 5 of 13 
 

 

100 °C, 140 °C and 180 °C). At least 10 measurements were repeated and the average value, 
that could reduce the noise of the creep curves, was calculated. 
Burgers model 

The Burgers model was selected to simulate the experimental data and to investigate 
the heat-treated and untreated wood at different temperatures, respectively. The sche-
matic image of the Burgers model is represented in Figure 3.  

 
Figure 3. Schematic image of the Burgers model. 

By applying the Burgers model, the creep compliance can be rewritten as follows: 𝐽 𝑡 = 𝐽 𝐽 𝑡 𝐽 1 𝑒𝑥𝑝 𝑡𝜏  (9) 

where J0 = 1/𝐸 , J1 = 1/𝜂 , J2 = 1/𝐸  and 𝜏 = 𝜂 /𝐸 . 𝐸  and 𝐸  are the spring constants, 
while 𝜂  and 𝜂  are the viscosity parameters of pure viscous damper shown in Figure 
3. 

3. Results and Discussion 
3.1. Thermal Drift 

The temperature of the hot stage was monitored by a thermocouple placed on the 
sample surface to detect the real time surface temperature. Figure 4 shows the thermal 
drift rate during the nanoindentation test. The thermal drift rate of each sample gradually 
increases with the increase in the test temperature. After proper temperature balance is 
attained, all the drift rates are controlled and kept at less than 1.2 nm/s. Therefore, the 
thermal drift has little effect on the test results [29]. 

 
Figure 4. Thermal drift rate with different service temperatures. 

  

Figure 4. Thermal drift rate with different service temperatures.

3.3. Temperature on Creep Behaviors

Generally, wood creep occurs under compressive stress, which is related to the varia-
tion of wood species, mechanical properties, stress level, temperature, moisture content
and other factors [1,4,28]. The parameters of the creep behavior of the cell walls were
obtained from the data recorded in the nanoindentation peak force-holding process. The
displacement–time curve of untreated wood at different service temperatures is shown
in Figure 6. The displacement increased rapidly at the beginning of loading and then
slowed down gradually. This creep behavior consists of instantaneous elastic deforma-
tion, viscoelastic deformation and viscoelastic degeneration [19,20]. The maximum creep
displacement of H0 occurs at 20 ◦C. For the H0 nanoindentation test at 180 ◦C, the creep
displacement increased significantly, and the curve fluctuated noticeably; this is mainly
caused by the degradation of hemicellulose and the softening of lignin [16]. For the high
temperature nanoindentation test, the movement of the cellulose molecular chain was
activated, the free volume gradually increased, and the intermolecular chain began to
slip [30]. Hydrogen bonds between hemicellulose and cellulose in the amorphous region
were broken, which also promoted the creep displacement [16,28].
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3.4. Heat Treatment on Creep Behaviors

According to the microstructure of wood, the cell wall can be seen as complex ligno-
cellulosic composites [13]. The nanoindentation is mainly applied to the S2 layer of the cell
wall, which is the thickest part of the cell wall [1,5]. Figure 7 shows the creep compliance
for different test temperature conditions (20 ◦C, 60 ◦C, 100 ◦C, 140 ◦C and 180 ◦C) of H0,
H1 and H2. Comparing the H0, H1 and H2 curves at the same test temperature, it is clear
that the heat treatment completely changes the wood cell wall creep behavior. In Figure 7,
the creep compliance of the cell wall is decreased after heat treatment at room temperature
(20 ◦C). In other words, heat treatment can effectively reduce the creep behavior of the
wood cell walls at 20 ◦C. H2 exhibits minimal creep compliance from room temperature
to 100 ◦C, while it represents the maximum creep compliance at 180 ◦C. The creep of
H2 sample increases rapidly when ambient temperature exceeds 100 ◦C. In addition, the
H0 and H1 curves overlap when the ambient temperature reaches 140 ◦C, which is most
likely caused by hemicellulose Softening. As a complex physical modification process,
heat treatment includes the degradation and modification of hemicellulose [30], the degra-
dation and crystallization of amorphous cellulose and the condensation polymerization
of lignin [31,32]. After heat treatment, the reinforced wood cell walls showed less creep,
which was closely correlated with the tighter bond of the wood cell wall.

3.5. Burgers Model

Nanoindentation is widely applied in the microscopic creep deformation of mate-
rials [33,34]. This study shows that nanoindentation technology can effectively test the
heat treatment of wood cell wall creep behavior. The experimental data are simulated
using the four component Burgers model. Figures 8 and 9 show the experimental data for
wood cell wall creep compliance and the red line is creep compliance simulated by the
Burgers model. The creep simulated curves are in good agreement with the test data, with
a goodness of fit of 0.99. The Burgers model is suitable for forecasting the creep behavior of
wood cell walls. According to nanoindentation test data, the creep parameters of wood cell
walls are obtained based on Burgers model fitting. The parameters of the Burgers model
include E1, E2, η1, η2 and τ0: elastic modulus, viscoelastic modulus, plasticity coefficient,
viscoelasticity and relaxation time. These parameters are listed in Table 1.
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H2 6.96 48.50 2403.71 135.46 2.79 0.992 

100 H0 5.86 42.07 1788.11 138.73 3.30 0.996 

Figure 9. The test data and simulated curves of H2 heat-treated wood cell wall.
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Table 1. Parameters of Burgers model.

Temp (◦C) No. E1
(GPa)

E2
(GPa)

η1
(GPa·S)

η2
(GPa·S)

τ0
(S) R2

20
H0 4.57 15.33 769.23 47.52 3.10 0.997
H1 4.71 27.99 1086.19 74.20 2.65 0.996
H2 4.93 33.37 1282.60 88.48 2.65 0.995

60
H0 5.62 35.14 1848.01 125.66 3.58 0.996
H1 5.42 31.40 719.42 67.52 2.15 0.998
H2 6.96 48.50 2403.71 135.46 2.79 0.992

100
H0 5.86 42.07 1788.11 138.73 3.30 0.996
H1 5.29 29.88 1097.24 81.92 2.74 0.997
H2 6.83 47.82 3034.18 123.77 2.59 0.992

140
H0 6.13 49.95 1443.00 105.25 2.11 0.992
H1 8.13 49.02 1315.31 155.38 3.17 0.998
H2 6.09 48.36 1710.59 98.17 2.03 0.997

180
H0 5.35 38.65 591.72 70.49 1.82 0.981
H1 6.25 44.70 1736.70 55.56 1.24 0.990
H2 4.15 28.56 1349.01 72.75 2.55 0.992

The creep deformation of wood is greatly affected by heat treatment, environmental
temperature and humidity [5,35]. At room temperature, the Burgers models E1, E2, η1 and
η2 of the wood cell walls increased gradually with the increase in heat treatment intensity,
as seen in Table 1. This demonstrates that heat treatment can reduce wood cell wall creep
behavior at room temperature, which is consistent with results obtained using the quasi-
static nanoindentation test [18,28]. When the service temperature increased (60~140 ◦C),
the elastic modulus, viscoelastic modulus, plastic coefficient and viscoelasticity of the
untreated specimen showed a significant increase, which is related to the softening of the
wood cell wall. The creep parameters of the Burgers model of the untreated sample were
significantly reduced and there was a significant fluctuation in the creep curve at 180 ◦C,
which was caused by real-time softening and pyrolysis of the wood components during
the 180 ◦C nanoindentation test. Compared with the untreated sample, the creep curve of
H2 is relatively stable at 180 ◦C. The results showed that the Burgers model was well fitted
to the creep curves of untreated and heat-treated Larix cell wall. The difference between
the fitting data of the Burgers model and the experimental data is accurately controlled.

4. Conclusions

After reasonable temperature balance treatment, the nanoindentation overcomes the
limitations of the inherent room temperature test and can be used to test the microscopic
creep behavior under high temperature conditions. The hardness of the wood cell walls
significantly increased and the creep rate decreased noticeably after heat treatment. The
improvement in the micromechanical properties of wood after heat treatment is mainly
due to the recondensation and cross-linking reaction of the lignocellulosic structure and
the increase in the crystallinity of cellulose.

It has been verified that the parameters of creep behavior fitted by the Burgers model
are sensitive to changes in ambient temperature. The Burgers model can adequately fit the
creep of wood cell walls under temperature response.

The nanoindentation test during the peak stress holding stage also demonstrated the
softening of wood components at high temperature. It was also proven that the Burgers
model is appropriate to study the viscoelastic creep behavior of wood cell walls.
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